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Background
Most complex human diseases are rarely the consequence of the abnormal activity of a 
single gene product. Conversely, they involve the activities of multiple interacting genes, 
yet many of which are not defective [1]. Hence, it is crucial to study the relationship 
between genotypes and phenotypes to unlock the genetic origins of complex diseases 
[2–6] in the context of human interactome (molecular interactions networks, nodes 
are proteins and edges are observation and inference from their interactions). Driven 
by high-throughput interactome mapping efforts [7] and the genome-wide genetic asso-
ciation data [8], previous work has begun to unveil the relationships between different 
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phenotypes based on network. The most important concept that emerges from this is 
the “disease module”. Disease-associated proteins, (DAPs, encoded by disease genes) for 
a specific disease phenotype show a tendency to cluster in the same network neighbour-
hood [3]. Topological properties of disease module in the interactome underlie all net-
work-based prioritization tools for studying human diseases. Topological characteristics 
of existing studies include: specific phenotype-related DAPs frequently form a well-con-
nected component rather than locally dense communities [9]; most disease genes show 
no tendency to encode hub proteins, but rather are located in the functional periphery 
of interactome [1]; furthermore, the position of each disease module relative to other 
modules in the interactome implies its phenotypic similarity to other diseases [10]; and 
recently, Agrawal et al. [11] have found that DAPs of a single disease tend to form many 
separate connected components in the network. Their research also shows that higher-
order network structures such as small subgraphs of the pathway can provide a promis-
ing direction for the development of new methods.

Disease module helps to uncover the molecular mechanism of disease causation, iden-
tify new disease genes and pathways and drug targets [9, 12–18]. For example, Sharma 
et al. [18] have identified the disease module of asthma and verified its functional and 
pathophysiological correlation using both computational and experimental approaches. 
They found that the asthma disease module had a modest GWAS p values against the 
background of random variation, and there are differentially expressed genes in normal 
and asthmatic fibroblast cells treated with an asthma-specific drug. The asthma module 
also contains immune response mechanisms that are shared by other immune-related 
disease modules.

Numerous computational methods have been developed for the accurate identifica-
tion of disease module to fully explain the molecular mechanism of most human dis-
eases. With regard to the fragmentation of disease module [10], more than 80% of DAPs 
on average are shown to be scattered, forming many separate connected components 
(SCCs), this pattern is applicable to more than 90% diseases [19]. A disease module does 
not correspond to a single well-connected component as an observable module in pre-
sent incomplete interactome. Therefore, many methods [9, 14, 20, 21] used for searching 
for DAPs-intensive clusters or communities within the interactome might have limita-
tions in discovering disease modules. Such as DIAMOnD [9], the most advanced algo-
rithm, is used to analyze the connectivity patterns of DAPs and form a disease module 
with a large number of intermediate proteins, which are known as DIAMOnD proteins. 
Although DIAMOnD can generate internal interconnected module for a specific dis-
ease, unfavourably, on average it introduces 200 DIAMOnD proteins, but only connects 
about average 50% DAPs of 299 diseases from Online Mendelian Inheritance in Man 
(OMIM [22]) and Genome-Wide Association Studies (GWAS [8]) databases. Many of 
the introduced DIAMOnD proteins are unnecessary for precisely detecting disease 
modules, resulting in enormous disease module sizes (average size of 400 proteins, i.e. 
the disease module has been magnified 4 times), ultimately the analysis of 299 disease 
relationships based on such modules is ambiguous. Another algorithm is based on the 
Steiner tree, the retrieval of a minimum size sub-graph leads to the classic Steiner tree 
problem, which is known as NP-complete [23], such as a heuristic method based on the 
minimum spanning tree approximation, the time complexity of the entire algorithm is 
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about O(n3). This is impractical to detect disease modules in a large human interactome 
of more than 13,000 proteins, as it is a time-consuming process of finding the optimal 
connected components. On the other hand, any remote nodes can be connected through 
a Steiner tree, the connection properties of the disease module are therefore hindered by 
these problems, which may lead to the misunderstanding of the topological characteris-
tics of DAPs and disease modules. Overall, despite many methods, the analysis of con-
nectivity pattern of DAPs are still an unsolved problem.

In this paper we proposed a topological-based method to connect separate connected 
components (CCC, C3) in order to form a succinct disease module. We showed that 
SCCs formed by DAPs can be effectively connected through a few intermediate proteins 
and interactions in the network, which can statistically significantly reduce the number 
of fragments of a disease module. The specific process is as follows. First, we quantified 
the roles of proteins and interactions in connecting SCCs, i.e. by importing the interme-
diate proteins and interactions, C3 detects observable disease modules for DAPs of 299 
disease phenotypes from the OMIM [22] and GWAS [8] databases. Next, we described 
the characteristics of the detected disease modules, we verified the succinctness and 
connectivity significance of C3 module by comparing this method with DIAMOnD and 
random simulations results. C3 module is a well-connected succinct disease module 
with small-size and dominated by DAPs. Additionally, we explored their relative contri-
butions to disease pathogenesis in some case studies. And we presented evidence sug-
gesting that even for DAPs from multi-omics data in The Cancer Genome Atlas (TCGA 
[24]), C3 worked as a practical strategy for understanding interrelationships between 
mRNA expression, mutation, DNA methylation and copy number variation, which fur-
ther validated the biological significance of the disease module we obtained.

Results
Connectivity pattern of disease module

To explore the connectivity pattern of disease module, we described our framework 
(Fig.  1a) as follows: (1) the human interactome and the Disease-Associated Proteins 
(DAPs) data for model building, (2) detection of Separate Connected Components 
(SCCs) forming by DAPs in the interactome, (3) quantification index of the connectivity 
ability of intermediate proteins, (4) greedy process of C3 algorithm, and (5) quantifica-
tion of succinctness of final disease module.

We detected the connectivity pattern of disease module in a comprehensive list of 
experimental records of molecular interactions in human cells compiled by Menche 
et al. [10] (see Methods). In total, we obtained 141,296 interactions among 13,460 pro-
teins. This human interactome can be modeled as an undirected network G(N ,E) , where 
N is the proteins set and E is the interactions set. The known DAPs of 299 diseases are 
gathered from OMIM [22] and GWAS [8] databases (see Methods), of which 2436 are 
in N and associated with one or more diseases. We call these 2436 DAPs “seeds” in our 
subsequent algorithm process.

The SCCs forming by DAPs in G are identified by a tool networkx [25] in python which 
can export all the connected components of a given node set. We used a function ExScc 
(see Methods) to export the set of SCCs of a given seed set in our method. Based on this, 
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the connectivity patterns of 299 typical complex diseases in a curated list are studied 
(see results in Additional file 1).

To validate whether there are some intermediate proteins or interactions can statisti-
cally significantly reduce the number of fragments of a disease module or not, we used 
hypergeometric p value to quantify their ability in connecting SCCs of DAPs. The p 
value evaluates whether a certain intermediate node or edge can connect more SCCs 
than expected (see Methods). We found that there are certainly some intermediates can 
significantly connect SCCs and reduced the number of them (p value < 0.05, connectivity 

Fig. 1  Connectivity pattern of disease module. a The flow framework of C3 Method. (i) Obtain the 
human interactome and the DAPs data for model building; (ii) Detect SCCs forming by DAPs; (iii) Quantify 
connectivity ability of intermediate proteins and interactions; (iv) Develop C3 algorithm; (v) Evaluate the 
succinctness of a produced disease module. b The detailed flow chart of the C3 algorithm. (i) The SCCs are 
identified for all seeds (set D) in network G(N, E) , forming a connected components set of SCCs with size 
s0 . (ii) The connectivity significant p values of candidate proteins (immediate neighbors proteins of D) are 
calculated and ranked, p value < 0.05 and the lowest protein is added to D, then update the set of SCCs 
with size s0 . (iii) The connectivity significant p values of candidate interactions (adjacent edges of D) are 
calculated and ranked, p value < 0.05 and two endpoints proteins of the lowest interaction are added to D, 
then update the set of SCCs with size s0 . (iv) Steps (i)–(iii) are repeated until there is no protein or interaction 
with p value < 0.05 can connect at least two SCCs, i.e. s0 is unchanged, the largest connected component 
of D is the C3 disease module. c schematic diagram of C3 protein (gray dot) and C3 interaction (thick black 
line), after adding C3 proteins and C3 interactions, we get the C3 disease module (gray shadow). The yellow 
shadows are SCCs. Red and white dots represent seeds and candidate proteins respectively, and thin black 
lines represent candidate interactions. In addition, the fraction of the connected seeds in C3 module divided 
by the total number of seeds is defined as succinctness
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is significant). A “C3 protein” or a “C3 interaction” is defined as a node or an edge with p 
value < 0.05 and lowest (Fig. 1b, c). The C3 proteins and the pair of proteins occupying 
the endpoint of C3 interactions are collectively referred to as “C3 proteins” in our func-
tional analysis below. Then we formulated the disease module identification problem as 
a C3 proteins detection problem: Succinct disease module detection problem. Given a 
network G(N ,E) and a seed set D, ExScc(D) is a function which can export the set of 
SCCs of D, find a node set C with minimum size, such that ∀c ∈ C , c is a C3 protein, and 
min
C

|ExScc(D ∪ C)| . The initial seed set D forms lots of SCCs, and presents a large 

|ExScc(D)| , the size of SCCs will significantly decrease as introducing C3 protein set C 
into disease module. A small |ExScc(D ∪ C)| means that there are C3 proteins can signif-
icantly reduce the number of fragments of a disease module. Extremely 
|ExScc(D ∪ C)| = 1 indicates that all the DAPs can be connected by C3 proteins into one 
component in the network. Then we developed a greedy process (C3 algorithm in 
Fig. 1b, see Methods for details) to efficiently solve this problem, by importing C3 pro-
teins and C3 interactions iteratively, and eventually a well-connected disease module 
becomes observable (Fig.  1c). Specifically the largest connected component (LCC) of 
D ∪ C are named C3 module.

Furthermore, previous methods such as DIAMOnD [9], also construct a disease 
module by introducing some intermediate proteins. Disease Module is the LCC of 
a union set of DAPs and intermediate proteins. It is obvious that more DAPs are con-
nected by intermediate proteins, the final disease module are more dominated by known 
DAPs. Therefore, we proposed the fraction of connnected DAPs in the disease module 
( |D ∩ Dm|/|D| ) as an index to quantify the succinctness of a produced disease module 
Dm (Fig. 1c). The succinctness can be used to compare the purity between results of dif-
ferent methods. It is a value between 0 and 1, and the closer to 1, the more succinct the 
disease module is.

Succinctness and connectivity significance of the C3 module

According to disease module hypothesis, genes associated with a specific disease pheno-
type tend to cluster in the same network neighborhood, usually referred to as a “disease 
module”. Furthermore, the location of each disease module relative to others in the net-
work implies its phenotypic similarity to other diseases [10], and the position of the dis-
ease module in the network is of great importance. Through a basic easy-to-understand 
detection process, we could obtain C3 disease module, C3 proteins and C3 interactions 
(Fig. 1c) for a particular disease (see Methods). In DIAMOnD disease module, due to the 
large number of the DIAMOnD proteins, DIAMOnD module is a huge one dominated 
by DIAMOnD proteins, it would bring many false signals to the disease module. Com-
paratively, C3 disease module imports a small amount of C3 proteins and is dominated 
by DAPs, the C3 disease module can accurately pinpoint the area affected by the disease 
on the network and provide us with more accurate disease signals. Therefore, a succinct 
disease module is essential for studying disease occurrence and treatment.

As mentioned above, the 299 disease modules obtained by the DIAMOnD algorithm 
are redundant. We compared the C3 to the DIAMOnD algorithm on a data platform 
that is more conducive to DIAMOnD using the DIAMOnD supporting data, which 
includes: human interactome network and the curated list of 299 diseases (see Methods). 
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We found that in human interactome C3 can effectively connect more seeds with a p 
value of 3.94e−99 (wilcoxon rank sum test) and its succinctness is about 95% while the 
succinctness of DIAMOnD is about 39% by using the same intermediate proteins. In 
addition, we used different types of systematic networks BioGRID, Bioplex and HuRI. 
Network information is shown in Table 1. In different types of networks, when the same 
intermediate proteins are imported, C3 can more effectively connect more seeds than 
DIAMOnD, and the differences in p values of succinctness are respectively 5.80e−98, 
4.09e−96, 1.58e−57 (Fig. 2a). This fully demonstrates the succinctness of the C3 module.

Then we chose asthma and BReast CAncer (BRCA) as examples for detailed analysis 
(Fig. 2b–g). For asthma, the same 86 asthma seeds are connected by the DIAMOnD and 
C3, C3 proteins require 27 intermediate proteins while DIAMOnD uses 350 intermedi-
ate proteins, which is about 13 times that of C3. The same is for BRCA. To connect 29 
BRCA seeds, 7 C3 proteins and 350 DIAMOnD proteins are required. The number of 
the imported DIAMOnD proteins is about 50 times that of C3 (Fig. 2b, e). Therefore, 
using fewer C3 proteins can connect the same number of the seeds, further proving the 
advantages of C3 method in connecting seeds. C3 method is equally applicable to other 
diseases (Fig. 2a).

Connectivity significance refers to the ubiquitousness of C3 proteins and C3 inter-
actions in the network. They can significantly connect SCCs of seeds, i.e., they can 
play a role in the connection of disease modules. To test whether the observed dis-
ease modules represent non-random aggregation of DAPs, we performed randomized 
experiments on asthma and BRCA (see Methods). For asthma, we found that com-
pletely random modules of the same size (add 100 intermediate proteins as DIA-
MOnD) contained an average of 44.9 ± 3.2 seeds, which was significantly lower than 
the number of seeds in the real disease module, both DIAMOnD module (contains 
69 seeds, z-score = 8.6) and C3 module (contains 111 seeds with only 61 C3 pro-
teins, z-score = 21.6) (Fig.  2c), even if the proteins are randomly chosen only from 
the immediate neighbors of seeds, it is observed that the resulting modules contain 
only 60.3 ± 4.7 seeds, which is again significantly lower compared with the DIA-
MOnD module (z-score = 1.8) and C3 module (z-score = 10.7) (Fig.  2d). For the 40 
DAPs of BRCA, we randomly selected 40 proteins with the same seed degree for ran-
dom experiments. We used 35.6 ± 4.4 intermediate proteins to connect 38.7 ± 1.6 
seeds which were randomly selected. It is shown that C3 not only connects all 40 
seeds (z-score = 0.8) and uses fewer intermediate proteins (z-score = − 2.6) compared 

Table 1  Network information

Network Source #Nodes
#Edges

Mean degree Diameter Clustering 
coefficient

Human Interactome Menche et al. [10] 13,460
141,296

20.6 13 0.17

BioGRID https​://thebi​ogrid​.org/ 17,741
338,793

37.9 8 0.12

Bioplex https​://biopl​ex.hms.harva​rd.edu/ 10,961
56,553

10.3 11 0.09

HuRI https​://inter​actom​e.dfci.harva​
rd.edu/H_sapie​ns/

7,352
38,414

10.3 11 0.06

https://thebiogrid.org/
https://bioplex.hms.harvard.edu/
https://interactome.dfci.harvard.edu/H_sapiens/
https://interactome.dfci.harvard.edu/H_sapiens/
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to random simulations (Fig.  2f, g). These differences successfully demonstrate the 
connectivity significance of the disease module in the interactome, indicating the 
significant connecting tendency of DAPs. And the C3 disease module is superior to 
DIAMOnD in revealing the connection patterns of DAPs in the interactome.

Fig. 2  Succinctness and connectivity significance of the C3 module. a The succinctness of the C3 and 
DIAMOnD modules of 299 diseases in different networks, and p value is obtained by wilcoxon rank sum 
test. b–d For asthma, b when the modules obtained by DIAMOnD and C3 contain 86 seeds at the same 
time, red line indicates that only 27 C3 proteins are used in the C3 module, while yellow line indicates that 
350 DIAMOnD proteins are used in the DIAMOnD module. c Comparison of the number of Disease Proteins 
contained in DIAMOnD module (DPcD) and C3 module (DPcC) with 1000 random simulations. Completely 
randomly-constructed modules contain an average of 44.9 ± 3.2 seeds, which is significantly lower than the 
value in the real disease module. And DIAMOnD module containing 69 seeds (z-score = 8.6) is lower than 
C3 module with 111 seeds (z-score = 21.6). d Similar to that in (c), but intermediate proteins are not chosen 
completely at random, but only from the immediate neighbor of seeds. The random modules contain 
60.3 ± 4.7 seeds, which is again significantly lower than in the real disease module. And DIAMOnD module 
containing 69 seeds (z-score = 1.8) is also lower than C3 module with 111 seeds (z-score = 10.7). e–g With 
BRCA there are 40 DAPs (seeds), e Same as B, when DIAMOnD and C3 module contain 29 seeds at the same 
time, only 7 C3 proteins are used in the C3 module while 350 DIAMOnD proteins are used in the DIAMOnD 
module. Comparison of the number of connected Proteins (cP) (f) and the number of intermediate Proteins 
(iP) (g) in the final C3 module with the number obtained from 1000 random simulations. Randomly 40 
proteins are selected with the same seed degrees each time. The average number of connected seeds is 
38.7 ± 1.6, while C3 connected all 40 BRCA proteins. The number of intermediate proteins used on average is 
35.6 ± 4.4, and only 24 C3 proteins are used in BRCA C3 module
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C3 module in asthma

We have obtained C3 modules of 299 diseases. Can these modules effectively character-
ize the corresponding diseases? In the following, we analyzed asthma C3 module and 
compared it with DIAMOnD module. The asthma test mentioned above is based on 
139 DAPs from five sources: (1) Literature; (2) GWAS; (3) OMIM; (4) MeSH; (5) Path-
ways [18], 129 (92.8%) of which are in the human interactome network. Then we pro-
jected them onto the interactome and obtained the SCCs (Fig. 3a). It was observed that 
the seeds formed a large number of SCCs (83 SCCs) in the real interactome. Then, C3 
method was used to connect these SCCs to obtain a well-connected module of asthma. 
We used 61 C3 proteins to well connect 65 (78%) SCCs, inferring that the SCCs tend to 
be connected rather than dispersed (Fig. 3b). In addition, we need biological enrichment 
analysis to verify the significance of this asthma C3 module. For unconfirmed C3 pro-
teins in this module, its relationship with asthma has not yet been found, and we have 
suggested this possibility through enrichment analysis and provided clues for the diag-
nosis and treatment of asthma. We used three different asthma-specific validation data: 
(1) Gene expression of asthma-specific compiled from eight sources; (2) Gene Ontology 
(GO) term similarity (biological processes, BP); (3) Disgenet (see Methods and Fig. 3c). 
The similarity of GO term is calculated by using the tool GOSemSim [26]. In these three 
assessments, we observed that enrichment of C3 and DIAMOnD proteins can reach the 
same level. And the level of enrichment p value of C3 is comparable to DIAMOnD and 
even better sometimes. These three enrichment analyses show that C3 proteins have 
biological significance, and it is speculated that it is biologically related to asthma, so 
the 61 C3 proteins and the connected seeds form C3 module, which is a reliable asthma 
module.

Furthermore, in order to better dig into the role of C3 proteins in the underlying 
disease pathways, we used DAVID [27] (https​://david​.ncifc​rf.gov/) to study the func-
tional annotation of the 61 C3 proteins in asthma (Fig. 3d). Here we focused on the 
function annotations of GO terms (BP) and KEGG pathway. We found that C3 pro-
teins enrichment in some pathways has a lower p value, which has been reported to be 
associated with asthma (PMID), such as: neuropeptide Y may promote TH2 inflam-
matory response in asthma [28], signal transduction of IL-13 plays a role in the patho-
genesis of bronchial asthma [29], humoral immune responses during asthma [30]. 
And in Table 2, we present in detail the enrichment function and enriched C3 genes 

Fig. 3  The visualization and biological explanation of C3 module for asthma. a Subgraph of the full 
interactome showing the connections among the asthma DAPs. Asthma DAPs are scattered within 83 SCCs 
in the interactome (shown in shades). The colors of the nodes indicate the source of each seed. There are 
five sources: (i) Literature; (ii) GWAS; (iii) OMIM; (iv) MeSH; (v) Pathways. b C3 module of Asthma. There are 
111 seeds (red nodes) and 61 C3 proteins (grey nodes) in the module. The interaction between them is also 
indicated in the module. c Biological interpretation of C3 module for asthma. We consider three verification 
datasets: (i) Gene expression of asthma-specific compiled from eight sources; (ii) GO term similarity (BP); (iii) 
Disgenet. Enrichment shows the fraction of C3 (Deep red line), DIAMOnD (green line), seeds (short dotted red 
line) and random (Dotted blue line) proteins in different validation datasets, statistical significance shows the 
corresponding statistical test p values, which are derived from the hypergeometric. (D) Functional annotation 
of GO term (BP) and KEGG pathway (p value < 0.01) of C3 proteins using DAVID. The pink bar indicates the 
− log10 operation on the enriched p value

(See figure on next page.)

https://david.ncifcrf.gov/
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as well as the PMID verified by the literature. Some C3 proteins are highly associ-
ated with asthma, such as: CD80 influences synthesis of IL-4 and IFN in non-specific 
bronchial asthma [31], mutations in IL12A influence cockroach allergy among chil-
dren with asthma [32], ADA polymorphisms are related to asthma [33]. It indicates 
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that the C3 module has biological significance. To be specific, it can explain the dis-
ease mechanism and help predict potential pathogenic genes or novel drug targets.

C3 module in TCGA multi‑omics data of BRCA​

C3 method can be used not only for DAPs, but also for the analysis of genome-wide 
to obtain genome-wide [16] disease neighborhoods. We collected four omics data: (1) 
mRNA expression; (2) mutation; (3) DNA methylation from TCGA and (4) copy num-
ber variation (see Methods), and successfully identified multi-omics neighborhoods 
of BRCA. In order to discover the connections between multi-omics data, we used the 
same human interactome network. For multi-omics data of BRCA, we identified the 
mutated genes and imported the encoded proteins as seeds into C3 method to obtain 
their respective C3 modules (Fig.  4a). Then, at different omics levels, we compared 
mRNA expression, mutation, DNA methylation of C3 proteins. We found that the C3 
proteins imported from different omics data have definite omics specificity. For exam-
ple, in mRNA expression omics, the mRNA expression of the imported C3 proteins 
is highly disturbed while its mutation and DNA methylation are not disturbed to a 
high degree. But the only thing that is special is for the C3 proteins imported by copy 
number variation, their mRNA expression and mutation levels are also high (Fig. 4b).

For the same disease, is there any potential association between four omics data? 
We further want to see the relationship of their respective C3 proteins, we used the 
overlap to represent. As a result, we found that there is no significant association 
between four omics data, although all are related to the same disease. The same for 
their respective C3 proteins, there is no overlap between them, which indicates that 
C3 proteins of the four omics data are also specific. That is, for BRCA, four specific 
omics data correspond to four specific groups of C3 proteins (Fig. 4c).

Table 2  GO term and KEGG pathway functional annotation of C3 proteins and literature-
validated PMID of C3 genes associated with asthma

GO term/KEGG #Genes Gene(PMID)

GO:0042110 4 CD80(PMID:14692664), ADA(PMID:16754522), FOXP3(PMID:26646898)

GO:0007165 12 CRH(PMID:10423904), ERBB3(PMID:11799369), IL9R(PMID:11039580), 
MYD88(PMID:27289030), PTGES(PMID:27611488)

GO:0006954 7 CCR4(PMID:29118379), CRH(PMID:10423904), IL37(PMID:29137646), 
MYD88(PMID:27289030)

GO:0071222 4 CD80(PMID:14692664), B2M(PMID:26051416), IL12A(PMID:18671862), 
TFPI(PMID:16095153)

hsa05340 3 ADA(PMID:16754522)

GO:0006959 3 EBI3(PMID:28553015), LTF(PMID:22837640)

GO:0042493 5 ADA(PMID:16754522), B2M(PMID:26051416), CRH(PMID:10423904)

GO:0050671 2 IL12A(PMID:18671862), MYD88(PMID:27289030)

GO:0007596 4 PRTN3(PMID:29665127), TFPI(PMID:16095153)

hsa05144 3 IL12A(PMID:18671862), MYD88(PMID:27289030)

GO:0001503 3 SP3(PMID:23057572), LTF(PMID:22837640)

hsa05162 4 IL12A(PMID:18671862), MYD88(PMID:27289030)

hsa04630 4 IL12A(PMID:18671862), IL9R(PMID:11039580)
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In Table 3, we validated biological significance of four groups of omics of C3 proteins 
of BRCA, we considered three verification datasets: (1) OMIM; (2) GWAS; (3) Drug-
target, for each validation dataset, we used the Wilcoxon test for statistical significance 

Fig. 4  Specificity of C3 module in TCGA multi-omics data of BRCA. a The C3 module of four omics data 
of BRCA: (i) mRNA expression; (ii) mutation; (iii) DNA methylation; (iv) copy number variation. b Specificity 
of C3 proteins imported by different omics data. Red, yellow, green, and blue bars indicate the degree of 
perturbation of the C3 proteins imported by the four omics data, compared to the rest of the network (p 
value obtained by Wilcoxon test). c Venn diagram of different omics data (left) and four different C3 proteins 
we obtained (right)

Table 3  Biological significance of four omics of C3 proteins of BRCA​

PPI network: 13,460 proteins. The italics number means less than 0.05

Data (#proteins) mRNA expression
(125)
#proteins (p value)

Mutation(106)
#proteins
(p value)

DNA methylation
(105)
#proteins (p value)

CNV(134)
#proteins (p value)

OMIM(7952) 100(0) 75(0.0056) 85(0) 91(0.01652)

GWAS(5022) 61(0.00371) 57(0.00022) 50(0.01305) 53(0.2789)

Drug-target(2635) 40(0.00035) 32(0.00328) 38(0.00002) 34(0.04129)
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analysis of enrichment. OMIM and GWAS databases can indicate the relationship 
between C3 proteins and diseases, and Drug-target database can show the relationship 
between C3 proteins and the drug target. We find that the C3 proteins corresponding to 
these four omics data have different degrees of enrichment significance in these three 
verification datasets, which indicates that the C3 proteins identified by our C3 method 
have rich biological associations, they may be drug target, they also may be pathogenic 
gene encodes annotated in OMIM and GWAS.

In order to further explicitly evaluate the biological functions of the C3 proteins, we 
used ClueGO [34] to conduct GO term (BP) enrichment analysis of these C3 proteins (p 
value < 0.01) of these C3 proteins (Fig. 5). And enriched GO terms are indispensable for 
the human, such as: development of endocrine system, development of cardiomyocytes, 
transport of glucose across membranes, and positive regulation of collagen metabolism. 
Many of them are also associated with BRCA, which again indicates that it is feasible to 
apply C3 in multi-omics data and our method can be used to identify different biologi-
cally active C3 proteins from different omics.

Discussion
Disease module helps to understand the molecular mechanisms underlying diseases 
and identify novel drug targets. Topological properties of disease module in the human 
interactome are the basis for all network-based prioritization tools for studying human 
diseases. However, DAPs appear to form plenty of SCCs in the incomplete interactome. 
The problem we strive to solve is about how to determine their connectivity pattern and 
detect a concise disease module. To solve it, we proposed a C3 method to connect SCCs 
in the interactome by importing C3 proteins and C3 interactions with high connectivity. 
Our results highlight the role of C3 proteins and C3 interactions in connecting DAPs, 
which are dispersed as SCCs in incomplete interactome. Then we compared our method 
with DIAMOnD and random simulations to verify the succinctness and connectivity 
significance of the C3 module we obtained. We also got some unexpected results: the 
overlap between different omics data of the same disease is not high, which shows a clear 
omics specificity. From the perspective of biology, being the basis of disease character-
istics, C3 proteins and C3 interactions may offer better and more accurate candidates. 
In the end, we hope that our method can help to study potential disease mechanisms, 
disease heterogeneity, drug response, capture novel pathways and genes.

Conclusions
In this work, we develop C3 method, which is proved to be able to effectively construct 
succinct disease modules with relatively few C3 proteins for 299 diseases from OMIM 
and GWAS databases and multi-omics data of BRCA from TCGA. And the disease 
module helps us to understand the disease pathways and identify pathogenic genes.

Methods
Networks information

For the sake of accuracy of our experiment, we used the human interactome, which is 
also used in DIAMOnD [9]: It derives from seven sources of protein interactions by Ghi-
assian SD et  al.: (1) regulatory interactions derived from transcription factors binding 
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to regulatory elements; (2) binary interactions from several yeast-two-hybrid high-
throughput data sets and literature-curated data sets; (3) literature-curated interactions 
derived mostly from low-throughput experiments; (4) metabolic enzyme-coupled inter-
actions; (5) protein complexes; (6) kinase-substrate pairs; and (7) signaling interactions. 
The union of all interactions from (1) to (7) yielded a network of 13,460 proteins that 
were interconnected by 141,296 interactions [10]. In addition, we used three other net-
works to supplement the experiment: We took a current interactome from BioGRID 

Fig. 5  Biological significance of C3 proteins from four omics data of BRCA. GO term (BP) enrichment analysis 
for C3 proteins obtained from a mRNA expression, b mutation, c DNA methylation, and d copy number 
variation. We used tool ClueGO to get the functional-gene network of the results. GO terms were statistically 
significant enriched for a set of genes, names of which are highlighted in red, other different colors represent 
different GO term clustering and the color of gene nodes represents the associated GO term. Only the most 
prominent term name in each group is colored and the larger term nodes are, the higher the enrichment 
degree is
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(https​://thebi​ogrid​.org/) and used the latest release compiled on June, 2019 and only 
selected human interactions, finally we got 17,741 genes and 338,793 interactions. And 
in order to avoid getting the observed performance which is solely due to study biases in 
human interactome, we got networks from Bioplex (https​://biopl​ex.hms.harva​rd.edu/) 
and HuRI (https​://inter​actom​e.dfci.harva​rd.edu/H_sapie​ns/), finally Bioplex had 10,961 
genes and 56,553 interactions and HuRI had 7352 genes and 38,414 interactions. Net-
work data was included into Additional file 1.

DAPs of 299 diseases

Menche et  al. [10] integrated DAPs from OMIM (Online Mendelian Inheritance in 
Man; https​://www.ncbi.nlm.nih.gov/omim) [22] which provides a link between genes 
and disease, and GWAS (Genome-Wide Association Study). The DAPs from GWAS 
were obtained from the Phenotype-Genotype Integrator database (PheGenI; www.ncbi.
nlm.nih.gov/gap/PheGe​nI) [8] which merges GWAS catalog data with several databases 
housed at the NCBI (National Center for Biotechnology Information), and it supports 
searching annotated tables of genes based on phenotype. They used a genome-wide sig-
nificance cutoff of p value ≤ 5.0e−8. Then in order to combine OMIM and GWAS they 
used the MeSH (Medical Subject Headings; https​://www.nlm.nih.gov/mesh/) vocabu-
lary. Using the hierarchical structure of the MeSH classification, in the result they found 
at least 20 DAPs and DAPs for which they have interaction information, and obtained 
299 diseases and 3173 associated proteins.

TCGA multi‑omics data

We obtained publicly available The Cancer Genome Atlas (TCGA) multi-omics data 
of BRCA from UCSC Cancer Browser [35] (https​://xena.ucsc.edu). For mRNA expres-
sion, we used an R packet edge [36] and took the threshold of |log(FC)| > 2 and adj. p 
value < 0.001 to get 860 mRNA expression genes, where 632 mapped to human inter-
actome were taken as DAPs. We used TCGA BRCA somatic mutation data and chose 
889 genes that mutation counts > 10 and mutation frequency > 0.01, where 689 mapped 
were taken as DAPs. DNA methylation values, described as beta values, we used an 
R packet limma [37] and choose 837 genes of the threshold |log(FC)| > 0.19 and adj. p 
value < 1.0e−14, and only 367 mapped were taken as DAPs. BRCA thresholded gene-
level copy number variation (CNV) estimated values to -2, − 1, 0, 1, 2, representing 
homozygous deletion, single copy deletion, diploid normal copy, low-level copy number 
amplification, or high-level copy number amplification. Then we obtained 863 genes of 
threshold values − 2 and 2 and only 446 mapped were taken as DAPs. After processing 
the data, we obtained four altered data sets of multi-omics DAPs for BRCA, which are 
mRNA expression, mutation, DNA methylation and copy number variation.

Biological validation data sets

Following data is provided in Additional file 1.
	(i)	 Gene expression of asthma specific compiled from eight sources: we selected eight 

expression data of direct asthma relevance from the Gene Expression Omnibus 
(GEO; https​://www.ncbi.nlm.nih.gov/geo). We analyzed samples from GSE470, 
GSE473, GSE3004, GSE16032, GSE18965, GSE31773, GSE4302, GSE2125 with 

https://thebiogrid.org/
https://bioplex.hms.harvard.edu/
https://interactome.dfci.harvard.edu/H_sapiens/
https://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/gap/PheGenI
http://www.ncbi.nlm.nih.gov/gap/PheGenI
https://www.nlm.nih.gov/mesh/
https://xena.ucsc.edu
https://www.ncbi.nlm.nih.gov/geo
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GEO2R, a total of 4111 differentially expressed genes were obtained where only 
3273 in human interactome.

	(ii)	 Gene ontology term similarity (BP): To elucidate the biological processes associ-
ated with the DAPs, we used the GO biological process category. We calculated the 
GO term similarity (BP) of all genes, took the top 4000 proteins with high similar-
ity to all DAPs, and only 3154 in human interactome. The calculation tool was R 
package GOSemSim [26]

	(iii)	 Disgenet: Disgenet data of asthma got from DisGeNET database (https​://www.
disge​net.org/). Sources of data include literature data, inferred data, and animal 
models data, totally we got 1817 genes associate with the asthma.

	(iv)	 OMIM: OMIM genes got from Online Mendelian Inheritance in Man (OMIM; 
https​://omim.org), totally we got 9915 genes.

	(v)	 GWAS: GWAS genes got from Genome-Wide Association Studies (GWAS; https​
://www.ebi.ac.uk/gwas), totally we got 15,858 genes.

	(vi)	 Drug-target: Drug-target genes obtained from The Drug Gene Interaction Data-
base (DGIdb; https​://www.dgidb​.org), totally we got 2993 genes

C3 algorithm

A basic detection process of C3 method is as follows: For a specific disease, we 
mapped its DAPs (seeds set D) into the network G(N ,E) , where N is the proteins set 
and E is the interaction set. ND is the set of non-seeds, n0 = |ND| and | • | is the size of 
the corresponding set [38, 39].

Export SCCs (ExScc):

Then we considered the immediate neighbors of D as the candidate proteins, and 
the adjacent edges of D as the candidate interactions.

Connectivity significance:
For a candidate protein i, its connectivity degree to SCCs ks is defined as:

https://www.disgenet.org/
https://www.disgenet.org/
https://omim.org
https://www.ebi.ac.uk/gwas
https://www.ebi.ac.uk/gwas
https://www.dgidb.org
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and its connectivity degree to non-seeds knd is defined as:

Overall, the connectivity degree of i is calculated as k = ks + knd.
Analogously, for a candidate interaction e(p, q) between protein p and q, we quanti-

fied the ks and knd for e as:

The connectivity degree of e is also calculated as k = ks + knd.
Then, for randomly scattered SCCs, the connection probability that a candidate 

protein or a candidate interaction with a total connectivity degree k has exactly ks 
links to SCCs is given by the hypergeometric [40]:

To evaluate whether a candidate protein or a candidate interaction has more con-
nections to SCCs than expected under null hypothesis, we calculate the connectiv-
ity significance p value, i.e. the cumulative probability for the observed or any higher 
connectivity degree to SCCs:

This p value is used as a connectivity significance measure, and is used to quantify 
the abilities of a candidate protein and a candidate interaction in connecting SCCs.

C3 protein and C3 interaction:
Then, we got the C3 disease module through a greedy process. In each iteration, p 

value < 0.05 and the lowest protein is selected as the C3 protein to connect SCCs and 
be added to D, then update ExScc(D) . When s0 is unchanged, p value < 0.05 and the 
lowest interaction is selected as the C3 interaction to connect SCCs and two proteins 
that occupy the endpoints of it, both are added to D, then update ExScc(D) . Repeated 
these steps, when s0 is unchanged, i.e. there are no C3 protein and C3 interaction that 
can connect SCCs with p value < 0.05, the process stopped, we obtained the C3 dis-
ease module.

The C3 proteins and the pair of proteins occupying the endpoints of C3 interactions 
are defined as intermediate proteins, which are collectively referred to as “C3 pro-
teins” in the functional analysis.
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Pseudocode:

The largest connected component of D in G(N ,E) is the disease module. Its time com-
plexity is O(n2) . We implemented C3 with Python and the codes can be downloaded 
from https​://githu​b.com/wangb​ingbo​2019/C3.

Randomized experiments

For asthma, we conducted two randomized experiments. One is completely random, 
namely when we randomly selected 100 proteins from the network (the number con-
sistent with DIAMOnD) using numpy.random.choice method [41] and added them to 
seed set D, we treated the largest connected component of D as the random module. 

https://github.com/wangbingbo2019/C3
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After 1000 random times, we got the mean µ and standard deviation σ of the number 
of connected seeds in random modules. Z-score of true (C3 or DIAMOnD) disease 
module with T (#DPcC or #DPcD) connected seeds is given by the following:

The other is that instead of randomly selecting from the network, we randomly 
selected 100 proteins from the immediate neighbors of D and added them to seed set 
D to get the final random module.After 1000 random times, z-score is also calculated 
by Eq. (7).

For BRCA, we randomly selected 40 random proteins matching size and degree 
distribution as BRCA seeds using numpy.random.choice method [41] for random 
experiments.After 1000 random times, we got the mean and standard deviation of 
the number of cP and iP in random modules. Z-score of C3 disease module with true 
number of cP and iP is also given by Eq. (7).

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03769​-y.

Additional file 1: Supplementary data and results.
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