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Tetraspanins regulate the signaling,
trafficking and biosynthetic pro-

cessing of associated proteins, and may
link the extracellular domain of a-chain
integrins with intracellular signaling
molecules, including PI4K and PKC,
both of which regulate cytoskeletal archi-
tecture. We showed that TSPAN7, a
member of tetraspannin-family, promotes
filopodia and dendritic spine formation
in cultured hippocampal neurons, and is
required for spine stability and normal
synaptic transmission. TSPAN7 directly
interacts with the PDZ domain of protein
interacting with C kinase 1 (PICK1), and
associates with AMPAR subunit GluA2
and β1-integrin. TSPAN7 regulates
PICK1 and GluA2/3 association, and
AMPA receptor trafficking. These find-
ings identify TSPAN7 as a key player
in the morphological and functional
maturation of glutamatergic synapses.

Tetraspanins are evolutionarily-conserved
membrane proteins that associate dynami-
cally with numerous partner proteins
in tetraspanin enriched microdomains
(TEMs) and regulate cell morphology,
motility, and signaling.1 Many of the 33
mammalian tetraspanins are expressed
in the nervous system, playing a role in
neurite outgrowth, myelination and glia
cell number control.2 Among them
TSPAN7, encoded by the TM4SF2 gene,
is directly associated with cognitive defects
in humans. TM4SF2 mutations, including
TM4SF2 inactivation by an X:2 balanced
translocation, a premature stop codon
TGA (gly218-to-ter),3 and a 2-bp deletion
(564delGT) resulting in a premature
stop codon at position 1924 are directly

associated with non-syndromic intellectual
disability. The gly218-to-ter nonsense
mutation and the 2-bp deletion predict
a truncated protein lacking the fourth
transmembrane domain and cytoplasmic
C-terminal tail.

In our recent paper5 we have identified
TSPAN7 as a new player in synaptic
maturation and function, showing that it
localizes at excitatory synapses in cultured
embryonic rat neurons.

In particular, we found that TSPAN7
overexpression promotes the formation of
filopodia and dendritic spines, while
TSPAN7 knockdown causes a reduction
in spine head size, and increases spine
motility and turnover–consistent with the
results of an in vivo study showing that
small filopodial-like spines are more dyna-
mic and undergo more rapid remodelling
than larger spines.6 These morphological
abnormalities are similar to those reported
in some mentally retarded patients7 and
also in various animal models of mental
disorders7,8 including oligophrenin-1-,
Il-1RAPL1-, and PAK3- knockout mice;9

similar morphological abnormalities have
also been observed in dissociated neuronal
cultures using specific siRNAs to knock-
down the transcripts of the same proteins.9

It is noteworthy that changes in spine
morphology are closely linked to changes
in the strength of synaptic connections.10

Thus, mushroom spines have larger, more
complex postsynaptic densities (PSDs),
with higher glutamate receptor densities,
than smaller spines;11 furthermore spine
size correlates with PSD size.12 The fact
that TSPAN7 knockdown affects spine
morphology suggests it is causing defects
in PSDs and reducing the stability of
postsynaptic structures. Consistent with
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this, TSPAN7 knockdown reduced the
expression level of postsynaptic markers, in
particular of AMPARs, and such decreases
were accompanied by a reduction in the
number of functional synaptic AMPARs as
shown by a decrease in mEPSCs ampli-
tude and frequency. The measure of PPR
is not altered upon TSPAN7 knockdown,
consistent with an increase in the number
of silent synapses, i.e., lacking AMPAR, in
silenced neurons. By contrast NMDAR
currents were not affected.

It is important to examine how
TSPAN7 may affect PSD composition
and AMPAR currents. As tetraspanins
associate with several proteins and regulate
their trafficking and signaling,1 the func-
tion of these molecules has to be con-
sidered in the light of their specific
interacting/binding proteins. It has pre-
viously been reported that TSPAN7 asso-
ciates with phosphatidylinositol 4-kinase
(PI4K) type II activity.13 In this paper, we
identified other TSPAN7 associated pro-
teins: PICK1, that is a direct interactor
and GluA2 AMPAR subunit and β1-
integrin that are associated to TSPAN7
(Fig. 1). We showed that the C-terminal
tail of TSPAN7 interacts with the PICK1

PDZ domain. We also found that
TSPAN7 associates with GluA2/3 and
β1-integrin, and that following TSPAN7
knockdown, PICK1 associated more
tightly with AMPAR, while β1-integrin
no longer did so. These findings suggest
that these proteins form a single macro-
molecular complex, whose composition
depends on TSPAN7.

TSPAN7 could, therefore, regulate
signaling pathways important for synaptic
transmission and plasticity via its asso-
ciation with β1-integrin, PICK1 and
AMPA. PICK1 is a well-established regu-
lator of AMPAR trafficking and of the
number of AMPA receptors at synapses.14

It has been involved in AMPAR-regulated
trafficking in long-term depression
(LTD) in hippocampal neurons15,16 and
the cerebellum.17,18 Changes in AMPAR
trafficking are crucial to synaptic plasticity
and therefore to learning and memory.
In fact, in various synapse types, LTD
involves endocytosis of AMPARs from the
plasma membrane, whereas long-term
potentiation (LTP) involves insertion of
additional AMPARs to the surface.19,20 We
found that GluA2 underwent increased
internalization in response to TSPAN7

knockdown, with reduction in surface
GluA2, that was accompanied by
decreased mEPSCs; by contrast endocyto-
sis block with dynasore restored GluA2
surface levels, pointing out AMPAR
trafficking as the mechanism involved.
The modulation of PICK1 and TSPAN7
expression independently leads to oppo-
site effects on GluR2 distribution, with
PICK1 overexpression promoting—and
PICK1 silencing reducing—GluA2 inter-
nalization;21,22 while the TSPAN7 expres-
sion level positively correlates with surface
localization of GluA2 containing AMPAR.
Rebalancing the relative expression of the
two proteins by double knockdown or
double overexpression experiments rein-
state GluA2 distribution to control levels.
Interestingly TSPAN7 deleted for its
C-terminus and thus lacking the amino
acids responsible for PICK1 binding, has
no effect on GluA2 trafficking. These data
are consistent with a model in which
TSPAN7 competes with AMPAR for
PICK1 binding and identify TSPAN7 as
a new modulator of AMPAR trafficking
through PICK1.

TSPAN7’s direct binding to PICK1
suggests a ready explanation for the defects
in AMPAR trafficking observed upon
TSPAN silencing, but does not explain
the effects of TSPAN7 on filopodia and
dendritic spine morphology. A possible
explanation is via the regulation of actin
filaments. The initiation and elongation of
filopodia as well as spine formation are
known to depend on the precisely regu-
lated polymerization and cross-linking of
actin filaments.23 Although PICK1 is also
involved in actin polymerization,24 we
showed that PICK1 and TSPAN7 regulate
spine morphology independently. A
possibility is that TSPAN7 influences
actin filaments via an association with
PI4K13 and/or via its association with β1-
integrin—as shown in this and other
studies.25 Both PI4K and β1-integrin are
known regulators of actin dynamics.26,27

By linking these two proteins, TSPAN7
could recruit them to a complex on the
plasma membrane that coordinates actin
dynamics with the assembly or organiza-
tion of postsynaptic AMPA receptors.

We investigated the presence of β1-
integrin in the TSPAN7 complex since
tetraspanins are known to interact with

Figure 1. The cartoon shows a synaptic complex composed by TSPAN7 and the proteins: PICK1,
AMPAR, integrins and PI4K. In particular, TSPAN7 associates with AMPAR GluA2 subunit, b1-integrin,
PI4K and, through its C-terminal tail, directly binds PICK1 PDZ domain. Through PICK1, TSPAN7
modulates AMPAR trafficking thus regulating synaptic function. A distinct mechanism,
likely involving actin remodelling pathways, accounts for TSPAN7 regulation of filopodia density
and dendritic spine morphology. We speculate that this involves the b1-integrin and PI4K partners.
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integrins (especially those containing the
beta1 chain)25 and β1-integrin is involved
in LTP,28 suggesting involvement in
learning and memory. In fact, mice with
postnatal deletion of β1-integrin are
impaired in working memory.28 We found
that β1-integrin is part of the TSPAN7-
AMPAR complex.

Other studies have shown that regula-
tory interactions between integrins and ion
channels are common and often involve
formation of a multi-protein complex2 and
that glutamate receptors are targets for
integrins.2 In dissociated neurons and
cultured hippocampal slices, AMPA treat-
ment has been shown to increase the surface

expression of β1- and a5-integrin.29 Our
data indicate that TSPAN7 serves as a
functional connector between integrins
and AMPARs with implications for
synaptic transmission and plasticity parti-
cularly since AMPARs mediate the majority
of fast excitatory synaptic transmission in
the brain, and changes in AMPAR number
or function, can result in alterations in
synaptic strength19 (Fig. 1).

The changes we have observed in
synapse morphology and physiology
resulting from TSPAN7 silencing point
to TSPAN7 having a critical role in
synapse function, consistent with the
intellectual disability found in some

patients with TSPAN7 mutations. Our
findings allow us to speculate that
TSPAN7-related intellectual disability
may occur because TSPAN7 loss results
in alteration of dendritic filopodia and
spine morphology and synapse physiology,
likely mediated by reduced stabilization of
AMPAR at dendritic spines and also by
lack of binding of β1-integrin to the
AMPAR-PICK1 complex.
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