Schroeder et al. Genome Medicine 2013, 5:9
http://genomemedicine.com/content/5/1/9

Genome Medicine

Visualizing multidimensional cancer genomics data
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Abstract

Cancer genomics projects employ high-throughput
technologies to identify the complete catalog of
somatic alterations that characterize the genome,
transcriptome and epigenome of cohorts of tumor
samples. Examples include projects carried out by

the International Cancer Genome Consortium (ICGC)
and The Cancer Genome Atlas (TCGA). A crucial step

in the extraction of knowledge from the data is the
exploration by experts of the different alterations, as
well as the multiple relationships between them. To
that end, the use of intuitive visualization tools that can
integrate different types of alterations with clinical data
is essential to the field of cancer genomics. Here, we
review effective and common visualization techniques
for exploring oncogenomics data and discuss a selection
of tools that allow researchers to effectively visualize
multidimensional oncogenomics datasets. The review
covers visualization methods employed by tools such
as Circos, Gitools, the Integrative Genomics Viewer,
Cytoscape, Savant Genome Browser, StratomeX and
platforms such as cBio Cancer Genomics Portal, IntOGen,
the UCSC Cancer Genomics Browser, the Regulome

Explorer and the Cancer Genome Workbench.

Oncogenomics data and their dimensions

Cancer genomics benefits from high-throughput techno-
logies that allow the comparison of the genomic sequen-
ces, epigenomic profiles, and transcriptomes of tumor
cells with those of normal cells. These technologies often
characterize different types of somatic alterations (or
variations) in a tumor cell population that are absent
from normal cells - including copy number alterations
(CNAs), mutations, gene expression changes and methy-
lation changes [1-4]. Together, these somatic alterations
constitute multidimensional oncogenomics datasets that
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describe the variations that coexist in common elements
(for example, the genes) of the genome (or transcriptome)
of a particular cohort of tumor cells. Such data are
currently being used to identify cancer-driver genes and
pathways, to discover molecular targets for new thera-
pies, and to define molecular profiles that characterize
clinically meaningful patient categories. An array of
analytical methods are currently used to exploit the
information contained within this multidimensional
layout [5-12].

Along with computational and statistical methodolo-
gies, effective visual exploration by experts is crucial to
successful extraction of knowledge from oncogenomics
data. For example, this step might be key to unraveling
rare genomic events, verifying data quality at maximum
resolution or identifying key players in cancer develop-
ment. Thus, researchers need intuitive tools that allow
the visual integration and simultaneous exploration of
both different types of alterations and clinical informa-
tion. Many data visualization tools have been developed
in recent years to support genomic studies. In this review,
we revisit the most common ways in which these data are
visualized, and present selected tools that allow
researchers to visualize multidimensional oncogenomics
datasets effectively (Table 1).

To aid our review of the tools, we describe four case
studies that illustrate their use: the visual exploration of
1) alterations in cancer-driver genes per tumor through a
representation based on OncoPrint (described below);
2) cause-effect relationships between different alteration
types in tumor samples, through the use of Gitools and
the Network viewer from the cBio Cancer Genomics
Portal; 3) the stratification of tumor samples based on
clinical annotations, using CircleMap, the Integrative
Genomics Viewer (IGV) and Gitools; and 4) dramatic
structural alterations that encompass the rearrangement
of large chromosomal regions, employing the Circos tool
and data obtained from the Catalogue of Somatic Muta-
tions in Cancer (Cosmic).

Types of genomic data visualization

Numerous methods have been developed to automate the
analysis of genomic data [13-15]. Nonetheless, the visual
exploration of alterations in cancer genomes, epigenomes
and transcriptomes in multidimensional datasets, and of
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the relationships between these alterations, presents
specific challenges. This review focuses on the visuali-
zation principles, methods and tools employed to analyze
these multidimensional oncogenomics datasets. (For
general reviews on omics data visualization, see [16-19].)

We distinguish between three main approaches com-
monly used to represent multidimensional oncogenomics
data: genomic coordinates, heatmaps and networks
(Figure 1). These three approaches complement each other,
and each is best suited to answer different specific questions.

Genomic coordinates

A common way to visualize oncogenomics data is to
show alterations tied to their genomic loci. This approach
is well suited to provide answers to questions about the
genomic topography of alterations or to inspect particu-
lar genome loci. We distinguish between two main
visualization approaches that use genomic coordinates:
Genome Browsers and Circular Plots. Three of the most
popular genome browsers employed to visualize cancer
alterations are the Integrative Genomics Viewer (IGV)
[20], the UCSC Cancer Genomics Browser [21], and the
Savant Genome Browser [22]. All three support multiple
data formats that are used to represent various types of
alterations. They display the alterations in each tumor
sample as genomic tracks, which can be loaded onto the
browser and navigated by zooming and by scrolling to
particular genomic regions.

The IGV and Savant genome browsers work as desktop
applications and are particularly suited to the display of
aligned sequencing data. IGV has a special focus on
visualizing integrated datasets that include both array-
based and sequencing-based data as well as clinical infor-
mation about tumor samples and donors. The clinical
information displayed in vertical lines in conjunction
with the data tracks can be used to sort and group the
tracks, thus simplifying the stratification of samples
(Figures 2 and 3e). A further advantage of IGV is the split
screen view, which allows multiple loci to be displayed
next to each other. On the other hand, Savant offers an
application programming interface (API) that allows
third-party developers to extend and add visual, analytic,
navigational, and data loading functions to the genome
browser. Available plugins include edgeR [23], aimed at
detecting differentially expressed genes or regions. Other
plugins are described in the Savant Genome Browser
manuscript [22]. Another strength of the Savant genome
browser is the visualization of paired-end reads [19].

The web-based UCSC Cancer Genomics Browser offers
an easy-to-use interface that can be used to browse
cancer genomics datasets, such as those of The Cancer
Genome Atlas (TCGA), which have been pre-analyzed
with various tools and include clinical information. The
user can choose between different plotting types:

Page 4 of 13

heatmaps, box plots and proportions. The features are
shown in either the classic representation bound to
genomic locations or in a gene-set visualization,
analogous to the IGV split-screen view, resulting in a
browser-like heatmap (Figure 2). Unlike IGV and Savant,
the UCSC browser does not allow users to upload data.

Circos [24] is a flexible and popular tool that can be
used in many different research fields to plot circular
ideograms. In the case of multidimensional oncogeno-
mics data, the genomic coordinates of all chromosomes
are represented in a circular layout (Figure 3f). This tool
aptly illustrates relationships between distinct alterations,
represented as data tracks outside the ideogram, that
take place at different locations within the genome. These
relationships between regions are normally depicted as
ribbons. Intra- and inter-chromosomal translocations are
particularly well represented in Circos.

Genome browser tools in general have limited capacity
to display relationships between genomic features that
are independent of location, such as the coordinated
expression of genes. The IGV and UCSC Cancer Genomics
Browser attempt to tackle this problem using the split-
screen and heatmap approaches, respectively. Another
issue with visualization-based genomic reference is that
it falls short in visualizing extensive genomic rearrange-
ments. The circular layout of Circos can compensate for
this deficit, or it can be resolved by the use of specific
tools such as Gremlin [25]. Many other tools also per-
form specific tasks, exploiting the genomic coordinates
representation scheme. For example, putative transloca-
tion events can be verified by the command-line tool
Pairoscope [26], which generates relational diagrams of
paired-end sequencing reads to aid in the discovery of
translocation events. To view and analyze single nucleo-
tide polymorphism (SNP) and comparative genomic
hybridization (CGH) array alteration data tools and
methods such as VAMP [27] and waviCGH [28] are
options based on web technologies, whereas Genome
Alteration Print [29] is a desktop application. Further-
more, it has been proposed that there should be a move
towards visualizing genomic rearrangements, such as
gene fusions, graphically to emphasize the order of the
rearranged segments rather than the genomic distance
between the breakpoints [30].

Heatmaps

Heatmaps are graphical representations that are fre-
quently used to describe transcriptomics and genomics
data stored in the form of matrices. In oncogenomics
datasets, the columns in a heatmap usually correspond to
tumor samples, whereas the rows are genes, transcripts,
microarray probes, or other genomic elements (Figure 1).
The color of each cell represents a value indicating a
measurement of, let’s say, for simplicity, the gene in the
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Figure 1. Cancer genomics projects generate multidimensional data for a cohort of patients. Different technological platforms will screen
for different genomic and epigenomic changes in each patient, generating multidimensional data sets. The data are usually represented by clinical
data along with one or more of the three main types of visualization tools: genomic coordinates, matrix heatmaps and networks.




Schroeder et al. Genome Medicine 2013, 5:9
http://genomemedicine.com/content/5/1/9

Page 6 of 13

Matrix heatmaps

=1

: SN
e .
CircleMap
£ 0@ = E
L = 3
=W SE>=
g [= A
- 3 |
- =]
W Ve
| i
Caleydo / StratomeX
° % 0880
& cu %9 s %6
S g e
Cytoscape
Networks

UCSC/ Cancer
Genetics Browser

Genomic coordinates

Savant

Regulome explorer

Figure 2. Screenshots of tools that are frequently used in cancer genomics research distributed according to their visualization
principles. Each of the three visualization methods - matrix heatmaps, genomic coordinates and networks - are associated with a point of the
triangle. Tools that are placed close to one of these points mainly use the visualization method associated with that point; those placed in between

use a mixed-model visualization method.

tumor, such as its expression level or mutational status.
As matrices, heatmaps impose no restriction on the order
of the data. This allows data from distant genome loci to
be grouped and visualized together for comparison. For
example, genes in the same pathway or genes that are
associated with certain tumor types might be grouped
together. In other words, rows or columns can be
clustered according to molecular or clinical features. It is
precisely this flexibility to explore visually patterns within
the alterations that are correlated to external character-
istics, such as the function of genes or the features of the
tumor samples, that make heatmaps so popular as a way
of representing multidimensional oncogenomics data.
Many tools and programs generate heatmaps from
numerical or categorical matrices. We focus here on tools

that have features that are particularly well suited to the
visual exploration of multidimensional oncogenomics data.
Gitools [31] is an open-source java application for the
analysis and visualization of matrices using interactive
heatmaps. The heatmaps in Gitools can contain multiple
dimensions, that is, multiple values in each cell, which
makes it especially well suited to the exploration of multi-
dimensional cancer genomics data. Its interactive capa-
bilities allow the user to filter, sort, move, and hide rows
and columns in the heatmap and to launch several
common exploratory analyses (such as correlation, cluster-
ing, enrichment and differential expression analyses).
Multi-value data matrices, which can contain all types of
alterations detected across a cohort of cancer samples, can
be explored visually in Gitools, either focusing on a single
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dimension (that is, one type of alteration) or fixing one
dimension to explore its influence on others. Gitools also
allows the integration of these data with clinical information.

The cBio Cancer Genomics Portal [32] is a web
resource for visualization of oncogenomics datasets that
uses heatmap representation, among other options. The
OncoPrint heatmaps display alterations in arrays of genes
across tumor samples. Individual genes are represented
as rows, and individual cases or patients as columns.
Different colors and shapes are used to show different
alteration types, so that multiple alterations in a patient’s
gene can be distinguished easily.

IntOGen is a resource that can be used to analyze and
visualize oncogenomics data [33]. It presents different
values, estimating the accumulation of somatic mutations,
CNA or transcriptional alterations in genes and pathways
across tumor samples. Pre-computed data for more than
300 cancer genome experiments are currently available.
Web-interactive heatmaps are used to explore gene and
pathway alterations across samples and tumor types.

Caleydo StratomeX [34] is a visualization tool built
upon the Caleydo framework [35], with a focus on ex-
ploring interdependencies between different stratifica-
tions of cancer samples within a given study. Genomics
data on different alterations can be clustered and
visualized as matrix heatmaps. The clusters of different
alterations are connected by ribbons whose widths
correspond to the number of samples shared by the
connected clusters. Clusters can also be visualized as
pathway diagrams, allowing the researcher to observe the
impact of alterations on pathway function (Figure 2).

Heatmaps can also be represented not as rectangles but
as circles, as with CircleMap [8] (Figure 2). With this
command-line tool, dimensions can be aligned in a
circular plot accompanying a gene, which is represented
as a circle that can be attached to other genes in a
network layout (Figure 3d).

A general limitation of the heatmap visualization is that
structural relationships between genes are difficult to
grasp. For instance, it is very hard to discern whether the
coincidence of CNA in several genes reflects a possible
synergy or is simply a result of their location within a
recurrently amplified or deleted chromosomic fragment.
Gitools tries to solve this problem by offering the
possibility of adding genomic annotations to the rows
that can encode functional or structural information.
Caleydo StratomeX solves this problem by incorporating
pathway diagrams displaying functional relationships
between the genes, and CircleMap plots can also be used
as nodes to construct a network diagram for this purpose.

Networks
Networks represent functional relationships between
different entities, such as genes. This type of information
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is difficult to represent in heatmaps and non-circular
visualizations of genomic coordinates. Genetic features
can be coded in node attributes such as color, size, or
shape. Different alterations can be displayed as additional
halos around the node. The network arrangement allows
the researcher to explore visually clusters of nodes
representing highly interconnected altered genes that can
constitute driver pathways or subnetworks.

Cytoscape [36], a collaborative open-source project, is
a widely used and intuitive network visualization and
analysis tool in genomics research. No special bioinfor-
matics knowledge is needed to use Cytoscape. The
properties of the nodes and the edges and the network
layout are customizable, and the comprehensive array of
plugins constitutes an added value for researchers. This
tool has proven useful for integrating expression data
into a gene network [37], as well as for mapping genes
with cancer somatic alterations directly to a functional
interactions (FI) network [38] that identifies subnetworks
of altered genes in order to find cancer drivers. A web
version, Cytoscape-web [39], is compatible with common
internet browsers and facilitates interaction with the
networks displayed. The cBio Cancer Genomics Portal
[32] implements an adaption of this tool optimized for
visually exploring multidimensional oncogenomics data
from TCGA [40]. Node colors and halos encode the
alteration status of cancer genes.

Representation of the genomic alterations present in
individual tumor samples in network viewers presents a
challenge. As a consequence, many details about the
individual tumor samples are normally left out of net-
work figures. In the case of the c¢Bio Cancer Genomics
Portal network viewer, this problem is alleviated by the
inclusion of plots that show the proportions of samples
with different genomic alterations. Similar effects can be
achieved with plugins for Cytoscape that transform
nodes into pie charts (such as GoogleChartFunctions
[41] and nodeCharts [42]).

Case studies

The case studies presented here elaborate on four
different oncogenomic research questions that can be
answered visually with the available tools and resources.
The description of the case studies focuses on their
biological interpretation. Supporting documentation on
how to generate images corresponding to those in
Figure 3 is included in the ‘Additional file 1 and 2!
Learning to use most of these tools requires a certain
investment of time, and tutorials provided by the
developers are highly recommended as a starting point.

Visual exploration of cancer drivers
Distinguishing the alterations that give cancer cells a
selective advantage (drivers) from those that are merely
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Figure 3. Four case studies are represented using one or several of the major visualization methods applied in oncogenomics.

(a) Heatmap of oncogenomic alterations ordered by mutual exclusivity plotted with Gitools. In the upper half of the image, colors indicate the
type of alteration: mutations (green), CNA gain (red) and CNA loss (blue). The heatmap below shows expression data (high expression in red and
low expression in green) for the same samples and genes, allowing the visual observation that genomics regions whose copy number is amplified
tend to have higher expression values. (b) The same data as in (a), with the same color code for alterations, represented as a network of functional
interactions between the genes, extracted from the cBio Cancer Genomics Portal. The halo around the four selected nodes is divided into three
sectors. Changes in the proportion of samples with altered copy number are indicated in red (gain) or blue (loss) in the top sector, whereas
changes in the proportion of samples with mutations are indicated in green in the lower-right sector. Expression changes are shown in light red
(increase) and light blue (decrease) in the lower-left sector of the halo. Panels (c-e) include clinical information. Each tumor sample is assigned

to one of four subtypes of glioblastoma, color-coded as dark green (classical), light green (mesenchymal), orange (neural) and red (proneural).

(c) Heatmap of pathway expression levels plotted with Gitools. Each column is a tumor sample. The subtype is represented in colors in the top
row and each row represents a biological pathway. The color of each cell indicates the Zscore of the sample level enrichment analysis (SLEA) of
the pathway in the sample. Clear differences in the expression values in different pathways can be observed for different cell subtypes. (d) Same
data as in (c) represented in the form of a network, drawn using CircleMap. Each node is a pathway and its edges indicate functional interactions
between pathways as extracted from KEGG. The two halos around each node indicate the Zscore of the pathway in each sample and the clinical
subtype. () CNA and expression data for the EGFR gene region of glioblastoma samples as shown by IGV. The top part of the plot indicates the
genomic position we are observing. Each sample is shown as a horizontal track, ordered by clinical subtype. Within each clinical subtype, the tracks
in the upper half illustrate CNA whereas those below show expression. This visualization reveals clear differences in the CNA and expression of

the EGFR locus in different clinical subtypes. (f) Adaptations of Circos plots of three breast tumors with three very different alteration landscapes.
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rearrangement.

The four circles in each plot, from outermost inwards, represent the human chromosomes, mutations, copy number alterations, and structural

side effects (passengers) of the destabilization of the
cancer genome is a major problem in oncogenomics
research. Several new methodologies [5-8,11,38,43-46]
address this problem by exploiting the properties of
driver genes. For example, the mutually exclusive altera-
tion of genes in a pathway is a characteristic of cancer
drivers [5,6,47]. One plausible explanation of this behavior
is that an alteration that targets an affected pathway does
not confer further selective advantage to the cancer cell.
A built-in Gitools option sorts genes and samples within
a heatmap to present the pattern of mutually exclusive
alterations, which is one approach to visual exploration
of driver genes that are involved in the same pathway
(Figure 3a) [48]. Oncoprint (cBio Cancer Genomics
Portal) uses the same principle to display the alterations
across TCGA datasets of a gene set provided by the user.

An alternative approach to identify cancer drivers
involves mapping altered genes to a FI network (Figure 3b)
[7,38,46]. The Reactome FI Cytoscape plugin offers this
functionality. After a gene list is submitted, a FI network
is constructed using so-called linker genes: genes that are
not in the user-submitted list but that can connect two of
the submitted genes. Usually, this approach identifies
network regions in which recurrently altered genes,
which are thought to point to driver genes and sub-
networks, are enriched. The visualization of genes and
their alterations in the form of FI networks is thus very
useful (see Figure 3b for an example).

Visualizing cause-effect relationships between different
types of alterations

The effect of genomic alterations can be manifested at the
genome, transcriptome or proteome level. Single nucleo-
tide variants (SNVs) might not directly influence

transcription of the mutated gene but usually affect
protein functionality. On the other hand, CNA and
changes in methylation status frequently perturb the
expression levels of the altered genes or other genes
under their control. Determining the cause-effect
relationships of such alterations is important to our
understanding of cancer mechanisms. One approach is to
plot one type of alteration (for example, CNAs) in a
heatmap, sorting the tumor samples to separate diploid
genes from altered genes. Changes in gene expression
values, presented in another heatmap, can then be readily
compared between these two groups (Figure 3a), allowing
the detection of any significant differences.

Gitools can load a multidimensional data matrix contain-
ing different alterations for each sample, and a simple switch
between the values shown in the heatmap cells easily
changes the display from one heatmap to the other [49].

Networks offer another way of visualizing cause-effect
relationships. The interactions between genes in a
network can represent their functional relationships, for
example, one gene might regulate the expression of
another. Overlaying the alterations within a cohort of
tumors on top of each node of the network might
illustrate the effect of a gene alteration on the expression
of other genes in the network (analogous to Figure 3b).

The network viewer of the cBio Cancer Genomics
Portal supports the visualization of expression data, if
available. Similar visual effects could be achieved in
Cytoscape by mapping data onto node properties.

Visualizing cancer patient stratifications

Cancer is a complex disease. Tumors that seem very
similar when examined through conventional diagnostic
methods might look markedly different from the
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molecular viewpoint, which can lead to different out-
comes or treatment responses. Therefore, the molecular
features of tumors can be used to stratify patients to
support more accurate clinical and therapeutic decisions.
Over the past decade, molecular stratification of tumors
using expression microarrays has been an important area
of cancer research [50-53]. The visualization of molecular
alteration patterns in a heatmap is often used to explore
subgroups of tumors and to associate them with particular
clinical features. These heatmaps usually portray the
expression patterns of genes or transcripts across samples,
but the benefit of data analysis at the level of gene groups,
for example pathways [54-56], is increasingly evident.
Stratification and visualization can also be done at the level
of pathways or other gene modules (Figure 3c), for example
using sample level enrichment analysis (SLEA) [57,58],
which analyzes the transcriptional status of pathways (or
other gene sets) in each tumor sample.

In the case of multidimensional oncogenomics data,
various clinical features and alterations such as CNA or
changes in mRNA or microRNA expression can be used
to cluster or stratify tumors, leading to different group-
ings of samples. In Figure 3c,d, we show ways of repre-
senting the results of applying SLEA to the TCGA glio-
blastoma dataset, with the samples grouped by the
corresponding glioblastoma subtype. The alterations are
visualized using both Gitools and CircleMap. Please see
the ‘Additional file 1 and 2’ for a more detailed description
of this process.

Stratifications can also be meaningful when exploring a
single locus. Figure 3e illustrates the same grouping of
samples by glioblastoma subtype, employing copy number
and expression data from the TCGA glioblastoma study
using IGV (Figure 3e).

Caleydo StratomeX is especially well suited to explor-
ing relationships between groups of samples (Figure 2).
These relationships are visualized as ribbons of varying
width drawn between neighboring columns. Wide ribbons
encode a high co-occurrence of samples in different
groupings, whereas their absence indicates mutual exclu-
sion. This coding provides a straightforward and scalable
overview of the consistency of group memberships of
tumor samples across different data types.

Visualizing global alteration profile patterns

Various alteration phenotypes have been observed in
cancer cells. One of the most conspicuous of these is the
mutator phenotype [59]: tumor cells typically have an
abnormally high mutational burden. Tumor samples with
chromothripsis [60,61] or many chromosomal trans-
locations are also common. Categorization of the altera-
tion events in a cancer cell population could influence the
therapeutic decision, and requires a simultaneous
exploratory view of all the alteration events.
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One approach to exploring visually all the alterations of
a sample is the circular genome mapping proposed by
Krzywinski et al. using their tool Circos [24]. Several
cancer studies [59,62-64] have used Circos to show the
landscape of alterations. This tool is highly configurable,
which is evident from the figures in the cited publications.
One compact figure can represent all somatic alteration
events in a given tumor sample. Data from different
alteration types can be organized in layered circles while
rearrangement events occupy the innermost space.
Figure 3f is composed of three Circos plots of breast
cancer samples [59] as they are represented on the
Cosmic website [65]. The outer-most circle of each
diagram represents the human chromosomes, followed
by a plot of ticks showing point mutations. The next layer
plots CNA along all the chromosomes; the links in the
middle visualize the structural rearrangements.

The recently developed ggbio package [66] for the R
programming environment allows, among other things,
the creation of circular genome plots, and supports a
variety of data formats for sequencing data.

Interfacing of tools
Researchers often need to use several of the comple-
mentary tools described here to explore their datasets.
Nevertheless, the landscape of visualization tools for
multidimensional oncogenomics data seems rather frag-
mented. This is the result of different groups focusing on
the development of tools optimized to solve one
particular visualization issue, which is probably a more
efficient way of investing resources instead of engineering
one single monolithic tool that has all possible visuali-
zation capabilities. Unfortunately, this fragmentation
makes the use of different tools problematic: they accept
very different data formats, they look different to users
and so on. Thus, users need to spend time learning how
to use each tool and reformatting their data to each tool’s
requirements. This extra effort could be alleviated if
developers were to facilitate the combined use of tools.

One of the major efforts to develop a universal interface
that will bridge the gap between different bioinformatic
tools is the GenomeSpace project [67]. GenomeSpace
allows the user to store data in a common repository and
the same web interface guides users to execute the
integrated tools, load data, and store results.
Conveniently, it contains several built-in converters for
some often-used data formats. Several tools listed in
Table 1 (IGV, Genomica, Cytoscape and Gitools) are
included in this pilot project. This platform interface
approach is promising and possibly the most user-
friendly option for users who lack a background in
bioinformatics.

Another approach to facilitate the use of several tools is
the creation of direct tool-to-tool interfaces. These are
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possible when a tool offers an API that defines the form
of communication between the tool and the rest of the
world. There are different kinds of APIs, which allows the
implementation of different approaches. If the API offers
external control, it can send the tool a command and
indicate whether the execution of this command has
been successful or not. This is the case, for example, with
IGV and Gitools: both offer a set of commands that the
other application can use. Gitools has a built-in link that
sends a ‘find locus’ command to IGV, whereas IGV
exports data into a matrix format and commands Gitools
to load it. In practical terms, this means that the user can
explore the same data with two complementary visuali-
zation tools that can communicate with each other.

Another kind of API can be used for plugin develop-
ment. This is a general way of creating new capabilities
for established tools. As mentioned above, Cytoscape and
Savant support plugability, meaning that they possess
internal commands that can be used by an application to
extend the functions of the tool.

Unidirectional APIs are typically employed by databases
and allow easy data transfer between the data source and
tools. For example, IGV’s external control of the software
allows the cBio Cancer Genomics Portal and GenePattern
[68] to load data directly into IGV, and Gitools accepts
imported data for all BioMart [69] databases.

Conclusions and future directions

The cancer genomics research field is rapidly evolving in
parallel with advances in high-throughput genomics
technologies. This evolution of the field requires con-
tinuous advancement in visualization techniques and
tools. For instance, the amount of data it is possible to
generate for an oncogenomics project continues to
increase, requiring visualization tools that very efficiently
load and process large amounts of data.

As this rapid scientific evolution continues, cancer
researchers are highly dependent on computational
scientists and bioinformatics professionals to help them
manage, analyze and visualize data. To speed up research
advances, the barrier between the large amount of data
generated in oncogenomics projects and the effective
exploration of these data by cancer researchers must be
minimized. Visualization and exploration tools should be
intuitive and easy to use, not requiring computational or
bioinformatics expertise. Not all tools currently meet
these standards, as some programming or even
technological knowledge is required of the user. In recent
years, however, there has been an important effort to
facilitate access by ‘non-bioinformaticians’ to visuali-
zation tools for the analysis of oncogenomics data
[20,31,32]. Continued work to improve the usability of
visualization software is highly important, but requires
great effort from developers for low scientific reward
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when compared to the development of new methods or
visualization techniques. Funding agencies must under-
stand that increased investment in personnel dedicated
to the development and maintenance of new tools, as
well as user training and support, is crucial to the
achievement of improvements in the field.

The complexity of oncogenomics data and the multi-
tude of questions to be addressed ensure that a static plot
is often insufficient for data visualization. The user needs
to explore the data interactively in order to address a
wide range of questions. Several tools listed in Table 1
(including IGV, Gitools and Caleydo) make use of
interactive visualization techniques to make this possible.
Other web frameworks with various visualization and
some optional analysis possibilities are being developed,
including the cBio Cancer Genomics Portal [32],
IntOGen [33] and Regulome Explorer [70]. Open source
and plug-in architecture facilitates quick adoption of
these new platforms.

Although not discussed at length in this review, the use
of cancer genomics data visualization in the clinical
setting is likely to become a key topic in the near future,
as the results of cancer genome projects begin to be
translated into personalized cancer medicine. Clinicians
will be the main users of this information as they make
decisions regarding patient treatment. In this regard,
simple, efficient tools that support the visual stratification
of tumor genomic profiles and that highlight their
relationships to known drugs or treatments will be more
useful than the existing research-oriented tools. As a
result, it will probably be necessary to develop specialized
clinical tools or to adapt existing ones to the clinical
setting. This has been achieved in the case of the
MedSavant Browser [71], a clinical adaption of the Savant
Genome Browser.

In summary, visualization of multidimensional onco-
genomics data is essential for the extraction of useful
knowledge from the vast amount of data generated by
high-throughput technologies. Important efforts have
been made in recent years to create visualization tools
that can explore these datasets. Further efforts are
needed to develop those resources and to create new
tools to meet the changing needs of the field. Long-term
investment and funding are needed to guarantee the
maintenance, improvement, and evolution of visuali-
zation tools beyond their first publication.

Additional files

Additional file 1. The following additional data are available
with the online version of this paper. Additional file 1 provides
information on how to generate visualization images for the case
studies covered.

Additional file 2. Instructions on using Additional file 1.
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