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CASE REPORT
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Abstract 

Background:  We report a patient with Essential Thrombocythemia (ET), subsequently diagnosed with concur-
rent myeloid and lymphoid leukemia. Generally, the molecular mechanisms underlying leukemic transformation 
of Philadelphia-negative myeloproliferative neoplasms (Ph-MPN) are poorly understood. Risk of transformation to 
acute myelogenous leukemia (AML) is low; transformation to both AML and acute lymphoblastic leukemia (ALL) is 
extremely low. Genetic defects, including allele burden, order of mutation acquisition, clonal heterogeneity and epi-
genetic mechanisms are important contributors to disease acceleration.

Case presentation:  A 78-year-old Caucasian female originally treated for stable ET, underwent disease acceleration 
and transition to myeloid sarcoma and B-cell ALL. Genomic reconstruction based on targeted sequencing revealed 
the presence of a large del(5q) in all three malignancies and somatic driver mutations: TET2, TP53, SF3B1, and ASXL1 at 
high allele frequency. We propose that the combination of genetic and molecular abnormalities led to hematopoietic 
stem cell (HSC) injury and disease progression through sub-clone branching. We hypothesize that ancestral recon-
struction of genomic data is a useful tool to uncover subclonal events leading to transformation.

Conclusions:  The use of ancestral reconstruction of genomic data sheds light on the unique clinical scenario 
described in this case report. By determining the mutational profile of tumors at several timepoints and deducing the 
most parsimonious relationship between them, we propose a reconstruction of their origin. We propose that blast 
progression originated from subclonal events with malignant potential, which coexisted with but did not originate 
from JAK2 p.V617F-positive ET. We conclude that the application of genomic reconstruction enhances our understand-
ing of leukemogenesis by identifying the timing of molecular events, potentially leading to better chemotherapy 
choices as well as the development of new targeted therapies.
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Background
The molecular mechanisms underlying leukemic trans-
formation of Philadelphia-negative myeloproliferative 
neoplasms (Ph-MPN) are poorly understood. Risk of 
transformation to acute myelogenous leukemia (AML) 
is approximately 10–20% for patients with primary 

myelofibrosis (PMF) and considerably lower for those 
with Polycythemia Vera (PV) and Essential Thrombo-
cythemia (ET), 5–10% and 2–5% respectively [1, 2]. 
Transformation of MPN to acute lymphoblastic leukemia 
(ALL) is rare, with only seventeen cases reported in the 
literature [3]. Retrospective studies suggest that genetic 
defects, including allele burden, order of mutation acqui-
sition, clonal heterogeneity and epigenetic mechanisms 
play an important role in the observed conversion rate, as 
well as the varied clinical-pathologic entities that evolve 
[4, 5].
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In this report, we describe a series of clonal events in 
an elderly patient originally diagnosed with JAK2 V617F-
positive ET who presented in accelerated phase, with 
subsequent progression to concurrent myeloid sarcoma 
(MS) and B-cell ALL. We hypothesize that reconstruc-
tion of genomic mutations to build an ancestral tree 
may be a useful tool to characterize leukemogenesis in 
patients with high-risk disease.

Case presentation
A 78-year-old Caucasian female was diagnosed with 
JAK2 V617F-positive ET in 2010 based on laboratory 
data and molecular profiling of peripheral blood. She was 
initiated on hydroxyurea (HU) and low-dose aspirin. The 
patient remained on anticoagulation with coumadin due 
to a prior history of atrial fibrillation. She demonstrated 
stable and adequate platelet response to 10 mg/kg of HU.

In 2016, despite compliance with therapy, she presented 
with platelet count of 1150 k/µl, hemoglobin of 8.2 g/dL, 
and WBC of 6.0  k/µl with absolute neutrophil count of 
2820/µl without detectable peripheral blasts. She under-
went a bone marrow biopsy, which revealed 80–90% cel-
lularity with increased myeloblasts (12%), megakaryocyte 
hyperplasia, dysmegakaryopoiesis and grade 2/4 reti-
culin fibrosis (Fig. 1a). Cytogenetics revealed del(5)(q22-
q33),del(17)(p11.2)[17]/46,XX[3], with wild-type CALR 
and MPL. Fluorescent in situ hybridization (FISH) recon-
firmed 5q deletion. Next generation sequencing (NGS) 
revealed the following mutations: JAK2 p.V617F, SF3B1 
p.R625C and TET2 p.C1271fs (Table  1). Due to patient 
preference for an oral agent, lenalidomide was initiated 

at 10 mg orally daily for 21 days in a 28-day cycle. This 
intervention resulted in partial remission based on Inter-
national Working Group-Myeloproliferative Neoplasms 
Research and Treatment Response Criteria, with clini-
cal improvement of anemia and thrombocytosis (hemo-
globin of 12.1  g/dL and platelet count of 344  K/µL, 
respectively). After seven cycles of lenalidomide, a repeat 
bone marrow biopsy revealed persistent blasts at 8%, per-
sistent dysmegakaryopoiesis, and stable JAK2 p.V617F 
mutation. Despite cytogenetic remission, (46 XX in 20 
metaphases analyzed), her MDS FISH panel revealed a 
new 20q12 (PTPRT/MYBL2) loss.

In January 2018, she presented with shortness of 
breath, abdominal pain, nausea and vomiting. Computed 
tomography (CT) scan of chest, abdomen and pelvis 
revealed a large 7.9  cm × 4.9  cm ileocecal mass induc-
ing partial colonic obstruction and moderate left pleural 
effusion. Pathology of the excised cecal mass showed a 
cluster of medium-sized MPO-positive myeloblasts with 
eccentric nuclei and scant cytoplasm, positive for CD33 
and CD117 based on flow cytometry and consistent with 
MS (Fig.  1b). Macroscopic examination of her pleural 
fluid revealed medium-sized cells with large nuclei and 
scant basophilic cytoplasm positive for CD19, TdT and 
CD20 consistent with B-cell ALL (Fig. 1c). NGS of both 
the colonic mass and pleural fluid revealed SF3B1, TP53 
exon 6 and exon 3 and TET2 (Table 1). JAK2-V617F and 
MPL were negative in both the colonic MS and B-cell 
ALL (Fig. 2).

Amplicon-based NGS of a panel of 48 genes com-
monly mutated in hematologic malignancies was 

Fig. 1  Summary of stages of leukemogenesis in the same patient. Tissue and cell-block formalin-fixed paraffin embedded (FFPE) sections stained 
with hematoxylin and eosin (H&E) were visualized by conventional bright-field Kohler illumination light microscopy (Olympus BX40, Japan) 
with a 20 × Plan achromat objective (Olympus, Japan), 20 × camera mount lens and a DP71 camera (Olympus, Japan). Photomicrographs were 
obtained after white balancing using the CellSense software (Olympus, Japan). Minor contrast adjustments were performed to the entire image 
to accurately represent the cells observed in manual microscopy. a Bone marrow biopsy prior to lenalidomide in 2016 at time of accelerated ET, 
with abnormally increased numbers of megakaryocytes that are atypical with hyperlobation, nucleomegaly and nuclear hyperchromasia and 
nucleoli with surrounding myeloid and erythroid progenitors. H&E nominal field magnification 400X. b Biopsy of ileocecal mass at time of leukemic 
transformation in 2018 diagnostic for myeloid sarcoma with sheets of MPO-positive myeloblasts with scant eosinophilic cytoplasm, irregular 
nuclear contours and prominent nucleoli. H&E nominal field magnification 400x. c Pleural fluid aspirate cytology cell block at time of leukemic 
transformation in 2018 demonstrates numerous blasts with scant cytoplasm and indistinct nuclear chromatin and surrounding red blood cells. H&E 
nominal field magnification 400X. Scale bars 50 µm
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performed on the Ion Torrent PGM platform from 
unfractionated bone marrow DNA.

An inferred phylogenetic tree was constructed from 
NGS and karyotype data from bone marrow samples 
obtained during the evolution from ET to MDS, as well 
as from colon and pleural effusion samples obtained 
during blast transformation. The corresponding time-
scale data points were aligned to reflect the hypotheti-
cal evolution of hematopoietic stem cells  (HSC) most 
parsimonious  with the sequencing and FISH findings 
reflected in Table 1. Note that between any two splits 
of the tree, the order of mutations and chromosomal 
deletions cannot be determined, and mutations are 
depicted sequentially for visual convenience (Fig. 2).

Discussion and Conclusions
In this single case report, genomic reconstruction 
importantly revealed the presence of a large del(5q) in 
all three malignancies: ET, MS and B-cell ALL, sug-
gesting a common cell of origin. In chronic phase 
MPN, this finding should inform physicians about the 
imminent likelihood for disease progression. Episo-
mal reprogramming has identified del(5q) as an early 
cytogenetic lesion with the capacity to perturb genome 
stability and differentiation [6]. Larger del(5q) size has 
been correlated with higher mutation frequency [5], 
which in this case included the somatic driver muta-
tions: TET2, TP53, SF3B1, and ASXL1 at high allele 
frequency (Table 1). We propose that this combination 

Table 1  Summary of Karyotype, FISH and molecular mutations

Variant allele frequencies are defined as fractions of variant versus total sequencing read count expressed as percentages. Frequencies of chromosomal abnormalities 
are estimated similarly

FISH fluorescent in situ hybridization, ALL acute lymphoblastic leukemia

Disease stage Peripheral blood 
2010

Bone marrow 2016 Bone marrow 2017 Bone 
marrow 
2018

Colonic mass 2018 Pleural effusion 
2018

Essential 
Thrombocytosis

Accelerated 
Phase Essential 
Thrombocytosis

Accelerated 
Phase Essential 
Thrombocytosis

Myeloid Sarcoma B-cell ALL

Chr Mutations

1 NRAS (NM_002524) 
c.34G > A (p.G12S)

0.0 73.3 0.0

2 SF3B1 (NM_012433) 
c.1873C > T 
(p.R625C)

34.7 43.5 47.6

4 TET2 
(NM_001127208) 
c.3812dupG 
(p.C1271fs)

33.8 47.9 48.4

9 JAK2 (NM_004972) 
c.1849G > T 
(p.V617F)

Pos 35.2 Pos 0.0 0.0

17 TP53 (NM_000546) 
c.215C > G (p.P72R)

45.5 9.3 3.4

17 TP53
(NM_000546)
c.734G > C
(p.G245A)

0.0 83.7 93.8

1 MPL ex. 10 Neg Neg Neg Neg

19 CALR ex. 9 Neg Neg

Karyotypes

5del (q22-q33) 43.5 0.5 43.0 98.5

17p del 85.0 49.0

20q del 9.0 28.5 96.0

MLL (KMT2A) ampli-
fication

0.0 74.0 92.0

MYC amplification 21.5
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led to HSC injury and disease progression through 
sub-clone branching (Fig.  2). The shared presence of 
JAK2-V617F and TET2 mutations in ET suggests that 
“megakaryocytic branching” originated directly from 
the HSC as opposed to a more lineage-restricted pro-
genitor [7]. The JAK2-V617F mutation confers a weak 
proliferative advantage to HSC and its absence in blast 
phases suggests MS and B-cell ALL did not emerge 
from this subclone.

Before blast conversion, the patient received lena-
lidomide, an immune modulator that yields cytogenetic 
remission by inhibiting growth of del(5q) progeni-
tors without affecting other cells [4]. Clinically, lena-
lidomide improves survival and reduces transfusion 

requirements in patients with del(5q) MDS [4, 8]. Some 
reports suggest an association between lenalidomide 
therapy and transformation to more aggressive pheno-
types, including a review documenting transformation 
of MPN to ALL [3]. Emerging data suggest that pro-
gression to AML in patients treated with lenalidomide 
is associated with karyotype complexity and clonal 
selection rather than a drug-mediated transformation 
[4,9]. Accordingly, in our case, bone marrow biopsies 
after lenalidomide therapy reveal absence of del(5q) 
clones, likely as a result of known suppression from 
drug. They also revealed a new 20q deletion (Table 1), 
which may portend the malignant potential of uninhib-
ited clones, as evidenced later by its high expression in 
B-cell ALL.

Based on the ancestral reconstruction of genomic 
data modeled in Fig.  2, we hypothesize a mechanism 
for  disease acceleration, whereby subclonal  events  with 
potential for blast conversion coexisted with but did not 
originate from JAK2 p.V617F-positive ET. The presence 
of del(5q) and molecular abnormalities (TP53, KMT2A) 
in both MS and B-cell ALL (Fig. 2) suggest that “disease 
progression” originated from diversification of a pluripo-
tent HSC capable of both myeloid and lymphoid differen-
tiation [10, 11], thereby leading to two distinct leukemia 
initiating cells (LIC): one containing 17p deletion and the 
other 20q deletion. Interestingly, del(5q) was suppressed 
in bone marrow but not from extramedullary sites where 
the blast phase manifested, suggesting variable sensitiv-
ity of different clones to lenalidomide. The concurrent 
presence of TP53 mutation in extramedullary sites [12] 
is known to confer a negative impact on survival and 
drug response to patients with del(5q) MDS treated with 
lenalidomide [7, 13]. Recent studies suggest that patients 
with high-risk MDS, characterized by unfavorable-
risk cytogenetic abnormalities and/or TP53 mutations, 
exhibit favorable clinical responses with robust muta-
tion clearance when treated with hypomethylating agents 
(HMA) [14]. Unfortunately, HMA do not provide durable 
responses. A combination of azacytidine plus anti-CD47 
monoclonal antibody is currently being investigated on 
TP53-AML with preliminary results showing an objec-
tive response in 71% of subjects and 48% complete remis-
sion [15].

We are limited in our ability to confirm the proposed 
order of pathogenic mutations. We lack banked bone 
marrow cells at all time points of disease evolution to 
demonstrate the proposed patterns of clonal progres-
sion. As this is a single case report, computer simula-
tion of similar cases of accelerated phase ET would 
reaffirm our proposed model. However, collecting 
replicate cases is difficult given the rarity of the events 
described. Despite the limitations in our analysis, the 

Fig. 2  Inferred phylogenetic tree of mutational process contributing 
to the sequential appearance of MDS/ET, MS and B-cell ALL. Branch 
splits are consistent with NGS and FISH data reviewed in Table 1. 
Notation: Chromosomal aberrations are denoted by a square. Solid 
squares (filled square) denote presence of chromosome abnormality; 
open squares (open square) denote their disappearance. X marks 
denote presence of point mutations, while open circles (circle) 
denote loss of mutation. The order of mutations between branch 
splits cannot be inferred from the data and therefore they are 
listed lexicographically. The founder cell is proposed to be an HSC 
containing del (5q) as well as somatic driver mutations (ASXL1, JAK2, 
TET2, TP53, SF3B1). Prior to blast transformation, the pluripotent HSC 
capable of myeloid and lymphoid differentiation, acquired new 
KMT2A (MLL) amplification. Absence of MLL amplification in bone 
marrow suggests this clone seeded into the periphery thereby 
accounting for its presence in the extramedullary blast transformation 
but not in the bone marrow. Deletion 17p was present in 2016 
accelerated phase ET and appears to have been conserved in the 
subclone that evolved into myeloid sarcoma. Deletion 20q was first 
seen in bone marrow after lenalidomide therapy and is present in 
subclone that evolved into B-cell ALL. Treatment with lenalidomide 
contributed to the suppression of del(5q) clones in bone marrow but 
had little effect in extramedullary leukemias
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ancestral tree in this case report highlights how the 
relative accessibility of NGS continues to improve our 
understanding of leukemogenesis, specifically, the 
predictive significance of large del(5q). It also has the 
capacity to inform therapeutic choices. Notwithstand-
ing the presence of del (5q), recent studies support that 
HMA is a superior choice to lenalidomide under the 
clinical scenario described here. HMA combination 
regimens [15] currently being investigated may provide 
durable responses to patients with TP53 mutations.

In conclusion, the advances in NGS technology have 
made it possible to generate a deep snapshot of the 
genetic composition of rapidly evolving tumor cells. 
The development and application of computational 
algorithms to harness NGS data for ancestral recon-
struction could have a dramatic impact in how we prac-
tice medicine. Large scale simulation of similar cases to 
that described in this report would enhance our ability 
to predict disease progression. It would inform how a 
specific collection of molecular mutations would favor 
one therapeutic approach versus another. We pro-
pose exploring the use of computational algorithms to 
resolve patterns of clonal progression to enhance our 
understanding of leukemogenesis and the contribu-
tion of molecular targets, thereby leading to the devel-
opment of more specific, tumor-tailored therapeutic 
interventions.
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