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Abstract

Tinnitus is a common, functionally disabling condition of often unknown etiology. Neuroim-

aging research to better understand tinnitus is emerging but remains limited in scope.

Voxel-based physiology (VBP) studies detect tinnitus-associated pathophysiology by

group-wise contrast (tinnitus vs controls) of resting-state indices of hemodynamics, metabo-

lism, and neurovascular coupling. Voxel-based morphometry (VBM) detects tinnitus-associ-

ated neurodegeneration by group-wise contrast of structural MRI. Both VBP and VBM

studies routinely report results as atlas-referenced coordinates, suitable for coordinate-

based meta-analysis (CBMA). Here, 17 resting-state VBP and 8 VBM reports of tinnitus-

associated regional alterations were meta-analyzed using activation likelihood estimation

(ALE). Acknowledging the need for data-driven insights, ALEs were performed at two levels

of statistical rigor: corrected for multiple comparisons and uncorrected. The corrected ALE

applied cluster-level inference thresholding by intensity (z-score > 1.96; p < 0.05) followed

by family-wise error correction for multiple comparisons (p < .05, 1000 permutations) and

fail-safe correction for missing data. The corrected analysis identified one significant cluster

comprising five foci in the posterior cingulate gyrus and precuneus, that is, not within the pri-

mary or secondary auditory cortices. The uncorrected ALE identified additional regions

within auditory and cognitive processing networks. Taken together, tinnitus is likely a dys-

function of regions spanning multiple canonical networks that may serve to increase individ-

uals’ interoceptive awareness of the tinnitus sound, decrease capacity to switch cognitive

sets, and prevent behavioral and cognitive attention to other stimuli. It is noteworthy that the

most robust tinnitus-related abnormalities are not in the auditory system, contradicting col-

lective findings of task-activation literature in tinnitus.
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Introduction

Subjective tinnitus is the perception of sound in the absence of any external sound source (i.e.,

an illusory percept). Tinnitus is commonly described as ringing, buzzing, whooshing, or a

combination of sounds in one or both ears [1,2]. Tinnitus prevalence varies from 3%-14% in

the general population [3]. Roughly 1–3% of individuals with tinnitus report significant func-

tional impairment [4,5], including difficulties with sleeping, concentration, and communica-

tion. Combinations of tinnitus sounds (e.g., ringing and buzzing or buzzing and whooshing)

cause significantly more impairment than a single percept [6]. Although tinnitus is a common,

functionally disabling condition that has been described in the medical literature for millenia

[7,8], the neurobiology of tinnitus remains unsolved. Over roughly the past two decades, a

modest body of neuroimaging studies has emerged seeking to address this shortcoming.

Neuroimaging studies fall into two broad classes: functional and structural. In both classes,

atlas-referenced coordinates are widely used, making the literatures amenable to coordinate-

based meta-analysis (CBMA; [9–11]). Functional studies can be further subdivided into task-

activation (TA) and resting-state (RS). The early neuroimaging literature in most disorders,

including tinnitus, relied heavily on TA methodology. A distinct advantage of the task-activa-

tion approach is the high signal-to-noise ratio of the task-induced activations and, secondarily,

of the superimposed inter-group, condition-related differences in activation. The TA literature

was, from the outset, reliant on coordinate-based reporting. The cardinal limitations of the TA

approach are: (1) regions probed are largely limited to those engaged by the task; (2) sensitivity

is reliant on participant performance, which can be highly variable in clinical populations; and

(3) there are a wide range of control tasks that are employed. The majority of the tinnitus TA

literature has used sound stimuli as a probe, and this was meta-analyzed by Song and col-

leagues [12]. Tinnitus-related increases in activation were observed but, predictably, these

increases were almost entirely limited to primary and secondary auditory cortices.

Between-group contrasts (disease vs control) of resting-state physiology using PET and

SPECT have been reported in tinnitus since the late 1990s [13,14], prior to the widespread

adoption of statistical parametric mapping using standardized coordinates for non-task studies

in clinical cohorts. Reviews of this early literature were conducted by Adjamian [15] and Lant-

ing [16]. More recently, resting-state fMRI (rs-fMRI) measures have been ascendant, exploit-

ing both hemodynamic measures (e.g., arterial spin labeling; ASL) and BOLD-derived metrics

of neurovascular coupling, most notably regional homogeneity (ReHo; [17]) and fractional

amplitude of low-frequency fluctuations (fALFF; [18]). Here we refer to resting-state fMRI,

PET, FDR-PET, and SPECT studies which apply mass-univariate statistics (the same operation

is performed on each image voxel) and report in standardized coordinates as voxel-based

physiology (VBP) studies. By reporting standardized coordinates, the VBP literature provides

suitable input for CBMA. By assessing participants in the resting-state, this literature provides

a regionally unbiased examination of the gray-matter physiology in persons with tinnitus,

which is a distinct paradigm shift from the task-activation literature. Resting-state VBP studies

using fMRI (60%; 15/25) form the bulk of the literature meta-analyzed here.

Resting-state contrasts of brain structure, also task independent, most often are performed

using voxel-based morphometry (VBM; [19]) applied to T1-weighted MRI. VBM, like VBP, is

a mass-univariate method in which spatially standardized images are contrasted group-wise to

detect abnormalities too subtle to be recognized by visual inspection, but which are sufficiently

reliable in location to be detected by group-wise contrasts. Like VBP studies, VBMs are region-

ally unbiased with the caveat that VBM—like VBP—are most sensitive for detecting gray-mat-

ter effects. VBM gray-matter studies make up the remainder (32%; 8/25) of the literature

examined herein.
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Activation/anatomical likelihood estimation (ALE: [9,20,21]) is the most widely utilized

CBMA algorithm [22]. Although ALE CBMA was originally designed for task-activation

meta-analysis and has been most extensively used for single-modality, (see BrainMap.org/

pubs), this is not an intrinsic limitation of the ALE method. Rather, ALE assesses the spatial

proximity of reported coordinates against a null hypothesis of a random distribution of the

same volume and quality of data. ALE computes the convergence of findings based solely on

location and is blind to magnitude and direction [23]. Therefore, this modality agnosticism

allows ALE the flexibility to integrate findings across imaging methods [24,25], if to do so is

logically appropriate. Co-localization of structural and functional alterations are found in

numerous neurodegenerative and psychiatric disorders [25]. Since studies have found both

structural and functional alterations related to tinnitus, it is appropriate to implement the ALE

algorithm. Results will identify the disease effects related to gray matter alterations and the co-

localization of both increases and decreases in resting-state function. In the present study, we

combined resting-state VBP studies and VBM studies contrasting persons with tinnitus to

healthy controls for a comprehensive assessment of tinnitus-related gray-matter alterations.

Significant group contrasts, between tinnitus groups and control groups from each study were

included in the meta-analysis, independent of whether results indicated increased/decreased

GM/resting-state function. According to Müller et al. [26], multiple experiments with the

same set of participants can compromise the validity of resullts. Therefore, the procedures of

this meta-analysis included only one experiment per subject group.

Acknowledging the limited volume of the quantitative, coordinate-reporting literature in

tinnitus and the necessity for data-driven etiological insights, CBMAs were performed at two

levels of statistical rigor: confirmatory and exploratory. The more conservative approach

applied two statistical thresholds: (1) intensity (p< 0.05) at the voxel level; and, (2) a correc-

tion for multiple comparisons at the cluster-forming level using family-wise error rate (FWE;

1,000 permutations, p< 0.05). Additionally, the fail-safe correction for missing data (publica-

tion bias) was applied [22,25]. The less conservative approach applied only voxel-wise thresh-

olds, with no corrections for multiple comparisons or missing data. The intent of this

exploratory analysis was to probe the available data as deeply as possible and thereby simulate

hypothesis generation as well as to identify candidate nodes for network analyses.

The overall goal of the present study was to identify brain regions exhibiting tinnitus-

related functional and structural alterations in the absence of task performance by applying

CBMA to the VBP and VBP literatures. The null hypothesis of ALE CBMA is spatial non-con-

vergence (i.e. a random data distribution). The hypothesis of the investigators was that this

task-free approach would demonstrate abnormalities outside the confines of the auditory sys-

tem and provide new, data-driven insights into the pathophysiology of tinnitus [27–29].

Methods

Literature search

A literature search of PubMed, BrainMap [10,21,30–34], Scopus, and Science Direct was per-

formed to identify tinnitus VBM and VBP studies, comparing individuals with tinnitus to

healthy controls. Trace referencing was also conducted to identify studies with the same crite-

ria. Included studies of gray-matter volume utilized VBM methods. Studies of resting-state

VBP included glucose metabolism, amplitude of low frequency fluctuations (ALFF/fALFF),

regional homogeneity (ReHo), and regional cerebral blood flow (rCBF). Search terms

included: tinnitus; resting-state; brain activity; arterial spin labeling OR ASL; regional homoge-

neity OR ReHo; glucose metabolism; single photon emission computed tomography OR

SPECT; positron emission tomography OR PET; regional cerebral blood flow OR rCBF; gray
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matter; voxel-based morphometry OR VBM. Any studies that were ambiguous regarding

meeting inclusion criteria were screened by a second author. The literature search was com-

pleted January 2020. A study selection diagram for this meta-analysis can be seen in Fig 1.

Study selection criteria pertaining to indices of quality

Selection criteria required that studies be peer-reviewed, English language neuroimaging

reports, included application of motion correction, and included participants with unilateral,

bilateral, subjective, or pulsatile tinnitus, with any degree of hearing loss. Studies must have

compared tinnitus groups to control groups that consisted of participants without any type of

tinnitus and must have used voxel-wise whole-brain methods. Studies must have reported

results as coordinates using standard reference space: Talairach or Montreal Neurological

Institute (MNI). Studies that did not report results in the form of standardized coordinates

were excluded from analyses. Data collation was conducted by the first author. The data that

support the findings are available in Open Science Framework [35].

Corrected ALE

The dual threshold CBMA ALE was conducted with cluster-level threshold and family-wise

error rate of p< .05, 1000 thresholding permutations, and intensity threshold of p< .05.

The intensity threshold was chosen based on the recommendations for conducting neuroim-

aging meta-analyses [26]. The cluster-level FWE threshold of p< .001 resulted in no effects,

and therefore, the cluster-level threshold FWE threshold was expanded to p< .05. ALE

examines the spatial convergence among previously reported coordinates of the included

Fig 1. Consort chart of study selection of tinnitus neuroimaging studies. ALFF/fALFF = amplitude of low-frequency fluctuations (ALFF) and

fractional ALFF; BOLD = blood oxygen level dependent; DC = degree centrality; FCD = functional connectivity density;

FDG-PET = fluorodeoxyglucose PET; ICA = indenpendent components analysis; PET = positron emission tomography; ReHo = Regional

homogeneity; SPECT = single-photon emission computed tomography; VBM = voxel-based morphometry.

https://doi.org/10.1371/journal.pone.0276140.g001
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tinnitus studies and tests the null hypothesis that coordinates are randomly distributed

rather than statistically convergent. This approach is blind to magnitude and sign (+/-) and

computes the convergence of findings based solely on location. This flexibility allows for

ALE to incorporate findings from across imaging modalities [25] to determine the most sta-

tistically convergent brain regions related to the disease effects of tinnitus. ALE was com-

puted using GingerALE, [21,30,31] version 3.0 (http://brainmap.org) which simulates

random coordinates based on study sizes to simulate noise and increase robustness of results

[36].

Noise simulation. The current ALE algorithm does not take into account publication

biases, in which only significant findings are published, otherwise known as the file drawer

effect. Fortunately, Acar et al. [22] developed the fail-safe N method in order to account for

publication bias by introducing noise into the ALE algorithm. A modified version of the fail-

safe N method [25] was implemented, which introduced 6% noise. Increased noise was intro-

duced until results were no longer significant.

Uncorrected ALE

Additionally, we implemented a less conservative approach to identify other possible relevant

regions impacted by disease effects of tinnitus. This approach did not use statistical methods to

correct for multiple comparisons. Thresholds of intensity (p< .01) and extent (minimum vol-

ume set at 450mm3) were implemented for exploratory purposes. A stricter threshold, com-

pared to the dual-threshold method, was used because the recommended threshold of p< .05

resulted in over 120 regions, which is not interpretable or meaningful. The more conservative

approach that was used also simultaneously limits potential for Type 1 error.

Results

A total of 25 studies (26 experiments), with 791 participants with tinnitus, were identified for

inclusion in this meta-analysis (Table 1). Fig 1 shows the flow diagram of study selection. The

all-effects analysis comprised a total of 148 foci from all experiment types. The FWE corrected

ALE demonstrated one cluster with five regions of convergence (Fig 2): cingulate gyrus, precu-

neus, and three regions within the posterior cingulate gyrus (PCG)/precuneus, with a mini-

mum cluster size of 5,728 mm3. Coordinates and peak ALE scores from the dual-threshold

ALE can be seen in Table 2.

The fail-safe N method assessed the robustness of the corrected ALE findings, which

accounted for unpublished findings. A total of 6% noise was added to the meta-analysis, and

results remained consistent regarding the significant cluster and five regions of convergence

described above. However, when 11% of added noise was added to the meta-analytic data,

these results were not replicated.

After implementation of an uncorrected ALE, results demonstrated 15 regions across 10

clusters. The first cluster contained the inferior parietal lobe and insula, while the second

cluster replicated the findings from the corrected ALE. This particular cluster contained one

region: the cingulate gyrus. Additional regions within the remaining nine clusters included

the middle temporal gyrus, lingual gyrus, middle occipital gyrus, cuneus, medial frontal

gyrus, subcallosal gyrus, and thalamus. Fig 3 shows the clusters that resulted from the single-

threshold ALE. Coordinates and peak ALE scores from the single-threshold ALE can be seen

in Table 3. The data that support all findings are available in Open Science Framework at osf.

io [35].
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Table 1. Studies included in meta-analysis.

Study Journal Modality Patient

N

Control

N

Mean

Age

Patient

Mean

Age

Control

Foci

No.

Scanner Processing

Software

Smoothing

kernel (mm)

Statistical

threshold

MNI

or Tal

[37] Boyen

et al. (2013)

Hearing Research VBM 31 24 56 58 9 Philips

3T

SPM5 8 .05 FWE MNI

[38]

Carpenter-

Thompson

et al. (2014)

Brain Research BOLD 13 24 54.7 51.4 20 Siemens

3T

SPM8 4 .05 FWE MNI

[39] Chen

et al. (2014)

Neuroimage: Clinical BOLD-ALFF 31 32 41.9 46.5 7 Siemens

3T

SPM8 4 .05

AlphaSim

MNI

[40] Chen

et al. (2015)

Neural Plasticity BOLD-Reho 29 30 40.9 46.2 5 Siemens

3T

SPM8 4 .01

AlphaSim

MNI

[41] Chen

et al. (2016)

Frontiers in Aging

Neuroscience

BOLD-DC 24 22 50.8 44.7 5 Philips

3T

SPM8 6 .01

AlphaSim

MNI

[42] Gentil

et al. (2019)

Trends in Hearing BOLD-Reho 19 16 63 59 1 Siemens

3T

SPM12 6 .005 MNI

[43] Geven

et al. (2014)

Neuroscience FDG-PET 20 19 51 50.8 2 Siemens SPM5 8 .001

Uncorrected

MNI

[44] L. Han

et al. (2015)

Neuroscience FCD 32 32 37.1 38.5 16 GE 3T SPM8 6 .05

AlphaSim

MNI

[45] Lv Han

et al. (2015)

Progress in Neuro-

Psychopharmacology

and Biological

Psychiatry

BOLD-ReHo/

ALFF

34 34 37.9 39.5 14 GE 3T SPM8 4 .05 Monte

Carlo

MNI

[46] Han

et al. (2014)

Neural Plasticity BOLD-ALFF 42 42 37.2 37 11 GE 3T SPM8 4 .01 Monte

Carlo

MNI

[47] Han

et al. (2018)

Neuroradiology BOLD-ReHo 25 25 44.7 44 5 Siemens

3T

SPM8 5 .05

AlphaSim

MNI

[27] Husain

et al. (2011)

Brain Research VBM 8 18 56.1 51.4 5 GE 3T SPM5 8 .001

Uncorrected

MNI

[48]

Laureano

et al. (2014)

PloS One SPECT 20 17 42.9 41.4 1 GE SPM8 8 .05 FWE MNI

[49] Leaver

et al. (2012)

Frontiers in Systems

Neuroscience

VBM 23 21 47.4 49 3 Siemens

3T

SPM8 6 .05

Uncorrected

MNI

[50] Leaver

et al. (2016)

Human Brain Mapping BOLD-ICA 21 19 47.3 48.9 5 Siemens

3T

Brain

Voyager

6 .0005

Uncorrected

Tal

[51] Liu

et al. (2018)

Neural Plasticity VBM 24 24 34.9 35.3 7 GE 3T SPM8 6 .001

Uncorrected

MNI

[52] Lv et al.

(2017)

Hearing Research BOLD-ReHo 45 45 37.3 37.2 4 GE 3T SPM8 4 .01 FDR MNI

[53]

Maudoux

et al. (2012)

PloS One BOLD-ICA 13 15 52 51 17 Siemens

3T

Brain

Voyager

8 .05 FDR Tal

[54]

Melcher

et al. (2013)

Hearing Research VBM 24 24 46.9 45.8 1 Siemens

3T

SPM8 8 .001

Uncorrected

MNI

[55] Mühlau

et al. (2006)

Cerebral Cortex VBM 28 28 40 39 1 Siemens

1.5T

SPM2 8 .05 FDR MNI

[56]

Schmidt

et al. (2018)

Brain Research VBM 15

13

18

19

13

15

-

-

55.1

57.6

52.33

51.2

48.4

52.9

NA

NA

11 Siemens

3T

SPM12 10 .05 FWE MNI

(Continued)
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Discussion

Summary

The current findings represent the disease effects of tinnitus in grey matter, glucose metabo-

lism, and blood flow. Two ALEs were implemented with different levels of statistical rigor: cor-

rected for multiple comparisons and uncorrected. The cluster-level inference ALE with

family-wise error (FWE) rate was more stringent and demonstrated one cluster with five

regions related to the disease effects of tinnitus. These regions included the posterior cingulate

gyrus/precuneus and cingulate gyrus. Moreover, these regions remained significant in relation

to tinnitus disease-effects after introducing 6% added noise, which accounts for negative

Table 1. (Continued)

Study Journal Modality Patient

N

Control

N

Mean

Age

Patient

Mean

Age

Control

Foci

No.

Scanner Processing

Software

Smoothing

kernel (mm)

Statistical

threshold

MNI

or Tal

[57] Seydell-

Greenwald

et al. (2012)

Brain Research BOLD 20 20 47 49 2 Siemens

3T

Brain

Voyager

6 .005

Uncorrected

Tal

[58]

Vanneste

et al., (2015)

PloS One VBM 154 - 50.24 NA 9 Siemens

3T

SPM8 8 .001

Uncorrected

MNI

[59] Yang

et al. (2014)

Journal of Otology BOLD-ReHo 18 20 43 42 2 Philips

3T

SPM5 NA .05 FWE MNI

[60] Zhou

et al. (2019)

Frontiers in

Neuroscience

BOLD-ReHo/

FALFF

28 31 41.2 45.4 6 Philips

3T

SPM8 4 .001

AlphaSim

MNI

https://doi.org/10.1371/journal.pone.0276140.t001

Fig 2. Regions identified by corrected ALE. Note: 1 = Cingulate Gyrus; 2 = Precuneus; 3 = Cingulate Gyrus/Precuneus; 4 = Posterior Cingulate/

Precuneus; 5 = Posterior Cingulate/Precuneus.

https://doi.org/10.1371/journal.pone.0276140.g002
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unpublished findings. The second approach did not implement a statistical correction for mul-

tiple comparisons, which was less stringent, and identified 15 additional regions across 10 clus-

ters. These regions included the cingulate gyrus, occipital temporal gyrus, lingual gyrus,

middle occipital gyrus, cuneus, medial frontal gyrus, subcallosal gyrus, and thalamus.

Findings from the cluster-level inference ALE with FWE serve as an out-of-sample replica-

tion of previous tinnitus neuroimaging studies of resting-state functional connectivity. Rest-

ing-state functional connectivity measures temporal correlations of spontaneous BOLD

signals across brain regions [61] to identify disease-related networks. For example, Schmidt

et al. [62] found that individuals with tinnitus exhibited decreased connectivity within the left

precuneus, left precentral gyrus, and left cerebellum, compared to individuals with hearing

loss and no tinnitus. Additional out-of-sample replications are observed by the findings from

the ALE without FWE regarding the auditory dorsal attention network (DAN).

Our results demonstrate consistent disease-related effects of tinnitus across a heterogeneous

population that varies in tinnitus sounds, loudness, laterality, and duration of tinnitus. Other

medical and psychological comorbidities, such as head injury, hearing loss, depression, post-

traumatic stress disorder, and anxiety, were not controlled in the current study; nor were the

data acquisition techniques and data analytic approaches. Therefore, it is suggested that the

identified regions from this meta-analysis, particularly from the cluster-level inference ALE

with FWE, are invariant and shared across the spectrum of tinnitus patients. Findings are

explained in the context of the resting-state network [28,63] for which specific regions are

most identified with.

Corrected ALE

Default mode network. The cluster-level inference ALE with FWE demonstrated the dis-

ease-effects of tinnitus occur within the posterior cingulate cortex (PCC), cingulate gyrus, and

precuneus, which play a central role within the default mode network [64–68]. It is important

to note that the studies that contributed to the significant clusters found by the ALE indicated

heightened activation for those with tinnitus, when compared to controls [38,44–46,52,60].

Interestingly, there were no VBM studies that contributed to these results. The default mode

network (DMN) is a “task negative network” [32], meaning that it is more highly activated at

“rest;” however, recent research suggests a more complicated pattern, specifically within the

PCC [69]. In addition to task-free states, the PCC is likely involved in ongoing experiences,

most notably self-generated thoughts such as daydreaming, the recollection of autobiographi-

cal information, and future planning, particularly of a social nature [64,70]. A recent meta-

analytic study demonstrated the significant role of the PCC in domains of cognition, and par-

ticularly in attention, language, and memory [71]. Moreover, the same study differentiated

Table 2. Identified regions from corrected ALE.

Region Name MNI Coordinate

(x, y, z)

BA Peak ALE Score Peak Z Score Fail-Safe N (%)

ALE Results

Cingulate Gyrus 2, -42, 32 31 .022 5.043 11%>FSN>6%

Precuneus -6, -54, 42 7 .010 3.090 11%>FSN>6%

Cingulate Gyrus/Precuneus -6, -54, 30 31 .009 3.023 11%>FSN>6%

Posterior Cingulate/Precuneus 0, -58, 22 23 .009 2.890 11%>FSN>6%

Posterior Cingulate/Precuneus 8, -60, 28 31 .008 2.507 11%>FSN>6%

Note: ALE = Activation Likelihood Estimate; BA = Brodmann Area; MNI = Montreal Neurological Institute.

https://doi.org/10.1371/journal.pone.0276140.t002
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between the dorsal and ventral PCC (dPCC and vPCC, respectively) and found that the dPCC

was highly co-activated with regions associated with consciousness and awareness of internal

bodily sensations, hereafter called interoceptive awareness. Additionally, the vPCC was found

to co-activate with regions associated with self-awareness. Related to tinnitus and the results of

the current study, alteration of the PCC may hinder tinnitus patients from appropriately

directing their attention away from irrelevant noise sources, and instead, increase individuals’

attention and awareness to the tinnitus percept. Therefore, therapies should aim to provide

Fig 3. Regions identified by uncorrected ALE. Note: Areas in color represent the 15 regions identified by the uncorrected ALE, p< .05.

https://doi.org/10.1371/journal.pone.0276140.g003
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individuals with tinnitus the techniques to increase their capability of re-directing their focus

from their tinnitus and instead to the present moment and engaging in value-based activities,

such as mindfulness-based cognitive therapy [72]. Future psychotherapies and neuromodula-

tory approaches should aim to decrease the activation within the DMN; however, additional

research is warranted concerning the connectomic properties of the DMN among tinnitus

patients.

It is important to note that the cluster-level inference CBMA ALE with FWE did not detect

any regions within the auditory RSN. Instead, the superior, middle, and inferior temporal

gyrus was detected by the single-threshold CBMA ALE, discussed later. Past and current per-

spectives on tinnitus have heavily relied on the assumption that auditory regions are most

implicated for the genesis and maintenance of tinnitus. While it is certainly understandable to

conceptualize tinnitus as an auditory disorder, a detriment of this approach includes a hyper-

focus on the auditory RSN, and therefore, a concurrent and serious neglect of other significant

regions and networks.

Our results offer strong support for the paradigm shift in the field of tinnitus regarding the

specific neurobiological disease-related effects of the disorder [64,73]. It is especially notewor-

thy that the regions within the DMN, found to be significantly associated with tinnitus, sur-

vived a fail-safe N correction for unreported negative finding, adding up to 6% random noise.

Therefore, even when accounting for unpublished results, the corrected ALE demonstrates

results with an acceptable amount of added noise [74]. Extant research, however, is heavily

influenced by the notion that tinnitus is an auditory disorder; and therefore, significant differ-

ences in brain structure and function should be found within the auditory network (AUD).

Song et al. [12] conducted a TA tinnitus meta-analysis among 10 studies, in which 6 of the

studies did not have a control group, and two of the remaining studies used sound as the task

dimension. Beyond the criticism related to insufficient studies to perform CBMA ALE [26],

Table 3. Identified regions from uncorrected ALE.

Region Name MNI Coordinate

(x, y, z)

BA Peak ALE Score Peak Z Score

ALE Results

R Inferior Parietal Lobule 64, -30, 24 40 .018 4.459

R Insula 56, -28, 22 13 .010 3.062

R Superior Temporal Gyrus 60, -40, 24 13 .009 2.831

L Cingulate Gyrus 2, -42, 32 31 .022 5.043

R Middle Temporal Gyrus 58, -54, -8 37 .013 3.577

R Middle Temporal Gyrus 54, -56, 0 37 .009 3.002

L Lingual Gyrus -2, -94, 2 18 .015 4.005

R Inferior Parietal Lobule 42, -42, 42 40 .010 3.126

R Precuneus 34, -40, 42 7 .009 3.008

R Inferior Parietal Lobule 46, -48, 44 40 .008 2.604

L Middle Occipital Gyrus -26, -96, 10 18 .018 4.459

L Cuneus -14, -88, 16 17 .013 3.632

R Middle Frontal Gyrus 4, 4, 54 6 .013 3.655

R Subcallosal Gyrus 22, 18, -22 47 .010 3.154

R Thalamus 10, 14, -10 - .010 3.148

Note: ALE = Activation Likelihood Estimate; BA = Brodmann Area; L = Left; MNI = Montreal Neurological

Institute; R = Right.

https://doi.org/10.1371/journal.pone.0276140.t003
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this study is overly reliant on sound tasks that undoubtedly increases potential for Type I

error, specifically related to the auditory network. Moreover, the field has neglected findings

that have demonstrated significant effects of tinnitus, beyond the AUD. One glaring example

of this neglect in tinnitus neuroimaging research is found in Farhadi et al. [75], in which

authors focus on results solely related to temporal regions despite the clear implication of the

cingulate gyrus. In order to progress the field of tinnitus research, investigators must recognize

the effects of regions across canonical networks, and rely less heavily on past assumptions.

Uncorrected ALE

In addition to the rigorous meta-analysis discussed above, an uncorrected meta-analysis was

conducted to detect all possible alterations that might represent disease-effects of tinnitus. This

less conservative approach has a greater probability of Type I error; however, due to the relative

novelty of tinnitus neuroimaging research, it is important to identify a larger set of regions that

may otherwise be overlooked. In this sense, future research can determine whether these

regions are significantly associated with tinnitus. The regions identified beyond what was found

by the ALE can be discussed in relation to two RSNs: auditory (AUD) and cognitive processes.

Auditory. Disease-effects of tinnitus within the AUD were discovered when the uncor-

rected ALE was implemented. Specifically, the middle temporal gyrus and sub-gyral (non-cor-

tical) regions within AUD demonstrated alterations. The middle temporal gyrus (MTG) is an

extra-primary cortical component of the auditory network strongly implicated in language

and of semantic processing, in particular [76,77]. Individuals experiencing hearing loss with

and without tinnitus demonstrate increased gray matter in the MTG when compared to indi-

viduals without tinnitus or hearing loss [37]. Therefore, the MTG may be more related to hear-

ing loss, rather than tinnitus. However, alterations within the right MTG have also been

demonstrated among tinnitus sufferers both as structural differences and in spontaneous neu-

ral activity [78]. Dysregulation within the MTG may be a source of the tinnitus percept, while

other regions of the brain may play a role in the loudness and emotional responses associated

with tinnitus [79]. Investigation of the functional and structural connectivity between the

MTG and other significant regions identified by the current study will likely shed light on spe-

cific neurobiological causes of tinnitus and related distress.

Cognitive processes. The IPL is a hub of the dorsal attention network (DAN), which is

associated with cognitive abilities and top-down processing [80]. Previous research supports

the role of the DAN in tinnitus [62,81], and, more recently, increased connectivity between the

DAN and precuneus (DMN) has been shown to reflect tinnitus duration and severity [82].

Authors of these studies suggest that the DAN and DMN may not be appropriately suppressed

at rest or during tasks, respectively. The DAN may be active “at-rest” and while “task-positive,”

representing lack of control away from tinnitus sensation, and perhaps, negative attributions

toward tinnitus, even while external noises mask the tinnitus percept. The medial frontal gyrus

(MFG) was also found to be a significant brain region based. The MFG (BA 10) is a region

associated with executive functioning, which includes motor planning, decision-making, abili-

ties to hold ideas in working memory, as well as switching cognitive sets [83]. Studies have

demonstrated decreased grey matter volume within the MFG among individuals with schizo-

phrenia [84], who often have significant deficits in executive functioning tasks. For those with

tinnitus, and in relation to the results that implicate the IPL, individuals may have difficulty

switching their attention away from tinnitus sounds. As causation cannot be determined, it is

also possible that the alterations of the MFG may be due to distractibility related to tinnitus.

Neural plasticity. Often referred to as a plasticity disorder [85–87], tinnitus may occur

due to compensatory processes, involving deafferentation and increased spontaneous firing of
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neurons beyond the auditory pathway [88], causing alterations observed in this meta-analysis.

It is suggested that in response to acoustic trauma, individuals who develop tinnitus experience

significantly greater structural and functional changes within the posterior cingulate and pre-

cuneus, compared to individuals who may have experienced similar acoustic events and did

not develop tinnitus. Such changes may also reflect neuroplasticity occurring after onset of

chronic tinnitus as individuals adapt to the condition. Longitudinal epidemiologic studies that

implement neuroimaging techniques may be able to ascertain the chronological order of

changes within these brain regions that can predict development of tinnitus. However, since

imaging is conducted during a discrete timeframe, observed neurobiological differences may

be a function of events prior to the onset of tinnitus, or the habituation to chronic tinnitus.

Future directions

Future studies should aim to more fully characterize, structurally and functionally, altered

brain regions indicative of disease-related effects of tinnitus, without the reliance on past

assumptions related to the auditory network. These results provide compelling evidence that a

paradigm shift is necessary in the field of tinnitus neuroimaging research. Investigators must

recognize the effects from specific regions across canonical networks beyond the auditory rest-

ing-state network.

Functional modeling may help distinguish the relationship among the regions identified in

this meta-analysis, including direct and indirect pathways involved in tinnitus generation, per-

sistence, tolerance, bothersomeness, and habituation. Co-authors of this study aim to identify

the functional pathways of tinnitus. By doing so, neuromodulatory therapies may become

more refined and tailored to individuals’ needs regarding comorbid diagnoses and current

health conditions.

Caveats

It is feasible that improvement of the spatial resolution of existing tools may lead to the identi-

fication of additional altered regions associated with tinnitus. Additionally, this meta-analysis

did not control for demographic variables, psychological comorbidities, head injury, hearing

loss, or differences in tinnitus percept or related distress. Future neuroimaging studies may

account for these differences to map tinnitus in relation to specific comorbidities. Moreover,

although ALE found significant regions within clusters, precise areas (e.g., dorsal/ventral PCC)

are less well identified.
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