
O ncogenomics data and their dimensions
Cancer genomics benefi ts from high­throughput techno­
lo gies that allow the comparison of the genomic sequen­
ces, epigenomic profi les, and transcriptomes of tumor 
cells with those of normal cells. Th ese technologies often 
characterize diff erent types of somatic alterations (or 
variations) in a tumor cell population that are absent 
from normal cells ­ including copy number alterations 
(CNAs), mutations, gene expression changes and methy­
la tion changes [1­4]. Together, these somatic altera tions 
constitute multidimensional oncogenomics datasets that 

descri be the variations that coexist in common elements 
(for example, the genes) of the genome (or transcriptome) 
of a particular cohort of tumor cells. Such data are 
currently being used to identify cancer­driver genes and 
pathways, to discover molecular targets for new thera­
pies, and to defi ne molecular profi les that charac terize 
clinically meaningful patient categories. An array of 
analytical methods are currently used to exploit the 
information contained within this multidimensional 
layout [5­12].

Along with computational and statistical methodolo­
gies, eff ective visual exploration by experts is crucial to 
successful extraction of knowledge from oncogenomics 
data. For example, this step might be key to unraveling 
rare genomic events, verifying data quality at maximum 
resolution or identifying key players in cancer develop­
ment. Th us, researchers need intuitive tools that allow 
the visual integration and simultaneous exploration of 
both diff erent types of alterations and clinical informa­
tion. Many data visualization tools have been developed 
in recent years to support genomic studies. In this review, 
we revisit the most common ways in which these data are 
visualized, and present s elected tools that allow 
researchers to visualize multidimensional oncogenomics 
datasets eff ectively (Table 1).

To aid our review of the tools, we describe four case 
studies that illustrate their use: the visual exploration of 
1) alterations in cancer­driver genes per tumor through a 
representation based on OncoPrint (described below); 
2) cause­eff ect relationships between diff erent alteration 
types in tumor samples, through the use of Gitools and 
the Network viewer from the cBio Cancer Genomics 
Portal; 3)  the stratifi cation of tumor samples based on 
clinical annotations, using CircleMap, the Integrative 
Genomics Viewer (IGV) and Gitools; and 4) dramatic 
structural alterations that encompass the rearrangement 
of large chromosomal regions, employing the Circos tool 
and data obtained from the Catalogue of Somatic Muta­
tions in Cancer (Cosmic).

Types  of genomic data visualization
Numerous methods have been developed to automate the 
analysis of genomic data [13­15]. Nonetheless, the visual 
exploration of alterations in cancer genomes, epi g enomes 
and transcriptomes in multidimensional datasets, and of 
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the relationships between these alterations, presents 
specific challenges. This review focuses on the visuali­
zation principles, methods and tools employed to analyze 
these multidimensional oncogenomics datasets. (For 
general reviews on omics data visualization, see [16-19].)

We distinguish between three main approaches com­
monly used to represent multidimensional oncogenomics 
data: genomic coordinates, heatmaps and networks 
(Figure 1). These three approaches complement each other, 
and each is best suited to answer different specific questions.

Genomic coordinates
A common way to visualize oncogenomics data is to 
show alterations tied to their genomic loci. This approach 
is well suited to provide answers to questions about the 
genomic topography of alterations or to inspect particu­
lar genome loci. We distinguish between two main 
visualization approaches that use genomic coordinates: 
Genome Browsers and Circular Plots. Three of the most 
popular genome browsers employed to visualize cancer 
alterations are the Integrative Genomics Viewer (IGV) 
[20], the UCSC Cancer Genomics Browser [21], and the 
Savant Genome Browser [22]. All three support multiple 
data formats that are used to represent various types of 
alterations. They display the alterations in each tumor 
sample as genomic tracks, which can be loaded onto the 
browser and navigated by zooming and by scrolling to 
particular genomic regions.

The IGV and Savant genome browsers work as desktop 
applications and are particularly suited to the display of 
aligned sequencing data. IGV has a special focus on 
visualizing integrated datasets that include both array-
based and sequencing-based data as well as clinical infor­
mation about tumor samples and donors. The clinical 
information displayed in vertical lines in conjunction 
with the data tracks can be used to sort and group the 
tracks, thus simplifying the stratification of samples 
(Figures 2 and 3e). A further advantage of IGV is the split 
screen view, which allows multiple loci to be displayed 
next to each other. On the other hand, Savant offers an 
application programming interface (API) that allows 
third-party developers to extend and add visual, analytic, 
navigational, and data loading functions to the genome 
browser. Available plugins include edgeR [23], aimed at 
detecting differentially expressed genes or regions. Other 
plugins are described in the Savant Genome Browser 
manuscript [22]. Another strength of the Savant genome 
browser is the visualization of paired-end reads [19].

The web-based UCSC Cancer Genomics Browser offers 
an easy-to-use interface that can be used to browse 
cancer genomics datasets, such as those of The Cancer 
Genome Atlas (TCGA), which have been pre-analyzed 
with various tools and include clinical information. The 
user can choose between different plotting types: 

heatmaps, box plots and proportions. The features are 
shown in either the classic representation bound to 
genomic locations or in a gene-set visualization, 
analogous to the IGV split-screen view, resulting in a 
browser-like heatmap (Figure 2). Unlike IGV and Savant, 
the UCSC browser does not allow users to upload data.

Circos [24] is a flexible and popular tool that can be 
used in many different research fields to plot circular 
ideograms. In the case of multidimensional oncogeno­
mics data, the genomic coordinates of all chromosomes 
are represented in a circular layout (Figure 3f ). This tool 
aptly illustrates relationships between distinct alterations, 
represented as data tracks outside the ideogram, that 
take place at different locations within the genome. These 
relationships between regions are normally depicted as 
ribbons. Intra- and inter-chromosomal translocations are 
particularly well represented in Circos.

Genome browser tools in general have limited capacity 
to display relationships between genomic features that 
are independent of location, such as the coordinated 
expression of genes. The IGV and UCSC Cancer Genomics 
Browser attempt to tackle this problem using the split-
screen and heatmap approaches, respectively. Another 
issue with visualization-based genomic reference is that 
it falls short in visualizing extensive genomic rearrange­
ments. The circular layout of Circos can compensate for 
this deficit, or it can be resolved by the use of specific 
tools such as Gremlin [25]. Many other tools also per­
form specific tasks, exploiting the genomic coordinates 
representation scheme. For example, putative transloca­
tion events can be verified by the command-line tool 
Pairoscope [26], which generates relational diagrams of 
paired-end sequencing reads to aid in the discovery of 
translocation events. To view and analyze single nucleo­
tide polymorphism (SNP) and comparative genomic 
hybridization (CGH) array alteration data tools and 
methods such as VAMP [27] and waviCGH [28] are 
options based on web technologies, whereas Genome 
Alteration Print [29] is a desktop application. Further­
more, it has been proposed that there should be a move 
towards visualizing genomic rearrangements, such as 
gene fusions, graphically to emphasize the order of the 
rearranged segments rather than the genomic distance 
between the breakpoints [30].

Heatmaps
Heatmaps are graphical representations that are fre­
quently used to describe transcriptomics and genomics 
data stored in the form of matrices. In oncogenomics 
datasets, the columns in a heatmap usually correspond to 
tumor samples, whereas the rows are genes, transcripts, 
microarray probes, or other genomic elements (Figure 1). 
The color of each cell represents a value indicating a 
measurement of, let’s say, for simplicity, the gene in the 
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Figure 1. Cancer genomics projects generate multidimensional data for a cohort of patients. Diff erent technological platforms will screen 
for diff erent genomic and epigenomic changes in each patient, generating multidimensional data sets. The data are usually represented by clinical 
data along with one or more of the three main types of visualization tools: genomic coordinates, matrix heatmaps and networks.
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tumor, such as its expression level or mutational status. 
As matrices, heatmaps impose no restriction on the order 
of the data. Th is allows data from distant genome loci to 
be grouped and visualized together for comparison. For 
example, genes in the same pathway or genes that are 
associated with certain tumor types might be grouped 
together. In other words, rows or columns can be 
clustered according to molecular or clinical features. It is 
precisely this fl exibility to explore visually patterns within 
the alterations that are correlated to external charac ter­
istics, such as the function of genes or the features of the 
tumor samples, that make heatmaps so popular as a way 
of representing multidimensional oncogenomics data.

Many tools and programs generate heatmaps from 
numerical or categorical matrices. We focus here on tools 

that have features that are particularly well suited to the 
visual exploration of multidimensional oncogenomics data.

Gitoo ls [31] is an open­so urce java application for the 
analysis and visualization of matrices using interactive 
heatmaps. Th e heatmaps in Gitools can contain multiple 
dimensions, that is, multiple values in each cell, which 
makes it especially well suited to the exploration of multi­
dimensional cancer genomics data. Its interactive capa­
bilities allow the user to fi lter, sort, move, and hide rows 
and columns in the heatmap and to launch several 
common exploratory analyses (such as correlation, clus ter­
ing, enrichment and diff erential expression analyses). 
Multi­value data matrices, which can contain all types of 
alterations detected across a cohort of cancer samples, can 
be explored visually in Gitools, either focusing on a single 

Figure 2. Screenshots of tools that are frequently used in cancer genomics research distributed according to their visualization 
principles. Each of the three visualization methods - matrix heatmaps, genomic coordinates and networks - are associated with a point of the 
triangle. Tools that are placed close to one of these points mainly use the visualization method associated with that point; those placed in between 
use a mixed-model visualization method.
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dimension (that is, one type of alteration) or fixing one 
dimension to explore its influence on others. Gitools also 
allows the integration of these data with clinical information.

The cBio Cancer Genomics Portal [32] is a web 
resource for visualization of oncogenomics datasets that 
uses heatmap representation, among other options. The 
OncoPrint heatmaps display alterations in arrays of genes 
across tumor samples. Individual genes are represented 
as rows, and individual cases or patients as columns. 
Different colors and shapes are used to show different 
alteration types, so that multiple alterations in a patient’s 
gene can be distinguished easily.

IntOGen is a resource that can be used to analyze and 
visualize oncogenomics data [33]. It presents different 
values, estimating the accumulation of somatic mutations, 
CNA or transcriptional alterations in genes and pathways 
across tumor samples. Pre-computed data for more than 
300 cancer genome experiments are currently available. 
Web-interactive heatmaps are used to explore gene and 
pathway alterations across samples and tumor types.

Caleydo StratomeX [34] is a visualization tool built 
upon the Caleydo framework [35], with a focus on ex­
ploring interdependencies between different stratifica­
tions of cancer samples within a given study. Genomics 
data on different alterations can be clustered and 
visualized as matrix heatmaps. The clusters of different 
alterations are connected by ribbons whose widths 
correspond to the number of samples shared by the 
connected clusters. Clusters can also be visualized as 
pathway diagrams, allowing the researcher to observe the 
impact of alterations on pathway function (Figure 2).

Heatmaps can also be represented not as rectangles but 
as circles, as with CircleMap [8] (Figure  2). With this 
command-line tool, dimensions can be aligned in a 
circular plot accompanying a gene, which is represented 
as a circle that can be attached to other genes in a 
network layout (Figure 3d).

A general limitation of the heatmap visualization is that 
structural relationships between genes are difficult to 
grasp. For instance, it is very hard to discern whether the 
coincidence of CNA in several genes reflects a possible 
synergy or is simply a result of their location within a 
recurrently amplified or deleted chromosomic fragment. 
Gitools tries to solve this problem by offering the 
possibility of adding genomic annotations to the rows 
that can encode functional or structural information. 
Caleydo StratomeX solves this problem by incorporating 
pathway diagrams displaying functional relationships 
between the genes, and CircleMap plots can also be used 
as nodes to construct a network diagram for this purpose.

Networks
Networks represent functional relationships between 
different entities, such as genes. This type of information 

is difficult to represent in heatmaps and non-circular 
visualizations of genomic coordinates. Genetic features 
can be coded in node attributes such as color, size, or 
shape. Different alterations can be displayed as additional 
halos around the node. The network arrangement allows 
the researcher to explore visually clusters of nodes 
representing highly interconnected altered genes that can 
constitute driver pathways or subnetworks.

Cytoscape [36], a collaborative open-source project, is 
a widely used and intuitive network visualization and 
analysis tool in genomics research. No special bioinfor­
matics knowledge is needed to use Cytoscape. The 
properties of the nodes and the edges and the network 
layout are customizable, and the comprehensive array of 
plugins constitutes an added value for researchers. This 
tool has proven useful for integrating expression data 
into a gene network [37], as well as for mapping genes 
with cancer somatic alterations directly to a functional 
interactions (FI) network [38] that identifies subnetworks 
of altered genes in order to find cancer drivers. A web 
version, Cytoscape-web [39], is compatible with common 
internet browsers and facilitates interaction with the 
networks displayed. The cBio Cancer Genomics Portal 
[32] implements an adaption of this tool optimized for 
visually exploring multidimensional oncogenomics data 
from TCGA [40]. Node colors and halos encode the 
alteration status of cancer genes.

Representation of the genomic alterations present in 
individual tumor samples in network viewers presents a 
challenge. As a consequence, many details about the 
individual tumor samples are normally left out of net­
work figures. In the case of the cBio Cancer Genomics 
Portal network viewer, this problem is alleviated by the 
inclusion of plots that show the proportions of samples 
with different genomic alterations. Similar effects can be 
achieved with plugins for Cytoscape that transform 
nodes into pie charts (such as GoogleChartFunctions 
[41] and nodeCharts [42]).

Case studies
The case studies presented here elaborate on four 
different oncogenomic research questions that can be 
answered visually with the available tools and resources. 
The description of the case studies focuses on their 
biological interpretation. Supporting documentation on 
how to generate images corresponding to those in 
Figure  3 is included in the ‘Additional file 1 and 2’. 
Learning to use most of these tools requires a certain 
investment of time, and tutorials provided by the 
developers are highly recommended as a starting point.

Visual exploration of cancer drivers
Distinguishing the alterations that give cancer cells a 
selective advantage (drivers) from those that are merely 
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Figure 3. See next page for legend.
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side effects (passengers) of the destabilization of the 
cancer genome is a major problem in oncogenomics 
research. Several new methodologies [5-8,11,38,43-46] 
address this problem by exploiting the properties of 
driver genes. For example, the mutually exclusive altera­
tion of genes in a pathway is a characteristic of cancer 
drivers [5,6,47]. One plausible explanation of this behavior 
is that an alteration that targets an affected pathway does 
not confer further selective advantage to the cancer cell. 
A built-in Gitools option sorts genes and samples within 
a heatmap to present the pattern of mutually exclusive 
alterations, which is one approach to visual exploration 
of driver genes that are involved in the same pathway 
(Figure  3a) [48]. Oncoprint (cBio Cancer Genomics 
Portal) uses the same principle to display the alterations 
across TCGA datasets of a gene set provided by the user.

An alternative approach to identify cancer drivers 
involves mapping altered genes to a FI network (Figure 3b) 
[7,38,46]. The Reactome FI Cytoscape plugin offers this 
functionality. After a gene list is submitted, a FI network 
is constructed using so-called linker genes: genes that are 
not in the user-submitted list but that can connect two of 
the submitted genes. Usually, this approach identifies 
network regions in which recurrently altered genes, 
which are thought to point to driver genes and sub­
networks, are enriched. The visualization of genes and 
their alterations in the form of FI networks is thus very 
useful (see Figure 3b for an example).

Visualizing cause-effect relationships between different 
types of alterations
The effect of genomic alterations can be manifested at the 
genome, transcriptome or proteome level. Single nucleo­
tide variants (SNVs) might not directly influence 

transcription of the mutated gene but usually affect 
protein functionality. On the other hand, CNA and 
changes in methylation status frequently perturb the 
expression levels of the altered genes or other genes 
under their control. Determining the cause-effect 
relationships of such alterations is important to our 
understanding of cancer mechanisms. One approach is to 
plot one type of alteration (for example, CNAs) in a 
heatmap, sorting the tumor samples to separate diploid 
genes from altered genes. Changes in gene expression 
values, presented in another heatmap, can then be readily 
compared between these two groups (Figure 3a), allowing 
the detection of any significant differences.

Gitools can load a multidimensional data matrix contain­
ing different alterations for each sample, and a simple switch 
between the values shown in the heatmap cells easily 
changes the display from one heatmap to the other [49].

Networks offer another way of visualizing cause-effect 
relationships. The interactions between genes in a 
network can represent their functional relationships, for 
example, one gene might regulate the expression of 
another. Overlaying the alterations within a cohort of 
tumors on top of each node of the network might 
illustrate the effect of a gene alteration on the expression 
of other genes in the network (analogous to Figure 3b).

The network viewer of the cBio Cancer Genomics 
Portal supports the visualization of expression data, if 
available. Similar visual effects could be achieved in 
Cytoscape by mapping data onto node properties.

Visualizing cancer patient stratifications
Cancer is a complex disease. Tumors that seem very 
similar when examined through conventional diagnostic 
methods might look markedly different from the 

Figure 3. Four case studies are represented using one or several of the major visualization methods applied in oncogenomics. 
(a) Heatmap of oncogenomic alterations ordered by mutual exclusivity plotted with Gitools. In the upper half of the image, colors indicate the 
type of alteration: mutations (green), CNA gain (red) and CNA loss (blue). The heatmap below shows expression data (high expression in red and 
low expression in green) for the same samples and genes, allowing the visual observation that genomics regions whose copy number is amplified 
tend to have higher expression values. (b) The same data as in (a), with the same color code for alterations, represented as a network of functional 
interactions between the genes, extracted from the cBio Cancer Genomics Portal. The halo around the four selected nodes is divided into three 
sectors. Changes in the proportion of samples with altered copy number are indicated in red (gain) or blue (loss) in the top sector, whereas 
changes in the proportion of samples with mutations are indicated in green in the lower-right sector. Expression changes are shown in light red 
(increase) and light blue (decrease) in the lower-left sector of the halo. Panels (c-e) include clinical information. Each tumor sample is assigned 
to one of four subtypes of glioblastoma, color-coded as dark green (classical), light green (mesenchymal), orange (neural) and red (proneural). 
(c) Heatmap of pathway expression levels plotted with Gitools. Each column is a tumor sample. The subtype is represented in colors in the top 
row and each row represents a biological pathway. The color of each cell indicates the Zscore of the sample level enrichment analysis (SLEA) of 
the pathway in the sample. Clear differences in the expression values in different pathways can be observed for different cell subtypes. (d) Same 
data as in (c) represented in the form of a network, drawn using CircleMap. Each node is a pathway and its edges indicate functional interactions 
between pathways as extracted from KEGG. The two halos around each node indicate the Zscore of the pathway in each sample and the clinical 
subtype. (e) CNA and expression data for the EGFR gene region of glioblastoma samples as shown by IGV. The top part of the plot indicates the 
genomic position we are observing. Each sample is shown as a horizontal track, ordered by clinical subtype. Within each clinical subtype, the tracks 
in the upper half illustrate CNA whereas those below show expression. This visualization reveals clear differences in the CNA and expression of 
the EGFR locus in different clinical subtypes. (f) Adaptations of Circos plots of three breast tumors with three very different alteration landscapes. 
The four circles in each plot, from outermost inwards, represent the human chromosomes, mutations, copy number alterations, and structural 
rearrangement.
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molecular viewpoint, which can lead to different out­
comes or treatment responses. Therefore, the molecular 
features of tumors can be used to stratify patients to 
support more accurate clinical and therapeutic decisions. 
Over the past decade, molecular stratification of tumors 
using expression microarrays has been an important area 
of cancer research [50-53]. The visualization of molecular 
alteration patterns in a heatmap is often used to explore 
subgroups of tumors and to associate them with particular 
clinical features. These heatmaps usually portray the 
expression patterns of genes or transcripts across samples, 
but the benefit of data analysis at the level of gene groups, 
for example pathways [54-56], is increasingly evident. 
Stratification and visualization can also be done at the level 
of pathways or other gene modules (Figure 3c), for example 
using sample level enrichment analysis (SLEA) [57,58], 
which analyzes the transcriptional status of pathways (or 
other gene sets) in each tumor sample.

In the case of multidimensional oncogenomics data, 
various clinical features and alterations such as CNA or 
changes in mRNA or microRNA expression can be used 
to cluster or stratify tumors, leading to different group­
ings of samples. In Figure 3c,d, we show ways of repre­
senting the results of applying SLEA to the TCGA glio­
blastoma dataset, with the samples grouped by the 
corresponding glioblastoma subtype. The alterations are 
visualized using both Gitools and CircleMap. Please see 
the ‘Additional file 1 and 2’ for a more detailed description 
of this process.

Stratifications can also be meaningful when exploring a 
single locus. Figure  3e illustrates the same grouping of 
samples by glioblastoma subtype, employing copy number 
and expression data from the TCGA glioblastoma study 
using IGV (Figure 3e).

Caleydo StratomeX is especially well suited to explor­
ing relationships between groups of samples (Figure  2). 
These relationships are visualized as ribbons of varying 
width drawn between neighboring columns. Wide ribbons 
encode a high co-occurrence of samples in different 
groupings, whereas their absence indicates mutual exclu­
sion. This coding provides a straightforward and scalable 
overview of the consistency of group memberships of 
tumor samples across different data types.

Visualizing global alteration profile patterns
Various alteration phenotypes have been observed in 
cancer cells. One of the most conspicuous of these is the 
mutator phenotype [59]: tumor cells typically have an 
abnormally high mutational burden. Tumor samples with 
chromothripsis [60,61] or many chromosomal trans­
locations are also common. Categorization of the altera­
tion events in a cancer cell population could influence the 
therapeutic decision, and requires a simultaneous 
exploratory view of all the alteration events.

One approach to exploring visually all the alterations of 
a sample is the circular genome mapping proposed by 
Krzywinski et al. using their tool Circos [24]. Several 
cancer studies [59,62-64] have used Circos to show the 
landscape of alterations. This tool is highly configurable, 
which is evident from the figures in the cited publications. 
One compact figure can represent all somatic alteration 
events in a given tumor sample. Data from different 
alteration types can be organized in layered circles while 
rearrangement events occupy the innermost space. 
Figure  3f is composed of three Circos plots of breast 
cancer samples [59] as they are represented on the 
Cosmic website [65]. The outer-most circle of each 
diagram represents the human chromosomes, followed 
by a plot of ticks showing point mutations. The next layer 
plots CNA along all the chromosomes; the links in the 
middle visualize the structural rearrangements.

The recently developed ggbio package [66] for the R 
programming environment allows, among other things, 
the creation of circular genome plots, and supports a 
variety of data formats for sequencing data.

Interfacing of tools
Researchers often need to use several of the comple­
mentary tools described here to explore their datasets. 
Nevertheless, the landscape of visualization tools for 
multidimensional oncogenomics data seems rather frag­
mented. This is the result of different groups focusing on 
the development of tools optimized to solve one 
particular visualization issue, which is probably a more 
efficient way of investing resources instead of engineering 
one single monolithic tool that has all possible visuali­
zation capabilities. Unfortunately, this fragmentation 
makes the use of different tools problematic: they accept 
very different data formats, they look different to users 
and so on. Thus, users need to spend time learning how 
to use each tool and reformatting their data to each tool’s 
requirements. This extra effort could be alleviated if 
developers were to facilitate the combined use of tools.

One of the major efforts to develop a universal interface 
that will bridge the gap between different bioinformatic 
tools is the GenomeSpace project [67]. GenomeSpace 
allows the user to store data in a common repository and 
the same web interface guides users to execute the 
integrated tools, load data, and store results. 
Conveniently, it contains several built-in converters for 
some often-used data formats. Several tools listed in 
Table  1 (IGV, Genomica, Cytoscape and Gitools) are 
included in this pilot project. This platform interface 
approach is promising and possibly the most user-
friendly option for users who lack a background in 
bioinformatics.

Another approach to facilitate the use of several tools is 
the creation of direct tool-to-tool interfaces. These are 
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possible when a tool offers an API that defines the form 
of communication between the tool and the rest of the 
world. There are different kinds of APIs, which allows the 
implementation of different approaches. If the API offers 
external control, it can send the tool a command and 
indicate whether the execution of this command has 
been successful or not. This is the case, for example, with 
IGV and Gitools: both offer a set of commands that the 
other application can use. Gitools has a built-in link that 
sends a ‘find locus’ command to IGV, whereas IGV 
exports data into a matrix format and commands Gitools 
to load it. In practical terms, this means that the user can 
explore the same data with two complementary visuali­
zation tools that can communicate with each other.

Another kind of API can be used for plugin develop­
ment. This is a general way of creating new capabilities 
for established tools. As mentioned above, Cytoscape and 
Savant support plugability, meaning that they possess 
internal commands that can be used by an application to 
extend the functions of the tool.

Unidirectional APIs are typically employed by databases 
and allow easy data transfer between the data source and 
tools. For example, IGV’s external control of the software 
allows the cBio Cancer Genomics Portal and GenePattern 
[68] to load data directly into IGV, and Gitools accepts 
imported data for all BioMart [69] databases.

Conclusions and future directions
The cancer genomics research field is rapidly evolving in 
parallel with advances in high-throughput genomics 
technologies. This evolution of the field requires con­
tinuous advancement in visualization techniques and 
tools. For instance, the amount of data it is possible to 
generate for an oncogenomics project continues to 
increase, requiring visualization tools that very efficiently 
load and process large amounts of data.

As this rapid scientific evolution continues, cancer 
researchers are highly dependent on computational 
scientists and bioinformatics professionals to help them 
manage, analyze and visualize data. To speed up research 
advances, the barrier between the large amount of data 
generated in oncogenomics projects and the effective 
exploration of these data by cancer researchers must be 
minimized. Visualization and exploration tools should be 
intuitive and easy to use, not requiring computational or 
bioinformatics expertise. Not all tools currently meet 
these standards, as some programming or even 
technological knowledge is required of the user. In recent 
years, however, there has been an important effort to 
facilitate access by ‘non-bioinformaticians’ to visuali­
zation tools for the analysis of oncogenomics data 
[20,31,32]. Continued work to improve the usability of 
visualization software is highly important, but requires 
great effort from developers for low scientific reward 

when compared to the development of new methods or 
visualization techniques. Funding agencies must under­
stand that increased investment in personnel dedicated 
to the development and maintenance of new tools, as 
well as user training and support, is crucial to the 
achievement of improvements in the field.

The complexity of oncogenomics data and the multi­
tude of questions to be addressed ensure that a static plot 
is often insufficient for data visualization. The user needs 
to explore the data interactively in order to address a 
wide range of questions. Several tools listed in Table  1 
(including IGV, Gitools and Caleydo) make use of 
interactive visualization techniques to make this possible. 
Other web frameworks with various visualization and 
some optional analysis possibilities are being developed, 
including the cBio Cancer Genomics Portal [32], 
IntOGen [33] and Regulome Explorer [70]. Open source 
and plug-in architecture facilitates quick adoption of 
these new platforms.

Although not discussed at length in this review, the use 
of cancer genomics data visualization in the clinical 
setting is likely to become a key topic in the near future, 
as the results of cancer genome projects begin to be 
translated into personalized cancer medicine. Clinicians 
will be the main users of this information as they make 
decisions regarding patient treatment. In this regard, 
simple, efficient tools that support the visual stratification 
of tumor genomic profiles and that highlight their 
relationships to known drugs or treatments will be more 
useful than the existing research-oriented tools. As a 
result, it will probably be necessary to develop specialized 
clinical tools or to adapt existing ones to the clinical 
setting. This has been achieved in the case of the 
MedSavant Browser [71], a clinical adaption of the Savant 
Genome Browser.

In summary, visualization of multidimensional onco­
genomics data is essential for the extraction of useful 
knowledge from the vast amount of data generated by 
high-throughput technologies. Important efforts have 
been made in recent years to create visualization tools 
that can explore these datasets. Further efforts are 
needed to develop those resources and to create new 
tools to meet the changing needs of the field. Long-term 
investment and funding are needed to guarantee the 
maintenance, improvement, and evolution of visuali­
zation tools beyond their first publication.

Additional files

Additional file 1. The following additional data are available 
with the online version of this paper. Additional file 1 provides 
information on how to generate visualization images for the case 
studies covered.

Additional file 2. Instructions on using Additional file 1.
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