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Analysis of genome-scale gene networks (GNs) using large-scale gene expression data provides unprecedented opportunities to
uncover gene interactions and regulatory networks involved in various biological processes and developmental programs, leading
to accelerated discovery of novel knowledge of various biological processes, pathways and systems. The widely used context
likelihood of relatedness (CLR) method based on the mutual information (MI) for scoring the similarity of gene pairs is one
of the accurate methods currently available for inferring GNs. However, the MI-based reverse engineering method can achieve
satisfactory performance only when sample size exceeds one hundred. This in turn limits their applications for GN construction
from expression data set with small sample size.We developed a high performance web server, DeGNServer, to reverse engineering
and decipher genome-scale networks. It extended the CLRmethod by integration of different correlation methods that are suitable
for analyzing data sets ranging from moderate to large scale such as expression profiles with tens to hundreds of microarray
hybridizations, and implemented all analysis algorithms using parallel computing techniques to infer gene-gene association at
extraordinary speed. In addition, we integrated the SNBuilder and GeNa algorithms for subnetwork extraction and functional
module discovery. DeGNServer is publicly and freely available online.

1. Introduction

The advent of high-throughput technologies including mi-
croarray experiments and RNA-Seq technologies has gener-
ated terabytes of gene expression data for systematically iden-
tifying transcriptional regulation and interactions through
the reconstruction of gene networks on genome-wide scale.
Analysis of whole genome-scale networks can provide a
holistic view of all transcription regulations among and
within different subnetworks and allows us to gain a more
comprehensive understanding of regulation of cellular pro-
cesses and events. In the past few years, large amount of gene
expression data sets from numerous labs has been published
and deposited in public databases such as ArrayExpress [1]
and Gene expression Omnibus [2], and the volume of this
kind of data is still exploding at an accelerated rate. Previous
effort in analyzing these public available data has led to the
discovery of large amount of novel biological knowledge,

making it become increasingly clear that reverse engineering
of such “big data” for genome-scale network reconstruction
and analysis is one of the most efficient approaches for
understanding how life functions through learning holistic
transcription regulation and gene interaction.

To date, reverse engineering of aggregated high volume
gene expression data for building accurate gene network
is still very challenging. The challenge lies in the high
dimensionality of gene space and large sample numbers that
demand fast and high efficient algorithms, and enhanced
computational power as well. A set of the algorithms operates
under such a hypothesis that coexpressed [3–5], roughly
coordinated genes [6, 7] and genes with dependency [8–
10] across a set of samples indicate a functional relationship
[11, 12]. As one of the best gene network construction
methods, the context likelihood of relatedness (CLR)method
[9] utilizing the mutual information (MI) for scoring the
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similarity of gene pairs has been widely used to decipher gene
networks for multiple species, such as yeast, bacteria, mam-
malian, and plants [9, 13–16]. However, it is computationally
infeasible to decipher genome-scale networks for species with
large genomes on a single computer due to physical limits on
CPU speeds and memory capacities. For example, there are
more than thirty-five thousand genes (transcripts) in human
genome. To decipher a genome-scale network through such
reverse engineering method, it will need to calculate more
than 1.2 billion MI values if we evaluate genes in pairwise
fashion, and it is more likely that we will need to evaluate
genes in triples or quadrants. Even for those species with
small genomes, it is still a big computational challenge to
use this method. When CLR was used to construct global
networks for Escherichia coli in [9], the authors had to trim
the number of genes down to a few thousands in order
to reduce the computational complexity to a manageable
scale. Obviously, this kind of gene reduction prior network
construction could miss many potential gene regulations and
interactions in the constructed networks. This is because
many important transcription factors or genes involved in
signaling transduction are expressed at low level and do not
necessarily have high variability in expression [17–19]. These
genes can be easily eliminated during data trimming process.

Meanwhile, the estimation of mutual information
adopted in CLR method heavily relies on the number of
microarray data sets. The mutual information value could be
estimated accurately only when the number of microarray
profiles is larger than one hundred [20]. However, as more
microarray and RNA-seq data become available in public
database, this, in turn, demands fast, accurate, and less
computational complexity. Therefore it is urgently called to
develop a high performance reverse engineering system for
large-scale gene network analysis through both innovations
in efficient algorithm development and parallel computing
implementation.

In this study, we integrated parallel computing technolo-
gies into DeGNServer to accelerate network reconstruction
and subnetwork extraction, which enables DeGNServer to
analyze the “big data” in at least one hundred times faster than
the original mutual information based CLR, making it much
feasible for reverse-engineering global gene networks using
the data froma large genome and discovering novel biological
knowledge. Meanwhile, we integrated multiple gene associ-
ation methods into our DeGNServer for network construc-
tion.The benchmark data set demonstrated thatmost of these
different association-based CLR methods could reach very
similar accuracy as the original mutual information-based
CLR method. In addition, we also integrated the SNBuilder
[21] and GeNa [22] communities-finding algorithms for
identifying subnetworks by providing some seed genes. The
major purpose of our system is to provide a practical system
to construct the gene association networks from large scale
gene expression data.

2. Implementation

2.1. Overview of Gene Network Analysis Methods and Data
Analysis Workflow. We extended the CLR method through

Upload data and select an analysis method

Compute gene-gene pairwise association values

Construct gene networks based on CLR method

Output constructed gene networks

Mine subnetworks based on given pathway genes

Output and visualize subnetworks

Figure 1: The DeGNServer data analysis workflow.

integrating several gene-gene association estimation meth-
ods, of which includes Pearson, Spearman correlation [6],
Kendall, Theil-sen [23], and Weighted Rank methods [24]
as well as the mutual information-based method proposed
in the original CLR method [9], in the DeGNServer. In
addition, the recently published method, maximal informa-
tion coefficient (MIC) method [25], which has demonstrated
capability in discovering novel associations in large data
sets, was also integrated into our DeGNServer. To help the
biologists to interpret the inferred network, we integrated
SNBuilder [21] and GeNa [22] approaches for subnetwork
analysis/functional module discovery. All algorithms have
been implemented and deployed on our in-house parallel
computing platform, namely, BioGrid, which has dedicated
over 700CPU Cores. Figure 1 illustrates the data analysis
workflow in DeGNServer. Utilizing our high performance
DeGNServer, typical genome-scale gene networks involving
40,000∼50,000 gene models could be constructed from
expression data that consists of ∼200 microarray hybridiza-
tions in less than 30 minutes.

2.2. Parallel Computing for the Accelerating of GN Con-
struction. To accelerate the GN construction through the
parallel computing, we split the whole data sets of these gene
pairs into multiple subsets. Let 𝑀 denote the 𝑛 × 𝑚 gene
expression matrix, where 𝑛 denotes the number of genes and
𝑚 represents the number of gene expression profiles. The
computational complexity of association value for all gene-
gene pairs of is𝑂(𝑛2×𝑚).The reconstruction of network will
be very time-consuming when there exists massive number
of expression profiles (e.g., 𝑛 > 20, 000 and 𝑚 > 1, 000). To
tackle this issue, we implemented the GN analysis algorithms
using parallel computing techniques. When this task is
distributed to all the computing nodes in our Biogrid system,
the total computational time complexity is then reduced to
𝑂(𝑛

2
× 𝑚/𝑝), where 𝑝 is the number of allocated processors.
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When a gene regulatory network is inferred from 𝑛 genes,
the algorithm will need to compute 𝑛 × (𝑛 − 1)/2 pairwise
associated values. A two-dimensional 𝑛 × 𝑛matrix D is used
to denote these gene pairs. For gene pair (𝑖, 𝑗), the association
value of this gene pair will be calculated when the following
requirements are satisfied.

(1) When 𝑛 is even

if 𝑖 ≤ ⌈𝑛
2

⌉ , then 𝑗 ∈ [𝑖 + 1,min(𝑛 − 1, 𝑖 − 1 + ⌈𝑛
2

⌉)] ,

if 𝑖 > ⌈𝑛
2

⌉ , then 𝑗 ∈ [𝑖 + 1, 𝑛 − 1] ∪ [0, 𝑖 + 1 − ⌈𝑛
2

⌉] .

(1)

(2) When 𝑛 is odd

if 𝑖 ≤ ⌈𝑛
2

⌉ , then 𝑗 ∈ [𝑖 + 1,min(𝑛 − 1, 𝑖 + ⌈𝑛
2

⌉)] ,

if 𝑖 > ⌈𝑛
2

⌉ , then 𝑗 ∈ [𝑖 + 1, 𝑛 − 1] ∪ [0, 𝑖 − 1 − ⌈𝑛
2

⌉] .

(2)

For every processor in our Biogrid system, we assign 𝑛/𝑝
rows of matrix to this processor for the calculation of their
corresponding association values.

2.3. Input Detail. DeGNServer accepts normalized expres-
sion data either in a tab-delimited text file or tab-delimited
text. The server DeGNServer provides two options to con-
struct different networks, that is, the coexpression networks
and the CLR method-based association networks. Users may
adjust the parameter settings, including gene-gene associ-
ation estimation method and cut-off threshold, to control
the size of constructed networks. After the networks are
reconstructed, user may submit a list of genes-of-interest and
select different subnetwork identification methods to further
mine and visualize the same subnetwork generated from
different extraction methods.

2.4. Output Detail. DeGNServer lists links to the con-
structed networks/subnetworks inCytoscape [26] compatible
text files, which can be easily imported into the popular
Cytoscape software for downstream analysis. In addition, the
DeGNServer output page provides interfaces for query and
network visualization through Cytoscape web plug-in [24]
for each identified subnetwork.

2.5. Technical Detail. TheDeGNServer is currently deployed
on Linux using resin Java server 4.0. It has been tested using
the popular web browsers, such as Internet Explorer, Firefox,
and Google Chrome. The web interfaces are implemented
in JAVA and JSP scripts. All backend integrated analysis
algorithms are implementedwith parallel programming tech-
niques in efficient C++ computing language and are deployed
on an in-house developed Linux cluster, namely, BioGrid,
which currently consists of about 700CPU Cores, to achieve
high performance computing capacity. Upon job submission
throughDeGNServer web server, themaster node of BioGrid

systemfirstly divides the gene expressionmatrix intomultiple
submatrixes and transfers these submatrixes to slave com-
puting nodes in the Linux Cluster. Next, the master node
remotely calls to execute the analysis pipelines and monitors
analysis progresses in these computing nodes. Finally the
master node collects the association values of all gene-gene
pairs for gene network construction and subnetwork analysis.
For those species with large genomes, the distributions of
gene-gene pairs are close to the normal distribution, so
we applied the normal distribution to calculate the z-score
of gene-gene pairs. Based on the preset z-score threshold,
those gene-gene pairs whose z-scores are less than the
threshold would be discarded. Figure 2 illustrates the parallel
implementation of the CLR Method.

3. Results

3.1. Performance Evaluation with Synthetic Data. To com-
prehensively evaluate performance of integrated network
construction methods, we generated two groups of synthetic
compendium gene expression data sets, each group with
a series of data sets of various sizes, using the SynTReN
software [27] and the regulatory network models based upon
Escherichia coli experimental data as original seeds. The
sampled sizes of Group A data sets are 30, 40, 50, 60, 70, 80,
and 90, while the sizes for Group B are 100, 200, 300, 400,
500, 600, 700, 800, 900, and 1000 samples. We analyzed each
of these compendium data sets with various sample sizes and
then generated respective subnetworks containing 50 genes.
The prediction accuracy against the corresponding reference
network in SynTReN software uses the area under the receiver
operating characteristic curve (ROC) curve, namely, theAUC
scores [28], to represent the accuracy of each method. The
AUC scores resulting from all compendium data sets within
each groupwere averaged, and results of averagedAUCscores
for all method in each group are shown in Figure 3.

The ROC curve indicates the change of sensitivity (true
positive rate) versus specificity (true negative rate) under dif-
ferent thresholds, and AUC score can represent the accuracy
of each method better because it is independent of different
thresholds.

The following formula is used to calculate the sensitivity
and the specificity:

Sensitivity = TP
TP + FN

,

Specificity = FP
FP + TN

.

(3)

All methods were applied to construct GNs with each
sampled data set in either Group A or B with the positive
regulatory relationships being counted. We then calculated
their respective AUC scores. For each group (smaller and
large number of expression data sets), we compared their
average AUC scores for different methods. Figure 3 shows
that the prediction accuracies of Spearman-based CLR
method have higher average AUC scores than othermethods,
suggesting that Spearman-based CLR method may produce
better results in term of network construction.



4 BioMed Research International

Initialization and data preprocessing

Computing the background distribution of all gene-gene pairs

Output the constructed networks

C
om

pu
tin

g 
no

de
s

M
as

te
r n

od
es

Data subset 2 Data subset 1 
(gene-gene 

association value)
(gene-gene 

association value)
(gene-gene 

association value)

Data subset N
· · ·

Computing z-scores for all gene-gene pairs

Figure 2: Parallel implementation of the CLR method.

3.2. Case Study 1: Deciphering Genome-Scale
Pluripotency Networks in Human Embryonic Stem Cells

3.2.1. Human Stem Cell Microarray Data Set. To validate
the performance of DeGNServer, we analyzed genome-scale
networks from 189 human stem cell microarray profiles.
These data sets were generated in 17 individual experiments
in which human embryonic stem cells were treated with
various reagents for inducing differentiation. Therefore, this
compendium data set is enriched with regulatory events
and interaction of pluripotency maintenance and transition
from pluripotent stem cells to differentiated cell linages,
and thus it can serve as an ideal testing data for the
performance of DeGNServer in discovering functionally
associated gene subnetworks governing these processes. Of
these 189 microarray data sets, there are 104 high-density
human gene expression arrays from HG17 assembly. This
platform of microarray contains 388,634 probes from 36,494
human locus identifiers. These 104 chips were compiled
from 15 experiments in which stem cells were treated with
different reagents that disrupted pluripotency. The reagents
and the conditions included 12-O-tetradecanoylphorbol-13-
acetate (TPA) treatment in conditioned medium, TPA treat-
ment in TeSR medium, BMP4 treatment with FGF, BMP4
treatment without FGF, and coculture with mouse OP9
cells. The remained 85 high-density human gene expres-
sion arrays have 381,002 probes from 47,633 human locus
identifiers from the HG18. These 85 microarray data sets
were compiled from a set of experiments where a variety of
different growth factors were applied to human embryonic
stem cells at varying conditions for 3 days. Both HG17 and

HG18 microarray platforms were manufactured by Nim-
bleGen Systems (http://www.nimblegen.com/). All probes
are 60mers and all chips were hybridized to Cy5 labeled
mRNAs extracted fromhuman embryonic stem cells (hESCs)
from undifferentiated to differentiated stages. Raw data were
extracted using NimbleScan software v2.1. The two data sets
were joined by genemapping via selection of shared common
probes between the same genes on the two platforms. More
than 99.5% of mapped genes share at least 6 common probes,
and the signal intensities from these common probes were
normalized with the Robust Multiple-chip Analysis (RMA)
algorithm [29]. Thus, the whole data set obtained contains
36,398 genes.

3.2.2. Results on Pluripotency Network Analysis in Human
Embryonic Stem Cells. The gene networks including 21,167
genes and 200,000 links were reconstructed in less than 20
minutes with a z-score threshold of 4.3 and spearman-based
association method. The built network could be retrieved at
http://plantgrn.noble.org/DeGNServer/Result.jsp?time4=&
sessionid human&method=1 1&cutoff=4.3. We also tested
with originalmutual information-basedCLR, and it took 53.3
hours to complete whole genome-scale network construc-
tion.

Generally, global networks with huge numbers of regu-
lations and interactions are a “hairball”, from which we can
hardly identify any patterns. To facilitate the identification
of subnetworks or modules that regulate a specific biolog-
ical process or developmental program, we integrated both
SNBuilder [21] and GeNa [22] methods to extract smaller
subnetworks/functional modules by providing a few seed

http://www.nimblegen.com/
http://plantgrn.noble.org/DeGNServer/Result.jsp?time4=&sessionid{%}20human&method=1_1&cutoff=4.3
http://plantgrn.noble.org/DeGNServer/Result.jsp?time4=&sessionid{%}20human&method=1_1&cutoff=4.3
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Figure 3: Average AUC scores from different association-based
CLR methods for networks with larger and smaller numbers of
expression profiles; Group A: networks constructed with smaller
number of gene expression samples (30∼90 samples), Group B:
networks constructed with larger number of expression samples
(100∼1000). AUC scores were obtained through varying different
threhold settings. A perfect model will have AUC score of 1, while
random guessing will score an AUC around 0.5.

genes. We used NANOG, POU5F1, SOX2, and PHC1 as seed
genes to bait the subnetwork shown in Figure 4.

Figure 4 shows the subnetwork that is implicated to con-
trol the pluripotency renewal of human embryonic stem cells.
The literature evidence supporting the involvement of those
transcription factors on inner ring in regulating pluripotency
in human stem cells is already shown in our earlier publica-
tion and these TFs could be identified by our TF-Cluster that
is capable of constructing gene association network with all
TFs as an input [6]. However, it cannot be used to build the
genome-wide GN mainly due to computational complexity.
In this study, our DeGNServer identified 14 of 16 TF genes
that were identified previously by TF-Cluster tool from the
same data for governing pluripotency renewal. These 14
TFs include three master transcription factors, NANOG,
POU5F1 (or OCT4), and SOX2, which are necessary for
pluripotency maintenance, and they alone can convert skin
cells to induced pluripotent cells [30]. Although two TFs
were missed by our method, we identified six more other
genes that are to be involved in pluripotency maintenance
in human stem cells. In this study, we only examined the
existing literature of six genes that are located on the outer

rings (Figure 4). The developmental pluripotency-associated
2 (DPPA2) gene plays important roles in the maintenance
of pluripotency and proliferation of human embryonic stem
cells by regulating chromatin structures [31]. Although there
is no direct evidence from human stem cells, study on mouse
stem cells shows that DPPA2 knockdown induces the differ-
entiation, while it represses proliferation ofmouse embryonic
stem cells [31]. PRDM14 is an important determinant of the
human embryonic stem cell (ESC) identity, and it works in
concert with the core ESC regulators to activate pluripotency-
associated genes [32]. PRDM14 binds to silenced genes and
serves as a direct repressor of differentiation genes in human
stem cells though the exact mechanism of this repressive
activity remains unknown. ZMYND8 encodes a zinc finger
protein with a complex role in maintaining pluripotency.
Although only expressed at low levels, either up- or down-
regulation of ZMYND8 can induce differentiation in ES cells
[33]. JARID2 is a component of chromatin modification
complex PRC2 in embryonic stem cells and is required
for multilineage differentiation. It plays a role in recruiting
PRC1 and RNA Polymerase II to developmental regulators.
We found that JARID2 and CD99 in our subnetwork and
previous study have shown JARID2 functions together with
CD99 in controlling autism spectrum disorder [34]. The
exact function of DEPDC2 is currently unknown, but it
is known that the promoter of DEPDC2 is bound by the
three master transcription factors, NANOG, SOX 2, and
POU5F1 as mentioned above [35]. DEPDC2 is a molecular
marker for human stem cell [36] though its exact function
remains unknown. Similarly, the exact function of CHST4 is
currently unknown, but it is know that CHST4 is one of the
16 methylation markers of embryonic stem cells, and these
16 methylation markers also include PRDM14 as mentioned
above [37].

To further examine the sensitivity, specificity, and predic-
tion accuracy of the case study described above, we made
some assumptions. (1) We assumed that the genes that are
evidenced to be involved in pluripotency maintenance in
the existing literature are all positive genes; we then counted
the true positive (TP) and false positive (FP) genes within
each subnetwork. The true negative (TN) and false negative
(FN) genes were calculated from the rest of network that
was adjusted to the same size of each subnetwork. For
comparison, we rescaled all numbers to one hundred before
we calculated sensitivity, specificity, and prediction accuracy.
The results were shown inTable 1.The results demonstrate the
high accuracy of the DeGNServer.

3.3. Case Study 2: Deciphering Genome-Scale Pluripotency
Networks in Murine Heart Tissues

3.3.1. Mouse Heart Microarray Data Set. We also analyzed a
compendium microarray data set from heart tissues of Mus
musculus to evaluate the efficiency of the DeGNServer. This
compendium data set includes 172 Affymetrix microarray
chips of platform GPL1261, which contains 45,101 probes.
The data was downloaded from NCBI Gene Expression
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/). These

http://www.ncbi.nlm.nih.gov/geo/
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Figure 4:The identified subnetwork contains the essential transcription factors and other genes required for pluripotency maintenance.The
twelve genes on the inner ring are transcription factors known to play essential or important role in pluripotency renewal of human embryonic
stem cells. These include three master transcription factors, NANOG, POU5F1, and SOX2, which are absolutely required for pluripotency
maintenance.The genes located on the outer ringwere identified byDeGNServer for being closely coordinatedwith those transcription factors
in the inner ring.The genes on outer ring, but highlighted in yellow, are those that are implicated by the existing literature to participate in the
pluripotency renewal. This subnetwork was generated by using SNBuilder method [21] with NANOG, POU5F1, SOX2, and PHC1 as query
seeds.

Table 1: Sensitivity, specificity, and prediction accuracy of two case studies.

Case studies TP FP TN FN Sensitivity Specificity Prediction accuracy
Human stem cell 2.42 97.58 99.95 0.05 98% 50.6% 51.2%
Mouse heart 39.6 60.4 97.5 2.50 94.1% 61.7 % 68.6%
Prediction accuracy = ((TP + TN)/(TP + FP + TN + FN)) × 100%.

172 microarray data were from nine independent experi-
ments that have the following GEO accession IDs: GSE11291,
15078, 19875, 29145, 30495, 3440, 38754, 5500, and 7781. The
compendium data were generated through pooling the raw
data of 172 microarray data and then normalized with RMA
algorithm [29]. For quality control, we used twomethods that
were previously described [38].

3.3.2. Overall Performance. The gene networks including
41,742 genes and 3,869,157 links were deciphered in less than
30 minutes with a z-score threshold of 3.8 and spearman-
based association method. The built network could be

retrieved at http://plantgrn.noble.org/DeGNServer/Result
.jsp?sessionid=1367625665687&method=1 1&cutoff=3.8#.
We also tested with original mutual information-based CLR,
which took 81.6 hours to complete whole genome-scale
network construction.

3.3.3. Subnetworks Controlling Murine Heart Development.
The pathway that controls murine heart development can be
obtained fromNCBI’s BioSystems database with an accession
number of 672437 [39]. From the pathway diagram, we can
find the three central genes, Nkx2-5, Tbx1, and Mef2c, which
play very important roles in heart development, as showed

http://plantgrn.noble.org/DeGNServer/Result.jsp?sessionid=1367625665687&method=1_1&cutoff=3.8{%}23
http://plantgrn.noble.org/DeGNServer/Result.jsp?sessionid=1367625665687&method=1_1&cutoff=3.8{%}23
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up in the subnetwork, we obtained (Figure 5). Nkx2-5 is
known to be involved in cardiac muscle cell differentiation
[40], proliferation [41], contraction [42], and muscle tissue
development [43]. Lack of Nkx2-5 can lead to the myogenic
andmorphogenetic defects in the heart tubes [43].Mef2c and
Nkx2.5 are known to control common downstream targets
and exhibit striking phenotypic similarities when disrupted
[43]. Tbx1 affects asymmetric cardiac morphogenesis by
regulating Pitx2 in the secondary heart field [44]; it also
controls regional coronary artery morphogenesis [45], aorta
morphogenesis [46], and blood vessel development [47].
Prox1 is known to function as a direct upstream modifier
of Nkx2.5 and is responsible for maintaining muscle struc-
ture and growth [48, 49]. CAMTAs promote cardiomyocyte
hypertrophy and activate the ANF gene, at least in part, by
associating with the cardiac homeodomain protein Nkx2-
5 [50]. The transcriptional activity of CAMTAs is governed
by association with class II histone deacetylases (HDACs),
which negatively regulate cardiac growth [50]. Smarca4,
as a nuclear notch signaling component required for the
establishment of left-right asymmetry [51], is also essential
for heart development by involving chromatin remodeling
complexes [51]. Kdm6 interacts with Smarca4 to control T-
box family member-dependent gene expression [52]. Wnt2
is required for atrial and inflow tract morphogenesis, and it
regulates expansion of secondary heart field progenitors [53].
Myocd controls cardiac muscle cell proliferation, growth,
and differentiation [54]. Eno3 is highly expressed in skeletal
muscle and heart [55]. The specific function of murine
Chst2 is currently unknown, but human umbilical vein
endothelial cells predominantly express CHST2 [56, 57].
The heart requires glycerol as an energy substrate through
aquaporin 7, a glycerol facilitator [58]. Glycerol is taken into
cardiomyocytes and is finally converted to pyruvate by Gpd2
enzymes [59]. EphA4 mutant mice exhibit defects in the
coronal suture and neural crest-mesoderm boundary [60].

3.4. Sensitivity, Specificity, and Prediction Accuracy of the
above Two Case Studies. To further examine the sensitivity,
specificity, and prediction accuracy of the three case studies
as shown above, we made some assumptions: (1) for human
pluripotency renewal, we assumed that the genes that are
evidenced to be involved in pluripotency maintenance in
the existing literature are all positive genes; (2) for heart
development, due to the large number of genes involved in
these biological processes, we cannot search the literature
evidence for all genes.We classified all genes involved in heart
development to be positive based on gene ontologies.We then
counted the true positive (TP) and false positive (FP) genes
within each subnetwork. The true negative (TN) and false
negative (FN) genes were calculated from the rest of network
that was adjusted to the same size of each subnetwork. For
comparison, we rescaled all numbers to one hundred before
we calculated sensitivity, specificity, and prediction accuracy.
The results were shown in Table 1.

4. Discussions
We developed the DeGNServer to enable the reconstruction
of genome-scale GN using the increasingly accumulated

large-scale gene expression data in public domain. Users may
use it to generate whole genome scale GNs from large amount
of gene expression data in any species. After whole genome
GN construction, users can obtain the subnetworks by pro-
viding a few genes of interest. All subnetworks generated with
different genes of interest and thresholdswill be automatically
listed online for downloading and studying. When genome-
wide network construction was performed with 189 human
microarray profiles as an input for DeGNServer, we could
identify a subnetwork containing majority of genes involved
in pluripotency maintenance in human embryonic stem cells
[6, 30, 35]. It is worth mentioning that TF-Cluster pipeline
that we developed earlier [6] is capable of building a coordi-
nated network using the same human compendium data set
and identifies only those transcription factors located on the
inner ring in Figure 4, but it misses all genes that are located
on the outer ring in Figure 4 mainly because it can build a
local transcription factor coordination network rather than
the whole genome-scale network. When genome-wide GNs
were constructed using the DeGNServer, we could identify
more genes (shown in outer ring in Figure 4) that regulate
human pluripotency renewal together with those major
transcription factors as shown in inner ring in Figure 4. To
test if DeGNServer can identify true subnetworks in different
circumstances, we also applied it to a murine compendium
data set we downloaded and pooled fromGEO database.The
data is from heart tissues of Mus musculus. We obtained a
subnetwork that contains functionally cohesive genes known
to control the heart developmental program in mouse. This
evidence clearly indicated that the use of DeGNServer can
lead to the deciphering of the more comprehensive networks
from which we can discover new genes involved in a specific
biological process. We thus think that DeGNServer is useful
in identifying genes governing a specific biological process,
pathway, or a developmental program.

Although we have tested with synthetic data and found
that Spearman-based CLR appears to have better perfor-
mance than any of other methods including original mutual
information basedCLR,we still make allmethods available in
DeGNServer.This is because the efficiency of different meth-
ods may be dependent on the properties of biological data, as
we showed in a previous study [7]. For subnetwork extraction,
we integrated both SNBuilder and GeNa algorithms; both are
found to be proficient in identifying the true subnetworks.
However, GeNa usually produces small subnetworks with
cohesive function.

5. Conclusions

We have developed a high performance web-based platform,
namely, DeGNServer, for genome-scale GN construction
and subnetwork extraction. DeGNServer is capable of ana-
lyzing gene expression data with very high dimensionality
of gene space and very large number of gene expression
profiles. As tested, it can analyze hundreds of microarray
profiles of human (36,000 genes) for reconstruction of gene
association networks within 30 minutes, mainly through
the improvement of gene association estimation algorithms
and parallel computing in combination. The DeGNServer
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Figure 5:The subnetwork that is responsible for heart growth and development in mouse.The whole genome-scale network was constructed
from 175 chips of GPL1261 platform using DeGNServer and then extracted using community-finding algorithm called GeNa [22] with Nkx2-
5, Prox1, and Mef2c as query seeds. Genes highlighted in red are implicated by the existing literature to participate in heart growth and
development.

is as accurate and sensitive as the original CLR method
and runs hundreds to thousands times faster. Furthermore,
through the integration of network decomposition methods,
the DeGNServer is capable of identifying novel functional
cohesive subnetworks or modules.
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[32] Y. S. Chan, J. Göke, X. Lu et al., “A PRC2-dependent repressive
role of PRDM14 in human embryonic stem cells and induced
pluripotent stem cell reprogramming,” Stem Cells, vol. 31, no. 4,
pp. 682–692, 2012.

[33] I. Barbaric and N. J. Harrison, “Rediscovering pluripotency:
from teratocarcinomas to embryonic stem cells. Cardiff, 10–
12 October 2011,” The International Journal of Developmental
Biology, vol. 56, no. 4, pp. 197–206, 2012.

[34] P. S. Ramos, S. Sajuthi, C. D. Langefeld et al., “Immune function
genes CD99L2, JARID2 and TPO show association with autism
spectrum disorder,” Molecular Autism, vol. 3, no. 1, article 4,
2012.

[35] L. A. Boyer, I. L. Tong, M. F. Cole et al., “Core transcriptional
regulatory circuitry in human embryonic stem cells,” Cell, vol.
122, no. 6, pp. 947–956, 2005.

[36] R. Calloni, E. A. Cordero, J. A. Henriques, D. Bonatto et al.,
“Reviewing and updating themajormolecularmarkers for stem
cells,” Stem Cells and Development, vol. 22, no. 9, pp. 1455–1476,
2013.

[37] M. Kim, T.-W. Kang, H.-C. Lee et al., “Identification of DNA
methylation markers for lineage commitment of in vitro hep-
atogenesis,”HumanMolecularGenetics, vol. 20, no. 14, pp. 2722–
2733, 2011.

[38] S. Persson, H. Wei, J. Milne, G. P. Page, and C. R. Somerville,
“Identification of genes required for cellulose synthesis by
regression analysis of public microarray data sets,” Proceedings
of the National Academy of Sciences of the United States of
America, vol. 102, no. 24, pp. 8633–8638, 2005.

[39] D. Srivastava, “Making or breaking the heart: from lineage
determination to morphogenesis,” Cell, vol. 126, no. 6, pp. 1037–
1048, 2006.

[40] J. W. Vincentz, R. M. Barnes, B. A. Firulli, and S. J. Conway,
“Cooperative interaction of Nkx2.5 and Mef2c transcription
factors during heart development,” Developmental Dynamics,
vol. 237, no. 12, pp. 3809–3819, 2008.

[41] O. W. J. Prall, M. K. Menon, M. J. Solloway et al., “An
Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart
progenitor specification and proliferation,” Cell, vol. 128, no. 5,
pp. 947–959, 2007.

[42] M. Takeda, L. E. Briggs, H. Wakimoto et al., “Slow progressive
conduction and contraction defects in loss of Nkx2-5 mice after



10 BioMed Research International

cardiomyocyte terminal differentiation,” Laboratory Investiga-
tion, vol. 89, no. 9, pp. 983–993, 2009.

[43] I. Lyons, L. M. Parsons, L. Hartley et al., “Myogenic and mor-
phogenetic defects in the heart tubes ofmurine embryos lacking
the homeo box geneNkx2-5,”Genes andDevelopment, vol. 9, no.
13, pp. 1654–1666, 1995.

[44] S. Nowotschin, J. Liao, P. J. Gage, J. A. Epstein, M. Cam-
pione, and B. E. Morrow, “Tbx1 affects asymmetric cardiac
morphogenesis by regulating Pitx2 in the secondary heart field,”
Development, vol. 133, no. 8, pp. 1565–1573, 2006.
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