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2Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK and
3Organismal and Evolutionary Biology Research Program, University of Helsinki, 00014 Helsinki, Finland

*Corresponding author: Email: frederic.guillaume@helsinki.fi

Abstract

Genetic correlations between traits may cause correlated responses to selection. Previous models described the conditions under which
genetic correlations are expected to be maintained. Selection, mutation, and migration are all proposed to affect genetic correlations, re-
gardless of whether the underlying genetic architecture consists of pleiotropic or tightly linked loci affecting the traits. Here, we investigate
the conditions under which pleiotropy and linkage have different effects on the genetic correlations between traits by explicitly modeling
multiple genetic architectures to look at the effects of selection strength, degree of correlational selection, mutation rate, mutational vari-
ance, recombination rate, and migration rate. We show that at mutation-selection(-migration) balance, mutation rates differentially affect
the equilibrium levels of genetic correlation when architectures are composed of pairs of physically linked loci compared to architectures of
pleiotropic loci. Even when there is perfect linkage (no recombination within pairs of linked loci), a lower genetic correlation is maintained
than with pleiotropy, with a lower mutation rate leading to a larger decrease. These results imply that the detection of causal loci in multi-
trait association studies will be affected by the type of underlying architectures, whereby pleiotropic variants are more likely to be underly-
ing multiple detected associations. We also confirm that tighter linkage between nonpleiotropic causal loci maintains higher genetic corre-
lations at the traits and leads to a greater proportion of false positives in association analyses.
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Introduction
Both pleiotropy and linkage disequilibrium (LD) create genetic

correlations between traits so that traits do not vary indepen-

dently of one another (Wright 1977; Arnold 1992; Walsh and
Blows 2009). Under natural selection, strong genetic correlation

can prevent a combination of traits from reaching their respec-

tive optimum trait values (Falconer and Mackay 1996). Likewise,

under artificial selection, it can constrain breeders from improv-

ing one trait due to undesired changes in another, and in medical

gene-targeted therapy treatments, it can cause adverse side-

effects (Wright 1977; Parkes et al. 2013; Visscher et al. 2017; Wei

and Nielsen 2019). Pleiotropy can cause genetic correlation be-

cause one gene’s product (e.g., an enzyme or a transcription fac-

tor) has more than one target and therefore affects more than
one trait or because one gene’s product belongs to a metabolic

pathway that has more than one downstream effect (Hodgkin

1998; Stearns 2010; Wagner and Zhang 2011). LD may be the re-

sult of a set of loci in close physical proximity on a chromosome

that makes a set of alleles at those loci less likely to be split up by

recombination and therefore more likely to get passed on to-

gether from one generation to the next. But other mechanisms

leading to the transmission of one combination of alleles at sepa-
rate loci over another combination can also generate LD and cre-
ate genetic correlations between traits that those loci affect (e.g.,
drift, migration, assortative mating; Falconer and Mackay 1996).

The evolutionary dynamics of pleiotropic versus linked loci in
creating genetic correlations are expected to be similar under the
assumptions of complete linkage (no recombination) between
pairs of loci each affecting a different trait, weak stabilizing selec-
tion, weak mutational effects, and large mutation rates (Lande
1984). Correlational selection is when selection favors correlated
values at phenotypic traits, which should translate into corre-
lated genetic effects at the underlying loci affecting the traits.
This has been shown to be the case in models attempting to ap-
proximate the level of genetic variance and covariance main-
tained at mutation-selection balance at pleiotropic loci affecting
polygenic traits (Lande 1980; Turelli 1985; Zhang and Hill 2003;
Chantepie and Chevin 2020). For the case of tight linkage between
pairs of loci affecting separate traits, Lande (1984) suggested that
it “is nearly equivalent to” pleiotropic loci affecting both traits.
Therefore, the genetic correlation maintained under correlational
selection by tight linkage between nonpleiotropic loci should in
principle approximate that of pleiotropic loci predicted by
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previous multivariate quantitative genetics models (Lande 1980;
Zhang and Hill 2003). However, the conditions under which this
statement is correct have not been fully elucidated. Yet, the fact
that the same equilibrium genetic correlation under correlational
selection has been obtained under different theoretical assump-
tions about the rate and effect size of mutations by Lande (1984)
and Zhang and Hill (2003) tends to suggest that Lande’s state-
ment may hold generally (see also Chantepie and Chevin 2020,
for a recent reanalysis).

Under assumptions of weak mutational effects and relatively
high mutation rates (such that mutational variance is lower than
the standing genetic variance of the trait, settings known as the
Gaussian mutation regime; Lande 1975), Lande (1984) determined
that the maximum genetic correlation due to pleiotropy or link-
age may be almost as large as the strength of correlational selec-
tion, which can be calculated from the genetic covariance and
the genetic variances of the traits, respectively, as:

genetic covariance ðbÞ ¼ qxx2la2

2c
; (1)

genetic variance ðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

x

q
Þx2 la2

2

r
; (2)

where qx is the strength of correlational selection acting between
the traits, x2 is the strength of stabilizing selection (with lower
values representing stronger selection), l is the haploid per-locus
mutation rate, and a2 is the per-locus mutational variance. The
model is for an infinite population. If there are equal mutation
variances and selection strengths among traits then the genetic
correlation is calculated as:

genetic correlation ¼ b
c
¼ qx

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

x

p : (3)

From Equations (1 and 2), we see that the genetic covariance
depends on both the strength of correlational selection between
traits and selection on each trait, as well as on the mutational
inputs (mutation rate and mutational variance) of the genes af-
fecting those traits. Yet, from Equation (3), the resulting genetic
correlation among traits is independent of the genetic architec-
ture of the traits because the influences of the mutational input
on the variance and the covariance cancel out exactly.

Interestingly, the same result was obtained by Zhang and Hill
(2003) under the assumptions of the house-of-cards mutation re-
gime (most of the genetic variance of the trait is contributed by
few mutations of large effect, see Turelli 1984; Bulmer 1989;
Johnson and Barton 2005; Walsh and Lynch 2018). Equations
(1–3) assume that the mutations at pleiotropic loci have uncorre-
lated effect on the traits, i.e., there is no mutational correlation
(ql ¼ 0). Chantepie and Chevin (2020) recently showed that the
equivalence between the Gaussian and house-of-cards regimes
holds even when ql 6¼ 0. They further derived the equilibrium G-
matrix under the Gaussian regime at mutation–selection–drift
balance, which will be useful in this study for generating expecta-
tions under Gaussian assumptions. For that same case of a multi-
variate, noncorrelated Gaussian distribution of mutational
effects at pleiotropic loci, Lande goes on further to state that the
case of complete linkage between pairs of loci affecting different
traits is “equivalent to a lesser number of loci with pleiotropic
effects,” suggesting that equations (1–3) also apply to pairs of
linked loci. However, the difference between pleiotropic and
linked nonpleiotropic loci has not been quantified nor has the
scaling of the genetic variance and covariance been examined.

One key difference between pleiotropic and nonpleiotropic loci
is that pleiotropic loci require only one mutation to affect multi-
ple traits and build up genetic covariation, while linked nonpleio-
tropic loci require as many mutations as the number of traits,
with each locus affecting a separate trait. The mutation rate may
thus play an important role in distinguishing the two types of ge-
netic architectures. This is because a given mutation at a pair of
linked loci can only affect one trait. Therefore, linked loci may
not be strictly equivalent to pleiotropic loci because of their lack
of mutational covariation. In contrast, mutations at pleiotropic
loci provide the opportunity for combinations of effects in all
directions of phenotype space to match patterns of correlational
selection better than mutations at linked loci. However, Lande’s
(1984) derivations assume a similar multivariate Gaussian distri-
bution of allele effects for the pleiotropic and nonpleiotropic loci.

Additionally, levels of trait genetic covariation can be influ-
enced by other evolutionary processes that affect allele frequen-
cies, and the covariation of allelic values in a population [e.g.,
migration (Guillaume and Whitlock 2007), drift (Griswold et al.
2007; Chantepie and Chevin 2020), inbreeding (Lande 1984), and
phenotypic plasticity (Draghi and Whitlock 2012)]. Migration
affects genetic covariation because when it is sufficiently high
(relative to selection in the focal population), then combinations
of alleles coming from a source population will also be main-
tained in the focal population. This can lead to higher genetic co-
variation between traits in the focal populations, whether the
combinations of alleles immigrating are (more likely to be) corre-
lated in their effects on those traits or not (Guillaume and
Whitlock 2007). Migration may also have different effects
depending on whether the genetic architecture is pleiotropic or
made up of linked loci, but this has not been explored either.
Recombination can also reduce genetic correlations between
traits by breaking up associations between alleles at linked loci,
but the same cannot occur with a pleiotropic locus. These consid-
erations therefore suggest that linkage and pleiotropy can have
different effects on genetic variance and covariances depending
on mutation, recombination, and selection regimes, but this com-
parison was not fully explored in any previous model.

Finally, knowing how linked loci affect genetic correlations
among traits is important when utilizing a genome-wide associa-
tion studies (GWAS) to identify causal genetic variants underly-
ing one or more traits. GWAS use the rapid increase in genomic
sequencing to find correlations between traits and genotypes,
and their success is dependent on the effect sizes of the loci and
the distinction between phenotypes. GWAS have had success in
associating genetic variants with traits of interest, which have
allowed researchers to find the molecular underpinnings of trait
change (Visscher et al. 2017). Moving from one trait to two or
more trait associations can lead to the discovery of pleiotropic
loci (Saltz et al. 2017). One GWAS using 1094 traits and 14,459
genes, found that 44% of genes were “pleiotropic,” but this was
determined by assigning genetic variants to the closest gene and
even to both flanking genes when the genetic variant was inter-
genic (Chesmore et al. 2018). This conflates linkage and pleiot-
ropy, and the chain of causality (Platt et al. 2010). Another study
found 81% of associated genes and 60% of associated single-nu-
cleotide polymorphisms (SNPs) were pleiotropic, but they could
not rule out SNPs associated with traits due to LD (Watanabe
et al. 2019). Unfortunately, determining whether genetic variant
associations and trait correlations are actually the result of plei-
otropy or linkage is difficult since they often map to large regions
of genomes, or are in intergenic regions and do not associate with
the closest genes (Flint and Mackay 2009; Zhu et al. 2016; Peichel
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and Marques 2017; Visscher et al. 2017). Distinguishing between
the two types of genetic architectures is important for under-
standing the underlying molecular functions of the traits, and de-
termining how the traits may be differently affected by selection
(Lynch et al. 1998; Barrett and Hoekstra 2011; Saltz et al. 2017).
This is salient at a time when an increasing number of traits of
interest (e.g., human diseases) appear to be affected by loci that
affect other traits, and especially when targeted gene therapy
clinical trials are more widespread than ever (Edelstein et al. 2007;
Cai et al. 2016; Pickrell et al. 2016; Visscher and Yang 2016;
Chesmore et al. 2018; Ginn et al. 2018). There are potentially nega-
tive implications for gene therapy because repairing a gene un-
derlying one disease might increase the risk for another disease.
For example, some genetic variants that are associated with
greater risk of Ankylosing spondylitis are also associated with
less risk of rheumatoid arthritis, and so “repairing” a specific al-
lele would have undesired side-effects in this case (Parkes et al.
2013; Gratten and Visscher 2016).

Here, we are interested in the conditions under which pleiotro-
pic loci behave similarly or differently to tightly linked loci affect-
ing different traits, with respect to their effects on genetic
correlations between the traits. We first derive a mathematical
expression for the variance–covariance genetic structure of a pair
of traits affected by a pair of nonpleiotropic loci. We then use
computer simulations to investigate whether the effect of evolu-
tionary forces on the genetic correlation between traits is depen-
dent on the type of genetic architecture (pleiotropic or linked
loci), and mutation regime (Gaussian and house-of-cards). We fo-
cus on the relative contributions of selection, mutation, recombi-
nation, and migration to the build-up of genetic correlation
between traits having different genetic architectures. We show
that unless mutation rates are high as in the Gaussian regime,
genetic architectures with tight linkage between loci maintain
lower equilibrium genetic correlations than pleiotropic architec-
tures. Even when mutation rates are high, other evolutionary
forces affecting equilibrium levels of genetic correlation still
show a difference between architectures but to a much lesser ex-
tent. In addition, we simulate genomic SNP data sets using the
different architectures and show that map distances between
causative and noncausative quantitative trait locus (QTL) affect
false-positive proportions in GWA analyses.

Model
We seek to express the variance–covariance matrix of two quan-
titative traits as a function of the mutational input at two diploid
nonpleiotropic linked loci, which is considered to be equivalent to
one pleiotropic locus in Lande (1984). We use the same muta-
tional parameters as in equations (1–2): Mutational effects, a, at a
locus are drawn from a Gaussian distribution Nð0; a2Þ with mean
0 and variance a2 and are added to the existing allelic value at
rate l. To better express the difference between pleiotropic and
nonpleiotropic loci, we introduce a second parameter h such that
the column vector of mutation effects on traits 1 and 2 can be
expressed as:

a ¼
�

a cosðhÞ; a sinðhÞ
�T
; (4)

where h represents the direction of the mutational vector in the
two-trait plane, and T denotes transpose. The angle h is uniformly
distributed between 0 and 2p for pleiotropic loci, while it can only

take values [0; p=2; p; 3p=2] for a pair of nonpleiotropic loci. The
distribution of effects at a pleiotropic locus is a bivariate
Gaussian N 2ð0;MÞ with mean zero, a diagonal variance–covari-
ance matrix M ¼ a2I, as in Lande (1984), and I is the two-dimen-
sional identity matrix. In contrast, the mutational input for two
nonpleiotropic loci is the weighted sum of two normal distribu-
tions along trait 1 or trait 2 with probability lð1� lÞ contributed
by separate mutations in either locus and of a bivariate distribu-
tion with probability l2 contributed by two mutations arising in
both loci at the same time. The full distribution of mutation
effects at a pair of two haploid loci ðxÞ, with x ¼ ðx1; x2ÞT, x1 af-
fecting trait 1 and x2 trait 2, can be written as:

f ðxÞ ¼ lð1� lÞN ð0; a2ÞðcosðhÞ; sinðhÞÞT þ l2N 2ð0;MÞ
1� ð1� lÞ2

: (5)

Because of the negligible contribution of double mutations for
l� 1; f ðxÞ is basically a cross set along both axes of phenotype
space, far from a bivariate Gaussian as assumed by Lande:

f ðxÞ ¼ lð1� lÞ
1� ð1� lÞ2

� ð0; E½a�ÞT for h ¼ ½p=2 or 3p=2�
ðE½a�; 0ÞT for h ¼ ½0 or p�

;

(
(6)

with E½a� the expected average mutation effect with a � Nð0; a2Þ.
Stabilizing selection on the two traits is represented by a bivar-

iate Gaussian surface with variance x2 and correlation qx, giving
the selection matrix:

X ¼ x2 1 qx

qx 1

� �
: (7)

The G-matrix (genetic variance–covariance matrix) at muta-
tion–selection balance for a single haploid pair of fully linked loci
can be found using the house-of-cards approximation for an infi-
nite population sitting at the trait optimum under stabilizing se-
lection (Bulmer 1989):

G ¼ 2 l
aaT

aT �X�1 � a:
(8)

With a as in (4) and X as in (7), we find:

G ¼ 2 l x2 1� q2
x

1� qx 2 cosðhÞ sinðhÞ

 !
cos ðhÞ2 cosðhÞ sinðhÞ

cosðhÞ sinðhÞ sin ðhÞ2

 !
:

(9)

From (9) and the distribution of h, it is clear that mutations at
nonpleiotropic loci cannot generate genetic covariance between

the traits because the matrix part of (9) becomes
1 0
0 1

� �
for

h 2 ½0; p=2; p; 3p=2�. The same conclusion is reached from (5) for
continuous effects at the two loci. The distribution of mutation
effects at two linked loci is principally concentrated on the two
trait axes, as illustrated in Figure 1A. Therefore, nonpleiotropic
mutations do not directly contribute to genetic covariance at the
two traits unless the mutation rate is very high. The same is true
for multiple pairs of loci when the pairs are unlinked, assuming
linkage equilibrium among pairs, as in Lande (1984).
Nevertheless, covariance should principally build-up from link-
age disequilibria within pairs, caused by correlational selection
on the two traits. Note that the pleiotropic case is fully covered in
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Lande (1980, 1984); Zhang and Hill (2003); Chantepie and Chevin
(2020).

Simulations
We built individual-based simulations to understand the dynam-
ics of the genetic correlation at linked nonpleiotropic loci and
compare with equilibrium values at pleiotropic loci, incorporat-
ing different levels of LD stemming from physical linkage, selec-
tion, and migration. We modeled four different genetic
architectures in a modified version of the individual-based, for-
ward-in-time, population genetics simulation software NEMO

(Guillaume and Rougemont 2006; Chebib and Guillaume 2017).
NEMO was modified to allow individual nonpleiotropic loci to af-
fect different quantitative traits. To compare how pleiotropy and
linkage differentially affect the genetic correlation between traits,
we modeled a set of 120 pairs of linked, nonpleiotropic loci, and a
set of 120 pleiotropic loci affecting the two traits. The traits were
thus polygenic, as expected for many phenotypic traits in plants
and animals (Mackay 2001; Boyle et al. 2017; Sella and Barton
2019; Barghi et al. 2020). We also ran a set of simulations with 60
loci affecting each trait as a comparison. We varied the recombi-
nation distance between the two nonpleiotropic loci of each pair
with distances 0, 0.1, or 1 cM (Figure 2). Pairs were unlinked to
other pairs. The pleiotropic loci were also unlinked to each other.
The recombination rates chosen represent no recombination be-
tween linked loci, as well as an average and an extreme value of
recombination at “hotspots” in the human genome, respectively
(Myers et al. 2006). All loci had additive effects on the traits.

Unless otherwise specified, each simulation was run with 5000
initially mono-morphic, diploid individuals (variation is gradually
introduced through mutations) for 50,000 generations achieving
mutation–selection–drift(-migration) balance in order to observe
general patterns of genetic correlation. Individuals were her-
maphrodites mating at random within a population, with nono-
verlapping generations. Phenotypes were calculated for each of
the two traits modeled by summing the allelic values of all loci
affecting each trait. Gaussian stabilizing selection was applied
and determined the survival probability of juveniles, whose

fitness was calculated as w ¼ exp � 1
2

�
ðz� hÞT �X�1 � ðz� hÞ

�� �
,

where z is the individual phenotype vector (initialized to the opti-
mum values), h is the vector of local optimal trait values (set to
10 for both traits in the focal population), and X is the selection

variance–covariance matrix (Equation 7). We explored the effect

of the strength of stabilizing selection by setting x2 ¼ 50, or 100,
and the strength of correlational selection but setting qx ¼ 0.5 or

0.9. The strength of selection scales inversely with x2 where a
value of 100 corresponds to weak (but nontrivial) selection. In
contrast, a value of qx ¼ 0:9 corresponds to strong correlational
selection between traits (Lande 1984; Turelli 1985).

To examine the effects of mutational input on genetic correla-
tion between traits, we contrasted two types of loci: loci with
small effects and large mutation rates against loci of large but
rare effects. These two contrasted architectures correspond to
the assumptions of the Gaussian and house-of-cards regime, re-
spectively (see Turelli 1984). In both cases, mutation effects are
drawn from a normal distribution with mean zero and variance
a2 at rate l for each haploid locus. Pleiotropic mutation effects
are drawn from a bivariate normal distribution with mean and
covariance equal to zero, and per-trait variance of a2. To model
mutational variation under the Gaussian regime, we set the mu-
tation effect size a2 ¼ 0:001 and l ¼ 10�3 such that l� a2=x2

(Turelli 1984, 1985). The house-of-cards regime corresponds to
the condition l� a2=x2 (Latter 1960; Bulmer 1972; Bulmer et al.
1980; Turelli 1984, 1985). We thus set a2 ¼ 0:1 and l ¼ 10�5 for
that case. The Gaussian regime ensures that mutational varia-
tion is lower than the standing variation at the quantitative loci
so that the equilibrium distribution of allelic effects at each locus
remains approximately normal (Lande 1975). In contrast, under
the house-of-cards regime, the distribution of allelic effects at
each locus is much more leptokurtic than Gaussian because al-
most all the variance is contributed by rare alleles of large effect
(Turelli 1984; Johnson and Barton 2005). The house-of-cards
assumptions seem more plausible because a mutational variance
a2 larger than the standing variance at each locus is needed for
more realistic mutation rates l� 10�3 to maintain sufficient ge-
netic variance at mutation–selection balance, as argued by
Turelli (1984) (see also Bulmer 1989; Bürger 2000; Johnson and
Barton 2005).

To study the continuity of effects between both model
assumptions, we used all combinations of parameter values for l

in f0.001, 0.0001, 0.00001g and a2 in f0.001, 0.1g. Mutational
effects were then added to the existing allelic values (continuum-
of-alleles model; Crow and Kimura 1964). All loci were assumed
to have equal mutational variances and mutation rates. For sim-
plicity, no environmental effects on the traits were included.
Another set of simulations was run with reduced recombination

Figure 1 Distributions of mutational effects on two traits, Trait 1 (x-axis) and Trait 2 (y-axis). Graph (A) illustrates the distribution obtained from
equation (5) for 10,000 nonpleiotropic mutations at a pair of linked loci with a2 ¼ 0:1 and l ¼ 10�5. Graph (B) illustrates the distribution of pleiotropic
mutations with the same characteristics as in (A) obtained from a bivariate normal distribution.
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between pairs of nonpleiotropic, fully linked loci. The pairs were
set 0.001, 0.1, or 1 cM apart on a single chromosome to under-
stand the effect of LD between pairs on the build-up of genetic
correlation.

To examine the effects of migration from a source population
on genetic correlation between traits, additional sets of simula-
tions were run with unidirectional migration from a second pop-
ulation (as in an island-mainland model with each population
consisting of 5000 individuals) with backward migration rates (m)
of 0.1, 0.01, and 0.001. The backward migration rate represents
the average proportion of new individuals in the focal population
whose parent is from the source population. The local optimum
values for the two traits in the source population were set at h ¼
½
ffiffiffiffiffiffi
50
p

;
ffiffiffiffiffiffi
50
p
� (10 units distance from the focal population’s local op-

timum). Both focal and source populations had weak stabilizing
selection with a strength of x2 ¼ 100, the focal population had no
correlational selection between the two traits and the source pop-
ulation had a correlational selection of qx ¼ 0 or 0.9. Fifty repli-
cate simulations were run for each set of parameter values and
statistics were averaged over replicates. Averages were also com-
pared against analytical expectations laid out by Lande (1984)
and reproduced here in equations 1–3.

Mapping pleiotropic and nonpleiotropic loci with
GWA analysis
To elucidate the differential effects of pleiotropy and linkage on
the detection of true causal genetic variants in association stud-
ies, we performed genome-wide association analyses (GWAAs)
on a set of additional simulations of neutral genetic loci linked to
the causative QTL. The neutral loci were diallelic with a per-
allele mutation rate of l ¼ 10�6. We placed 1000 neutral loci
around each pleiotropic locus or nonpleiotropic pair of

completely linked loci, thus simulating an additional 120,000 po-

tentially polymorphic neutral loci linked to the additive, multial-

lelic quantitative loci described before. The causative QTL was

set in the center of their linkage groups (chromosomes). Each

chromosome’s map length was set to 0.1 cM, with neutral loci set

equidistantly on each, resulting in a recombination rate of 10�6

between adjacent loci. We simulated a single Wright–Fisher pop-

ulation with Ne ¼ 5000 for 50,000 generations and saved the com-

plete neutral SNP and selected QTL sequences for a sample of

1000 individuals at the end of each of 10 simulation replicates.

The polymorphic SNP and QTL were extracted from those

sequences and used for the GWA analyses. Univariate GWAAs

were performed on each trait independently with custom R-

scripts using simple linear regression. Multivariate GWAAs were

performed on both traits with a multivariate linear mixed model

implemented in the software gemma (v0.98.1) (Zhou and

Stephens 2014). Results were obtained from command “gemma -

bfile sim_bed_file -maf 0.001 -lmm 2 -n 1 2 -k sim_GRM -o output”

with the kinship matrix (genetic relatedness matrix) obtained

from the command: “gemma -bfile sim_bed_file -maf 0.001 -gk -o

sim_GRM.” We used the P-values obtained from likelihood-ratio

tests. To determine the significance of associations of neutral

SNPs with trait variation, we transformed the P-values to q-val-

ues with the q-value R package (v2.14.1) (Storey et al. 2019) using a

significance threshold (FDR) of a ¼ 0:1 (Storey and Tibshirani

2003). We considered a segregating QTL discovered when at least

one SNP was found significant on the same chromosome, within

0.05 cM on each side of the QTL. The probability of detecting spu-

rious pleiotropy can then be assessed by comparing the discovery

rates (DRs) of nonpleiotropic versus pleiotropic QTL in a multi-

variate GWAA. DRs were computed as the proportion of

Figure 2 Four genetic architectures showing the distribution of loci on 120 linkage groups. In the case of nonpleiotropic pairs of loci affecting the two
different traits on each linkage group are either 1, 0.1, or 0 cM apart. In the case of the pleiotropic architecture, each locus on each chromosome affects
both traits.
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polymorphic QTL found in the vicinity of neutral SNPs that were
significantly associated with one or both phenotypes.

Finally, to better understand the differential effects of pleiot-
ropy and linkage on the detection of true causal genetic variants,
we modeled QTL as biallelic loci with the same allelic effect sizes
as set in the continuous case. Mutations then only change the
sign of the allelic effect at the loci. This way, causative SNPs, or
quantitative trait nucleotides (QTNs), can be mapped to trait vari-
ation similarly to marker SNPs. Significance was determined with
custom-made R-scripts performing linear regressions for each
segregating SNP on each trait separately, and adjusting P-values
for multiple comparisons following Benjamini and Hochberg
(1995) with an FDR set at a ¼ 0:1.

Simulation results
Effects of genetic architecture on genetic
correlation at mutation–selection balance
By generation 50,000, when mutation–selection balance equilib-
rium is reached, the simulations with pleiotropic loci under the
house-of-cards regime maintain a higher average genetic correla-
tion than pleiotropic loci under the Gaussian regime, and higher
than simulations with linked nonpleiotropic loci under either re-
gime (Figure 3). The simulations under the Gaussian regime are
well approximated by the Gaussian expectations of Chantepie
and Chevin (2020). The Gaussian approximation also shows a
good match with our house-of-cards simulations when the muta-
tion rate is low (l � 0:0001) (Figure 3). The mutation-
independent expectation for the equilibrium genetic correlation
(equation 3) is reached by our pleiotropic architecture under the
house-of-cards regime for all mutation rates and for the non-
pleiotropic linked pairs only for the highest mutation rate
(l ¼ 0:001). Therefore, linked nonpleiotropic loci behave like
pleiotropic loci when the mutation rate is high: when l 	 10�4

for mutations of small effects (a2 ¼ 0:001, Gaussian regime), and
l 	 10�3 for mutations of large effects (a2 ¼ 0:1, house-of-cards,

hereafter HoC). Overall, we see a tendency for the genetic correla-
tion to increase with the mutation rate for both the pleiotropic
and nonpleiotropic loci as predicted by the Gaussian model of
Chantepie and Chevin (2020) (see Figure 3). Additional simula-
tions with 60 instead of 120 loci per trait show an average small
reduction of the genetic correlation with a reduction of the num-
ber of loci (Supplementary Figure S1).

For the two sets of mutational parameters, under Gaussian
and HoC assumptions, the increase in recombination (increased
map distance in cM) within the pairs of linked nonpleiotropic loci
rapidly decreases the equilibrium genetic correlation between
the traits, as expected (Figure 4). Stronger selection (obtained
with x2 ¼ 50) increases the Gaussian expectation and the ob-
served equilibrium value of both the pleiotropic and completely
linked loci in the Gaussian regime, but did not affect the equilib-
rium reached in the HoC regime (Figure 4A). A similar pattern is
observed with selection for a lower phenotypic correlation
(qx ¼ 0:5) (Figure 4C). At low mutation rates (l ¼ 10�5, HoC), vir-
tually no genetic correlation is observed between the traits af-
fected by pairs of nonpleiotropic loci in all conditions, while
pleiotropic loci maintained high genetic correlation in all cases
(Figure 4, A–C). In contrast, simulations with a high mutation
rate (l ¼ 10�3) and a large mutational effect size (a2 ¼ 0:1, HoC)
always reach the level of genetic correlation between the two
traits predicted by equation (3) (see open circles in Figure 4).
Finally, increased linkage between the pairs of nonpleiotropic loci
plays a similar role as increasing the allelic mutation rate; it
increases the equilibrium genetic correlation between the trait
even when the mutation rate is low (l ¼ 10�5, HoC) (Figure 5).

Effects of migration on genetic correlation
A higher migration rate from a source population, whose traits
are under correlational selection, leads to higher genetic correla-
tions in the focal population regardless of the genetic architec-
ture (Figure 6A). The effect of migration increases with tighter
linkage and is highest with pleiotropic architecture. This effect
on genetic correlation is still observed when there is no correla-
tional selection on the traits in the source population, but to a
largely reduced degree (Figure 6B).

Effect of genetic architecture on QTL DRs in a
GWAA
In the HoC regime, when mapping neutral SNPs to trait variation,
the pleiotropic architecture yields more significantly associated
SNPs than the nonpleiotropic architecture, approximately 95 and
70, respectively, out of about 18,000 segregating SNPs (Table 1).
The significant SNPs are also in higher LD with pleiotropic than
nonpleiotropic segregating QTL. The genetic correlation between
the traits does not affect the number of mapped SNPs (e.g., when
correlational selection is decreased from 0.9 to 0.06, see Table 1).
The difference in number of mapped SNPs is significant between
nonpleiotropic and pleiotropic architectures (Welch t-test:
P¼ 0.023 for qx ¼ 0:9; P¼ 0.0085 for qx ¼ 0:06). The QTL DR of
multivariate GWAA is higher for pleiotropic loci (57%) than for
nonpleiotropic loci (�40%) for a similar strength of correlational
stabilizing selection (qx ¼ 0:9). The difference in DRs shrinks
when the same genetic correlation is reached by pleiotropic and
nonpleiotropic loci (Gcor 
0.03, with qx ¼ 0:06 for pleiotropic loci,
see Table 1). The differences in DR are not significant here.

Compared to the HoC regime, the multivariate GWAA on neu-
tral SNPs in the Gaussian regime had less power to detect signifi-
cant associations, as shown by the lower number of significant
SNPs, their LDs with QTLs, and the QTL DR (<1%) (Table 1).

Figure 3 Average genetic correlation between traits 1 and 2 at mutation–
selection balance after 50,000 generations of stabilizing selection in one
population with 5000 randomly mating hermaphrodites. Average values
over 30 replicates are given for simulations with 120 pairs of fully linked
nonpleiotropic loci (circles) and 120 pleiotropic loci (triangles). Error bars
show one standard deviation. Two sets of mutational parameters were
used: a2 ¼ 0:001 (black) and a2 ¼ 0:1 (dark gray). The Gaussian regime
(a2 ¼ 0:001) is represented on the right-hand side where l ¼ 1e� 3, while
the HoC regime (a2 ¼ 0:1) is on the left-hand side where l ¼ 1e� 5. The
dashed line represents Lande’s (1984) expectations for pairs of linked loci
[equation (3)], while the black line is the Gaussian expectation from
Chantepie and Chevin (2020). Simulation parameters are N¼ 5000,
x2 ¼ 100; qx ¼ 0:9.
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Moreover, only a single replicate out of 10 yielded significant SNP
associations in the nonpleiotropic simulations, despite higher ge-
netic correlations than in the HoC regime (0.4 vs 0.03, respec-
tively, see Table 1). Therefore, the mutation regime, and
especially the mutation rate, was the main factor affecting the
significance level of the GWAA and QTL DRs. For a similar muta-
tion rate, significance remains higher for alleles of large effect at
the QTL as in the HoC regime (a2 ¼ 0:1) than for alleles of small
effect (a2 ¼ 0:001; see Table 1).

Univariate GWAAs on neutral SNPs are less prone than multi-
variate GWAA to detect marker SNPs associated with trait varia-
tion (see number of significant SNPs in Tables 1 and 2). Here,
pleiotropic loci are SNPs detected in two univariate GWAA

performed independently on traits 1 and 2. Almost no SNPs map to
two traits in two independent univariate GWAA unless the QTL are
pleiotropic or in the HoC regime (see Table 2). Therefore, the spuri-
ous pleiotropy of the neutral markers is very low when compared
to the multivariate GWAA. When mapping SNPs associated with
nonpleiotropic linked QTL, the false pleiotropy DR of the QTL is
3.5% on average in the HoC regime, and 0% in the Gaussian regime.
The true pleiotropy DRs of pleiotropic loci are higher, reaching
4.9% and 0.1% in the HoC and Gaussian regimes, respectively. It is
also higher when the genetic correlation between the traits
increases from 0.035 to 0.61 in the HoC regime (see Gcor in Table 1)
but is lower when the QTL effect size is decreased to 0.001 (see
Table 2). The average univariate QTL DRs obtained when mapping
a single trait at a time are 23.9% and 0.01% in the HoC and
Gaussian regimes, respectively (Table 2). Mutation rates and effect
sizes of the QTL played the same role as with multivariate GWAA
on both SNP significance and QTL DRs.

Finally, the mapping of causative SNPs, or QTNs in univariate
GWAAs, shows rates of associations of nonpleiotropic QTNs with
unaffected traits (i.e., false-positive rates, FPRs) of 6.5% and 7.4% in
the Gaussian and HoC regimes, respectively (Table 3). The rates in-
crease with either increasing the allele effect size to 0.1 in the
Gaussian regime or the mutation rate to 10�3 in the HoC regime.
The FPR then reaches up to 9.4% with an increase in the genetic cor-
relation of the traits (Table 3). Spurious pleiotropy of nonpleiotropic
QTNs is highest for alleles of small effect with a high mutation rate
(FPR ¼ 18.5%, Table 3). In comparison, the pleiotropic QTNs also
show lower number of mapped QTNs with a lower mutation rate.
The false-negative rate (FNR) is thus higher in the HoC than in the
Gaussian regime (Table 3). Those results quantitatively strongly de-
pend on the sample size of the analyses, as shown in Table S4.
Increasing the sample size decreases the FNR and increases the FPR
as the statistical power of the analysis increases, but the qualitative
difference between the Gaussian and the HoC regimes remains.

Discussion
The main expectation under the assumption of weak selection
and strong correlational selection is that populations with a

A B C

Figure 4 Effect of linkage distance within pairs of nonpleiotropic loci on average genetic correlation after 50,000 generations of correlated, stabilizing
selection. Default simulation parameter values are in panel (B): N¼ 5000, x2 ¼ 100; qx ¼ 0:9. Stabilizing selection is stronger in panel (A) with x2 ¼ 50.
Correlational selection is weaker in panel (C) with qx ¼ 0:5. Symbols and mutation parameters in inset and as in Figure 3.

Figure 5 Effect of linkage between pairs of fully linked nonpleiotropic
loci on average genetic correlation after 50,000 generations of
correlated, stabilizing selection in the HoC regime. Error bars
correspond to one standard deviation over 30 replicates. N¼ 5000,
x2 ¼ 100; qx ¼ 0:9; a2 ¼ 0:1, and l ¼ 10�5 (filled symbols), or l ¼ 10�3

(open circles). The 120 pairs of nonpleiotropic loci were placed on a
single chromosome at map distance shown on the x-axis. Pleiotropic loci
are depicted with an inverse triangle. The dashed line represents Lande’s
(1984) expectation.
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A B

Figure 6 Effect of migration on the average genetic correlations in the focal populations (and their standard deviations) after 10,000 generations of
migration from a source population with different migration rates (m) for four different genetic architectures. (A) Migration from a source population
with correlational selection between traits (qx ¼ 0:9). (B) Migration from a source population without correlational selection between traits (qx ¼ 0).

Table 1 Summary of the multivariate analyses of neutral SNP associations with the two traits under correlational selection

a2 l DRpleio: r2 Gcor SNPpleio: #QTL

Linkage
Gauss. 0.001 10-3 0.001 (n.a.) 0.076 (n.a.) 0.419 (0.014) 0.1 (n.a.) 120.0 (0.0)
— 0.1 10-3 0.002 (n.a.) 0.004 (n.a.) 0.640 (0.003) 0.2 (n.a.) 120.0 (0.0)
— 0.001 10-5 0.208 (0.015) 0.157 (0.013) 0.032 (0.010) 54.6 (4.8) 90.8 (1.2)
HoC 0.1 10-5 0.398 (0.035) 0.192 (0.025) 0.032 (0.015) 70.0 (4.3) 73.1 (0.9)

Pleiotropy
Gauss. 0.001 10-3 0.007 (0.003) 0.039 (0.009) 0.434 (0.014) 1.7 (1.0) 120.0 (0.0)
— 0.1 10-3 0.012 (0.009) 0.010 (0.001) 0.681 (0.004) 1.8 (1.3) 120.0 (0.0)
— 0.001 10-5 0.260 (0.019) 0.246 (0.016) 0.083 (0.021) 86.1 (8.9) 93.3 (1.7)
HoCðaÞ 0.1 10-5 0.387 (0.032) 0.268 (0.020) 0.035 (0.035) 94.6 (6.9) 78.8 (1.9)
HoCðbÞ 0.1 10-5 0.574 (0.037) 0.220 (0.011) 0.610 (0.027) 92.5 (7.7) 68.2 (1.4)

The pleiotropic QTL discovery rate (DRpleio:) is the proportion of segregating QTL (#QTL) that are significantly associated with an SNP within 0.05 cM. The average LD
of the significant SNPs with the closest QTL is evaluated with multiallelic r2. The significantly associated SNPs (SNPpleio:) are associated with both traits. Gcor is the
mean genetic correlation of the two quantitative traits. All values are means and standard errors (in brackets) for 10 replicates of each simulation assessed at
generation 50,000. The GWAAs were performed on samples of 1000 individuals. The mutation parameters of the QTL are in the first three columns and simulation
parameters are similar to those in Figure 3. See Methods for details about the neutral markers.
ðaÞ qx ¼ 0:06; ðbÞ qx ¼ 0:9; n.a.: the significant SNPs were found in a single replicate.

Table 2 Summary of the univariate analyses of neutral SNP independent associations with each trait

a2 l DRpleio: DRsingle r2 SNPsig: SNPpleio:

Linkage
Gauss. 0.001 10-3 0.0(n.a.) 0.001(0.001) 0.038(0.012) 0.1(0.1) 0.0(n.a.)
— 0.1 10-3 0.0(n.a.) 4e�04(n.a.) 0.003(n.a.) 0.1(n.a.) 0.0(n.a.)
— 0.001 10-5 0.009(0.004) 0.105(0.009) 0.242(0.022) 28.9(2.2) 0.0(n.a.)
HoC 0.1 10-5 0.035(0.005) 0.239(0.015) 0.316(0.022) 41.1(2.4) 0.8(0.6)

Pleiotropy
Gauss. 0.001 10-3 0.001(0.001) 0.007(0.002) 0.030(0.007) 1.5(0.4) 0.3(n.a.)
— 0.1 10-3 0.001(0.001) 0.007(0.004) 0.025(0.007) 1.1(0.6) 0.2(n.a.)
— 0.001 10-5 0.019(0.004) 0.122(0.008) 0.238(0.016) 37.4(2.6) 2.4(0.9)
HoCðaÞ 0.1 10-5 0.049(0.008) 0.191(0.015) 0.256(0.020) 44.5(3.5) 6.5(1.6)
HoCðbÞ 0.1 10-5 0.075(0.006) 0.208(0.019) 0.261(0.022) 39.7(4.5) 14.1(3.5)

The pleiotropy discovery rate (DRpleio:) is the proportion of segregating QTL detected simultaneously in two independent univariate GWAAs by mapping an SNP
within 0.05 cM of the QTL. The QTL discovery rate (DRsingle) is the average proportion of QTL discovered by mapping an SNP within 0.05 cM in either one or the other
GWAA. LD between the significant SNP and the associated QTL is a multiallelic r2. The number of SNPs significantly associated with one of the two traits (SNPsig:) is
averaged over the two univariate GWAAs. The number of neutral SNPs that were found to be significant in two GWAAs (SNPpleio:) represents spurious pleiotropy.
The genetic correlation, number of segregating QTL, and simulation details are as in Table 1.
ðaÞ qx ¼ 0:06; ðbÞ qx ¼ 0:9; n.a.: significant SNP in zero or a single replicate.
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genetic architecture consisting of unlinked pairs of two
completely linked loci (0-cM distance) should maintain similar
equilibrium levels of genetic correlation as a genetic architecture
consisting of a lesser number of unlinked pleiotropic loci (Lande
1984). Furthermore, it is expected that pleiotropic loci should
yield similar level of genetic correlation at mutation–selection
balance irrespective of the mutation regime, assuming muta-
tional effects are not correlated (Lande 1980; Zhang and Hill
2003). Contrary to those expectations, our analysis shows that
the genetic architecture and especially the mutation regime
determines the genetic correlation of the traits under correla-
tional selection. We show that linked, nonpleiotropic loci yield
similar genetic correlations as pleiotropic loci when mutation
rates are high as in the Gaussian mutation regime but not when
mutations are rare as in the house-of-cards regime. On the other
hand, pleiotropic loci reach the deterministic genetic correlation
expected under mutation–selection (Lande 1980; Zhang and Hill
2003) for the house-of-cards regime only. Under a Gaussian re-
gime, pleiotropic and nonpleiotropic loci better match the muta-
tion–selection–drift equilibrium of Chantepie and Chevin (2020).
Here, a high rate of mutation allows for multiple mutations in
tightly linked pairs of QTL to accumulate and maintain levels of
genetic covariance near to that of pleiotropic QTL. The same is
true for loci of larger effect as in the HoC regime when the per-
locus mutation rate is increased. It is, nevertheless, believed that
the HoC regime better fits empirical estimates of per-trait stand-
ing genetic variance and trait heritability (Turelli 1984, 1985).

Empirical estimations of mutation rates from varied species
like bacteria and humans suggest that per-nucleotide mutation
rates are in the order of 10�8 to 10�9 (Nachman and Crowell 2000;
Ford et al. 2011; Keightley et al. 2015; Lindsay et al. 2019). If a poly-
genic locus consists of hundreds or thousands of nucleotides, as
in the case of many QTLs, then per-locus mutation rates may be
as high as 10�5 or more, but the larger the locus the higher the
chance of recombination between within-locus variants that are
contributing to genetic correlation. Also, only a fraction of those
mutations will have detectable functional effects. There only are
a handful of examples of large loci with suppressed recombina-
tion such as a 16-kb region of chromosome IV of threespine stick-
leback fish and a 155-kb region of chromosome 17 in t-haplotype
mice (Bullard et al. 1992; Herrmann and Bauer 2012; Jones et al.
2012). This leads us to believe that with empirically estimated
levels of mutation and recombination, strong genetic correlation

between traits is more likely to be maintained if there is an un-
derlying pleiotropic architecture affecting them than will be
maintained by tight linkage. Nevertheless, as nonpleiotropic loci
become more tightly linked on the genetic map, higher genetic
covariation can be maintained by correlational selection favoring
LD among multiple pairs of nonpleiotropic loci at short recombi-
nation distances.

Our main result of a dependency of the equilibrium correla-
tion on the mutation regime was not anticipated because the
same mutation-invariant expectation of equilibrium genetic cor-
relation (equation 3) was found under the Gaussian (Lande 1984)
and house-of-cards (Zhang and Hill 2003) regimes. However, the
recent mutation–selection–drift model of Chantepie and Chevin
(2020) provides accurate equilibrium values for loci in the
Gaussian regime when taking drift into account. This shows that
although our population was relatively large, with Ne < 5000 (it
is less than N because some self-fertilization is allowed by the
mating system), small deviations caused by drift may have a
large effect on the orientation of the G-matrix at equilibrium, and
thus on the resulting genetic correlation among the traits. As
shown in Chantepie and Chevin (2020), the main effect of drift is
to bring the G-matrix closer to the variance–covariance matrix of
the mutation effects, the M-matrix. In our case, the M-matrix is
diagonal, without mutational covariance terms and thus without
mutation-induced genetic correlation at the traits. This results in
a weakening of the equilibrium genetic correlation among the
traits at mutation–selection–drift balance. As expected, stronger
selection brings the Gaussian expectation and our simulation
results closer to the mutation-invariant equilibrium correlation
[Figure 4A, see also Figure 2 in Chantepie and Chevin (2020)].

The equilibrium genetic correlation maintained at nonpleio-
tropic loci strongly depends on the mutation rate, the number of
loci, and the linkage between them. As argued in the Model sec-
tion, the distribution of mutational effects on the two traits af-
fected by a pair of nonpleiotropic loci is far from a bivariate
normal distribution. This represents a stark departure from
Lande’s (1980, 1984) assumptions and is the reason why our sim-
ulations strongly disagree with the theoretical predictions, unless
the mutation rate is high. Indeed, as shown by equation (5), the
bivariate normality of the distribution of mutational effects at
two loci increases with the square of the mutation rate. This
means that with many mutations per locus, it is increasingly
likely to generate variation at the two traits simultaneously. It is

Table 3 Summary of the univariate analyses of causative QTN associations with the two traits for linked pairs of nonpleiotropic and
pleiotropic biallelic QTL

QTN

a2 l r2 Gcor Nsign Npleio Nsegr

Linkage FPR
Gauss. 0.001 10-3 0.065 (0.002) 0.016(0.001) �4e�04 (0.003) 194.6 (1.0) 12.6 (0.5) 240.0 (0.0)
— 0.1 10-3 0.094 (0.004) 0.024(0.001) 0.206 (0.003) 177.0 (1.4) 16.8 (0.8) 240.0 (0.0)
— 0.001 10-5 0.185 (0.006) 0.378(0.013) 0.002 (0.008) 115.0 (1.0) 21.4 (0.8) 188.2 (6.2)
HoC 0.1 10-5 0.074 (0.006) 0.344(0.046) 0.100 (0.015) 82.6 (1.1) 6.1 (0.5) 149.6 (8.7)

Pleiotropy FNR
Gauss. 0.001 10-3 0.700 (0.010) –(–) �3e�04 (0.003) 95.1 (0.7) 36.0 (1.2) 120.0 (0.0)
—ðaÞ 0.1 10-3 0.584 (0.010) –(–) 0.189 (0.003) 98.8 (0.7) 49.9 (1.3) 120.0 (0.0)
—ðbÞ 0.001 10-5 0.770 (0.007) –(–) 0.219 (0.013) 71.1 (0.9) 24.1 (0.7) 105.2 (3.6)
HoCðbÞ 0.1 10-5 0.824 (0.006) –(–) 0.230 (0.012) 62.7 (0.9) 17.8 (0.6) 100.8 (4.0)

The pleiotropy FPR or spurious pleiotropy is the proportion of nonpleiotropic QTNs significantly associated with both traits in two independent univariate GWAAs.
The FNR is the proportion of segregating pleiotropic QTN not associated with the two traits in two independent GWAAs. The mean r2 measures LD within pairs of
nonpleiotropic QTL bearing at least one significant QTN. The sample size is 1000 individuals. The strength of correlational selection is qx ¼ 0:9 unless specified
otherwise. Other simulation parameters are as presented before.
ðaÞ qx ¼ 0:85; ðbÞ qx ¼ 0:01.
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that variation that is then picked up by correlational selection
when mutations increase the traits’ genetic covariance in a direc-
tion favored by selection. The number of loci acts in a similar
way by increasing the mutation target size for the genetic correla-
tion. In addition, at mutation–selection–recombination balance,
Turelli and Barton (1990) (see also Hastings 1989) for the house-
of-cards regime and Lande (1975) for the Gaussian regime, have
shown that the covariance at a locus pair depends on the product
of mutation rates, inverse recombination rate, and selection
strength (house-of-cards regime) or allele effects (Gaussian re-
gime). The total covariance being the sum of the covariance at all
pairs of loci, it is thus proportional to the number of loci multi-
plied by the per-locus mutation rate, nl (i.e., the genomic muta-
tion rate). Therefore, we can generally expect that the total
genetic covariance between traits affected by different nonpleio-
tropic loci increases with nl, the effect size of the mutations a2,
and the physical linkage within and between pairs of loci, as
shown in our simulations (Supplementary Tables S1–S3).

When simulating different lengths of the genetic map holding
the QTL, we have also shown that with tighter linkage between
pairs of nonpleiotropic linked loci, favored mutations need not af-
fect two loci within the same pair to allow correlational selection
to keep them in LD and maintain higher genetic correlation at
the traits. LD between pairs can thus do the job. This suggests
that high genetic correlations can be maintained under strong
correlational selection when many causative loci are clustered
within small recombination distances throughout the genome.
Our simulations suggest a distance smaller than about 0.01 cM
(about 10 kb or less is needed) for loci under the house-of-cards
regime and weak selection (or about 100 kb in the Gaussian re-
gime, see Supplementary Figure S2). That distance will increase
with the strength of correlational selection, the mutation rate,
and the effect size of the mutations, for a given correlation.
Therefore, we can expect that selection for phenotypic correla-
tion among polygenic traits can efficiently maintain appreciable
levels of genetic correlation even though the causative loci have
small mutation rates.

The impact of pleiotropy and linkage on
maintaining different genetic correlations in
association studies
When GWA analyses are employed to detect shared genetic influ-
ences (pleiotropy or linkage) on multiple traits of interest, they
are dependent upon detecting combinations of effect sizes of ge-
netic variants associated with those traits (Hill and Zhang 2012a,
2012b; Chung et al. 2014; Visscher and Yang 2016). The success or
failure of this endeavor is directly connected to the ability to de-
tect loci with associations to each trait and the strength of ge-
netic correlation between traits (Wei et al. 2014; Pickrell et al.
2016; Chesmore et al. 2018; Verbanck et al. 2018). The proportion
of genes associated with two or more phenotypes in the human
GWAS catalog has been estimated recently to range from 40%
(Pickrell et al. 2016) to 60% (Watanabe et al. 2019), covering be-
tween 800 Mbs (Jordan et al. 2019; Shikov et al. 2020) and 1600 Mbs
(Watanabe et al. 2019) of the human genome. These rather large
differences among studies stem from differences in source data
(from 43 to over 550 GWAS), from the extent of correction for cor-
relation among phenotypic traits, from different definitions of
trait functional domains, and from various ways of correcting for
LD among variants. More stringent analyses still show that plei-
otropy is widespread in the human genome (Jordan et al. 2019;
Shikov et al. 2020). But it is difficult to determine if this is truly
representative of the prevalence of pleiotropy because QTLs are

often mapped to loci that can encompass thousands of nucleoti-
des (and more than one gene) and informative SNPs with signifi-
cant effect sizes are assigned to the closest genes with annotated
phenotypes (Chesmore et al. 2018; Liu et al. 2019; Cai et al. 2020).
Conflating intergenic SNPs with nearby pleiotropic genes (or loci)
can distort the prevalence of pleiotropy and reduce the ability to
distinguish pleiotropy from physical linkage.

When considering noncausal variants, our results show that
significant associations are more prevalent for SNPs linked to
pleiotropic than to nonpleiotropic loci, even for a similar genetic
correlation maintained by both types of architecture at equilib-
rium. That difference can be explained by the fact that two linked
nonpleiotropic loci carry two different sets of alleles, contrary to
a single pleiotropic locus carrying only a single set. An SNP asso-
ciated with a pair of nonpleiotropic loci must thus be in LD with
both sets to be categorized as pleiotropic in a GWAA. The LD of a
marker SNP with two QTL within a pair is reduced when com-
pared to a single pleiotropic QTL because the two physically
linked QTL are by far not in perfect LD even if perfectly physically
linked (see Supplementary Table S1). This is seen in their lower
genic covariance (i.e., within gamete allele effect covariance)
when compared to pleiotropic loci (Supplementary Table S1).
Therefore, the power to detect SNPs associated with two traits is
decreased for nonpleiotropic relative to pleiotropic architectures.
It results in lower FPRs, and thus less spurious pleiotropy. This is
especially the case when multiple univariate GWAAs are utilized
to map variants to multiple traits, showing less spurious pleiot-
ropy than multivariate GWAA [see also Fernandes et al. (2021), for
comparisons of uni- and multivariate GWAA]. That advantage of
the univariate approach is counterbalanced by its reduced power
to discover truly pleiotropic QTL associated with significant SNPs
compared to multivariate GWAA.

We also show that the mutational regime strongly affects the
SNP and QTL DRs. As expected, QTL with alleles of larger effect
sizes as in the HoC regime yield a higher number of significantly
associated variants, in both multi- and univariate GWAA. Under
the HoC regime, the distribution of allelic effect per locus has a
much higher kurtosis (see Supplementary Table S1), meaning
that fewer alleles explain most of the additive variation com-
pared to the Gaussian regime. The kurtosis of the distribution
strongly decreases with higher mutation rates, and the accompa-
nying larger number of segregating alleles per QTL (e.g., from <3
to �100 alleles, see Supplementary Table S1). With higher muta-
tion rates, the contribution of each allele to trait variation is con-
sequently reduced and so is the LD between markers and QTL,
decreasing DRs. In comparison, the DR reduction in the Gaussian
regime is small for a 100 times reduction of effect sizes relative to
the HoC regime. This shows that variation in allele effect sizes at
linked loci affects GWAA FPR, as expected (Platt et al. 2010). It
also suggests that the reduction of pleiotropy (false) DRs in non-
pleiotropic architectures is likely accentuated by reductions of
the effect size of the QTL, making it more likely for GWAS to de-
tect true pleiotropic relationships across a range of effect sizes
and variation of the total mutation rate of the QTL underlying
the genetic correlation among traits.

The way genetic parameters affect spurious detection of plei-
otropy of QTNs is not as clear as for the marker SNPs. For in-
stance, increased mutation rates decrease the pleiotropic FPR in
the Gaussian but not the HoC regime. The influence of the equi-
librium trait correlation also has an unclear effect on FPRs. This
leads to rather similar FPRs for the Gaussian and HoC regimes (6–
7%) despite large differences in genetic correlations (�0% and
�10% in the Gaussian and HoC regimes, respectively). In a
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previous version of this manuscript (Chebib and Guillaume 2020,
version 4), we provided an analysis of the pleiotropic FPR when
mapping nonpleiotropic QTN with different map distances be-
tween them. Our main finding was that the spurious pleiotropy
detection rate was more influenced by the genetic correlation be-
tween the phenotypic traits than the map distance between the
nonpleiotropic QTN, for only one combination of effect size and
mutation rate (namely a ¼ 0:1; l ¼ 10�3, see Supplementary
Table S5).

Although we have focused on characterizing spurious pleiot-
ropy, as a large part of the literature on human GWAS does in or-
der to avoid it, our results also show rather low DRs of true
pleiotropy. The power to detect and measure true pleiotropy is
especially low when trait architectures are more polygenic, as in
the Gaussian regime where more loci of small effect are segregat-
ing. Whereas, when a single locus has large effects on multiple
traits, it is more likely that a GWAS can detect true pleiotropy,
which may then be used successfully to avoid possible undesired
pleiotropic side-effects in targeted gene therapy (Li and Shen
2019). Another important factor is the statistical effect of taking a
sample of the whole population, even though 1000 individuals al-
ready represent a well-sized sample in studies outside the human
GWAS world. Had we taken a larger sample, we would have
found a smaller number of false negatives (e.g., see
Supplementary Table S4). The salient consequence is that study
design, threshold levels, and genetic correlations between traits
will all affect the detection of genetic variants, whether the var-
iants are causal themselves or linked to causal variants (Wagner
and Zhang 2011; Hill and Zhang 2012a). The number of pleiotro-
pic effects of a locus is likely under-represented by significance
levels in association studies (Hill and Zhang 2012b).

There is a difference between pleiotropy and
linkage at the nucleotide level
Transgenic experiments and fine-scale association mapping may
differentiate pleiotropy from linkage at the gene level (Mills et al.
2014; Archambeault et al. 2020). On the other hand, there is evi-
dence that even in the same gene, adjacent polymorphisms af-
fecting different traits in Drosophila can be in linkage equilibrium
due to fine-scale recombination (Carbone et al. 2006; Flint and
Mackay 2009). But, imagine a case where a mutation in a single
base-pair has an effect on one trait and a mutation in the base-
pair right next to the first base-pair has an effect on a second
trait. Now imagine a second case where a mutation in a single
base-pair has an effect on two traits. There still seems to be a dis-
tinction between these two cases because the probability of a
change in both traits in the first case is the mutation rate squared
compared to the second case where the probability of a change in
both traits is just the mutation rate. Depending on the per-locus
mutation rate this difference can be quite large (e.g., 10�8 vs
10�16). Even in this extreme case, there may indeed still be a gray
area in the distinction between pleiotropy and linkage at a muta-
tional level. Mutations may affect the pleiotropic degree (e.g., like
enzyme specificity) of a protein-coding gene and the degree to
which the gene maintains multifunctionality may itself evolve
(Guillaume and Otto 2012). If there is correlational selection be-
tween the catalytic functions of an enzyme, then some pleiotro-
pic mutations that affect more than one catalytic ability will be
favored, and genetic correlations will increase. With this in mind,
it makes more sense from a theoretical and functional stand-
point to refer to pleiotropy at the nucleotide level (or at the unit
of a mutation), than at the gene or larger locus level (but this

may depend on the questions of interest; Rockman 2012; Rausher
and Delph 2015).

Other factors
Even in the absence of correlational selection, it is possible to
maintain genetic correlation through continued migration from a
source population. High migration brings individuals whose com-
bination of alleles will expand focal population variation in the
direction of the source population. This corroborates previous
results that showed that slow introgression of allelic combina-
tions into a population can affect the genetic variance–covari-
ance structure of that population (Guillaume and Whitlock 2007).
Whether genetic covariance will be maintained in real popula-
tions depends on the nature of correlational selection on traits in
the population of interest, since migration can reduce local fit-
ness (i.e., migration load) if allele combinations are not favored
by selection or increase it if they are (Nosil et al. 2006; Bolnick and
Otto 2013). Migration into a population will also affect FPRs since
immigrating allele combinations will be in LD from the source
population and will therefore increase the proportion of certain
genotypes, even if there is no strong trait correlation in the source
population. Although not investigated in this study, a structured
population and/or a continual system of inbreeding in a popula-
tion where there is correlational selection between polygenic
traits can result in increased genetic covariation caused by larger
LD (Lande 1984), which can in turn increase false-positive propor-
tions.

Conclusion
Pleiotropic loci maintain stronger genetic correlations between
traits than linked loci affecting different traits even when no re-
combination occurs between the nonpleiotropic loci, and espe-
cially in the magnitude of empirically estimated mutation rates.
Previous models of the maintenance of genetic covariation at
mutation–selection equilibrium describe genetic correlations as a
sole function of the strength of correlational selection, unless
drift is taken into account. These models provide similar expecta-
tions for pleiotropic and tight linkage architectures. The discrep-
ancy occurs because of the dependence of mutational covariance
on the occurrence of mutations (and hence mutation the rate).
Without high mutation rates, the ability to create genetic covari-
ance between linked loci is low because there is a low probability
of two simultaneous mutations with effects in the same direc-
tion. This low probability can be compensated by an increased
number of linked loci in clustered architectures. Our results will
have implications in the type of underlying architecture we ex-
pect to find in multitrait association studies. On the one hand,
tighter linkage between causal loci maintains higher genetic cor-
relations, leading to a greater proportion of false positives in plei-
otropy tests. On the other hand, pleiotropic loci are overall more
likely to be detected, especially when they affect tightly corre-
lated and functionally distinct traits, increasing true DRs. In most
cases though, it will remain challenging to distinguish between
pleiotropy and linkage, both functionally and statistically. Our
analyses suggest that a mix of multi- and univariate GWAA
approaches can help weed out spurious pleiotropy.

Data availability
The data for this study will be made available online through
Zenodo online repository at https://zenodo.org/record/5469293
and code for simulations can be found at https://sourceforge.net/
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