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Proton (H+) channels are special: They select protons against other
ions that are up to a millionfold more abundant. Only a few pro-
ton channels have been identified so far. Here, we identify a fam-
ily of voltage-gated “pacemaker” channels, HCNL1, that are
exquisitely selective for protons. HCNL1 activates during hyperpo-
larization and conducts protons into the cytosol. Surprisingly, pro-
tons permeate through the channel’s voltage-sensing domain,
whereas the pore domain is nonfunctional. Key to proton perme-
ation is a methionine residue that interrupts the series of regularly
spaced arginine residues in the S4 voltage sensor. HCNL1 forms a
tetramer and thus contains four proton pores. Unlike classic HCN
channels, HCNL1 is not gated by cyclic nucleotides. The channel is
present in zebrafish sperm and carries a proton inward current
that acidifies the cytosol. Our results suggest that protons rather
than cyclic nucleotides serve as cellular messengers in zebrafish
sperm. Through small modifications in two key functional do-
mains, HCNL1 evolutionarily adapted to a low-Na+ freshwater en-
vironment to conserve sperm’s ability to depolarize.
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Ion channels control the flux of ions across cell membranes,
which is essential for chemical and electrical signaling.

Hyperpolarization-activated and cyclic nucleotide-gated (HCN)
channels belong to the superfamily of voltage-gated ion channels
(1–3). On hyperpolarization, HCN channels open and carry a
Na+ inward current that in turn depolarizes the cell. They are
modulated by cyclic nucleotides, and thereby, couple second-
messenger signaling to electric activity (4). HCN channels, also
known as pacemaker channels, serve diverse functions. They
control cardiac rhythmicity (4, 5) and electrical oscillations in the
vertebrate brain (6). For example, HCN channels in dendrites of
many neurons shape synaptic integration (6, 7). In vertebrate
retinal photoreceptors, HCN channels curtail the hyper-
polarizing response to bright light and promote recovery from
stimulation (8, 9). In sea urchin sperm, HCN channels partici-
pate in the signaling pathway that controls the flagellar beat
during sperm chemotaxis (10, 11).
HCN channel subunits consist of six transmembrane segments

(S1 to S6) and a C-terminal cytosolic cyclic nucleotide-binding
domain (CNBD). Segments S1 to S4 form the voltage-sensing
domain (VSD). The S4 segment serves as a voltage sensor; it
carries positively charged amino acid residues, mostly arginine,
at every third position. Upon hyperpolarization, the motion of S4
opens a gate near the intracellular side of the pore. Segments S5
and S6 constitute the pore domain (PD) that forms a central ion
permeation pathway in the tetrameric channels; HCN channels
are slightly more selective for K+ over Na+ but at physiological
conditions carry inward Na+ currents (1–3). Cyclic nucleotides
bind to the CNBD and modulate the voltage dependence of
activation.
Here, we report on a HCN channel from zebrafish sperm,

named HCNL1 (for HCN-like 1). Although highly homologous

to classic HCN channels, HCNL1 features two modifications that
result in a completely new function. We show that HCNL1
channels carry protons with exceptional selectivity via an ion
permeation pathway in the voltage sensor, whereas the pore
domain is nonconducting. HCNL1 activates during hyperpolar-
ization and acidifies the sperm cytosol. Our results suggest that
HCNL1 represents an evolutionary adaptation to extremely low
Na+ concentration of freshwater conditions.

Results
During a proteomic search for signaling components in zebrafish
sperm (12), we identified peptides of a putative HCN channel,
HCNL1 (SI Appendix, Fig. S1, National Center for Biotechnology
Information [NCBI] accession number XP_002662296). A data-
base search revealed 49 ortholog genes (SI Appendix, Table S1),
all from fish, that form a subfamily of HCN channels (see Fig. 2A).
The subfamily falls into two groups, HCNL1 and HCNL2. Het-
erologous expression of the cloned zebrafish HCNL1 gene in
CHO cells gave rise to hyperpolarization-activated currents
(Fig. 1A) that were similar to currents carried by classic HCN
channels in the heart and brain (3, 13). The voltage dependence of
HCNL1 activation was determined from tail currents recorded
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at −65 mV (Fig. 1B). Currents were half maximal at V1/2 = −98.8 ±
6.8 mV with a slope s = 5.8 ± 1.5 mV (mean ± SD, n = 6 exper-
iments). However, although it carries a CNBD, HCNL1, unlike
any other HCN channel, was insensitive to cyclic nucleotides
(cAMP: V1/2 = −96.6 ± 3.6 mV, s = 6.6 ± 1.3 mV, n = 5; cGMP:
V1/2 = −100.1 ± 3.0 mV, s = 5.8 ± 1.2 mV, n = 6).

The HCNL1 Channel Is Selective for Protons. We determined the ion
selectivity of HCNL1 from the reversal potential (Vrev) of tail
currents, which is diagnostic of the permeant ions. Surprisingly,
tail currents behaved anomalously: upon prolonged stimulation,
tail currents changed from inward to outward (SI Appendix, Fig.
S2), suggesting that either the ion selectivity of HCNL1 is
changed or ions are redistributed at the membrane (accumula-
tion or depletion). Because of their low concentration, protons
are particularly prone to redistribution during proton channel
activity (14). To test whether HCNL1 conducts protons, we
recorded currents from HCNL1- and HCN2-expressing (control)
CHO cells and simultaneously measured intracellular pH (pHi)
using the fluorescent pH dye BCECF (2’,7’-bis-(2-carboxyethyl)-
5-(and-6)-carboxyfluorescein). Activation of HCNL1, but not
HCN2 (a classic HCN channel), acidified the cell cytoplasm
(Fig. 1C), showing that, indeed, protons permeate HCNL1.
To rigorously establish the proton selectivity of HCNL1, we

measured Vrev using solutions previously used for the study of
proton-selective channels (15–17). The solutions contain high
pH buffer concentrations, which minimize proton redistribution,
and large organic cations instead of alkali metal ions (15–17).
Even under these conditions, large HCNL1 currents were still
observed. The Vrev at defined pH differences (ΔpH = extracel-
lular pH [pHo] − intracellular pH [pHi]) behaved as predicted
from the Nernst equation (Fig. 1 D and E), indicating that only
protons pass HCNL1. We also tested the selectivity for protons
over other ions by comparing Vrev in the presence of the large,
impermeant organic cation NMDG+ versus various alkali ions.

Exchanging NMDG+ with alkali ions (at pHo = 6.5, pHi = 5.5)
did not change Vrev significantly (Fig. 1F), demonstrating that
the HCNL1 channel is exquisitely selective for protons. Cl− also
did not change Vrev (Fig. 1F). To determine the relative per-
meability of H+ vs. Na+ quantitatively, we reduced the H+

concentration (pHi = pHo = 7) and recorded reversal potentials
in HCNL1-expressing CHO cells. Here, a shift in Vrev could be
observed: Replacing NMDG+ with Na+ resulted in a ΔVrev of
7.2 ± 2.6 mV. According to the Goldman–Hodgkin–Katz (GHK)
equation (18), the relative permeability of protons to sodium is
PH+
PNa+ = 3 × 106.
HCNL1 from the common carp Cyprinus carpio and the

goldfish Carassius auratus also mediated proton currents (SI
Appendix, Fig. S3), suggesting that HCNL1 channels represent a
family of hyperpolarization-activated proton channels.

HCNL1 Conducts Protons via the VSD. We set out to identify the
proton permeation pathway in HCNL1. In voltage-gated ion
channels, except the depolarization-activated proton channel
Hv1, a stretch of conserved residues in the PD comprises the
selectivity filter of the pore (19, 20). In classic HCN channels, a
short conserved CIGYG sequence motif in the pore loop de-
termines the ion selectivity (Fig. 2 B, yellow). Mutations in this
motif abolish ion conduction in HCN channels (21). This ca-
nonical CIGYG motif is absent in HCNL1 channels, and the
corresponding string of amino acid residues is not conserved
among HCNL1 channels from different species (WPFLE in
drHCNL1, WISTK in caHCNL1 and ccHCNL1) (Fig. 2B and SI
Appendix, Table S1). This comparison suggests that the PD in
HCNL1 channels is nonconducting, and protons might permeate
via another pathway.
In Na+ and K+ channels, mutations that introduce gaps in the

regular spacing of the S4 Arg residues in the VSD can induce
pores (22–25). The resulting currents through the VSD have
been termed “gating pore currents” or “omega currents.” A
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Fig. 1. Zebrafish HCNL1 is a proton-selective channel. (A) Whole-cell patch clamp recording of zebrafish HCNL1-expressing CHO cells. Voltage steps of in-
creasing length and decreasing amplitude (color-coded, −135 to −45 mV in 10 mV increments) elicited voltage-dependent inward currents. (B)
Conductance–voltage relationships (GVs) derived from tail currents of HCNL1-expressing CHO cells without (black) or with 100 μM intracellular cAMP (purple)
or cGMP (green). (C) Whole-cell patch clamp fluorometry recording of zebrafish HCNL1- or mouse HCN2-expressing CHO cells, filled with the pH indicator
BCECF. The bar graph shows the mean ratio of the fluorescence amplitude over the transported charge of zebrafish HCNL1- or mouse HCN2-expressing cells
(HCNL1, 6.7 × 10−4 ± 3.4 × 10−4 pA−1 s−1, n = 9; HCN2, 5.1 × 10−6 ± 3.2 × 10−6 pA−1 s−1, n = 5). (D) Excised inside-out patch clamp recording from X. laevis
oocytes expressing HCNL1 measured at three different pHi. (E, Left) Current–voltage relationships of the tail currents in D. EH+ is the Nernst potential for
protons at different ΔpH. (E, Right) Reversal potential as a function of ΔpH (ΔpH = 1: Vrev = −59.4 ± 1.9 mV, n = 6; ΔpH = 0.5: Vrev = −31.3 ± 2.9 mV, n = 12;
ΔpH = 0: Vrev = −2.2 ± 2.4 mV, n = 15). The dashed line represents EH+. (F) Reversal potential in response to bath application of various cations (90 mM) or
chloride (40 mM) with pHi = 5.5 and pHo = 6.5 (EH+ = −58.6 mV), measured in excised inside-out patches from X. laevis oocytes expressing HCNL1
(NMDG+: −64.3 ± 6.7 mV, n = 9; Na+: −65.7 ± 5.6 mV, n = 5; K+: −64.4 ± 2.8 mV, n = 5; Rb+: −62.1 ± 6.5 mV, n = 6; Li+: −63.6 ± 2.0 mV, n = 4; Cs+: −57.1 ± 3.6
mV, n = 5; Cl−: −61.9 ± 1.5 mV, n = 3). ES, extracellular solution; IS, intracellular solution; PMT, photomultiplier tube. Error bars denote SD.
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number of pathologic conditions, termed “channelopathies,” are
caused by channels with these gating pore currents (25). Prob-
ably by a related mechanism, Hv1 conducts protons through its
VSD because it lacks a central PD (15, 16). Mutations of the S4
segment of Hv1 abolish proton permeation (17, 26, 27) or alter
ion selectivity (28). Therefore, we compared the S4 sequences of
HCN, HCNL1/2, and Hv1 channels with emphasis on interrup-
tions of the Arg residue pattern. The S4 segment of classic HCN
and HCNL1/2 channels is highly conserved: It carries a string of
up to eight regularly spaced Arg residues that is interrupted in
both channel types at the fifth position by a serine residue
(Fig. 2B). Strikingly, in HCNL1/2 but not classic HCN channels,
the string of Arg residues is additionally interrupted at the third
position by a methionine residue (M169 in zebrafish HCNL1)
(Fig. 2B). The S4 segment of Hv1, compared to that of the HCN
and HCNL1/2 channels, contains a shorter string of positively
charged residues, consisting of only three Arg residues.
Four experimental observations argue that the VSD repre-

sents the proton permeation pathway in HCNL1. First, phar-
macological experiments support the notion that protons
permeate through the VSD rather than the PD (Fig. 3A). The
open-channel blocker ZD7288 of classic HCN channels did not
block HCNL1 currents (Fig. 3B), although hydrophobic amino
acid residues important for drug binding (29) are conserved in
HCNL1 (Fig. 3A). By contrast, an open-channel blocker of Hv1
channels, 2-guanidinobenzimidazole (2GBI) (30, 31), and its
membrane-permeable congener 5-chloro-2-guanidinobenzimi-
dazole (ClGBI), both blocked HCNL1 (but not classic HCN2)
currents in a dose-dependent fashion (Fig. 3 B and C). A key
feature of VSDs is a conserved phenylalanine in the trans-
membrane segment S2 referred to as a gating charge transfer
center (32). Mutation of the respective Phe to Ala in Hv1 leads
to an increase of the efficacy of 2GBI (30). Mutating the ho-
mologous Phe in HCNL1 to Ala (F96A) also changes the effi-
cacy of 2GBI; however, in the HCNL1 context, the affinity of the
mutant was lower (Fig. 3C). In both channel types, the conserved
Phe residue of the gating charge transfer center participates in
the binding of GBI compounds. In summary, these results

suggest that GBI compounds block HCNL1 currents by occlud-
ing a proton permeation pathway in the VSD.
Second, we examined whether the PD of HCNL1 channels

contributes to ionic currents. Various constructs lacking the PD
were nonfunctional (SI Appendix, Fig. S4). Therefore, we took a
less invasive strategy: in HCN channels, replacing the canonical
selectivity filter GYG by AAA produces nonconducting,
dominant-negative channels (21). We constructed a congruous
HCNL1 mutant in which the respective amino acids (FLE; po-
sitions 271 to 273) (Fig. 2B) were replaced by AAA (HCNL1-
AAA). In this functional mutant, proton permeation and selec-
tivity were not altered (Fig. 3 D–F), suggesting that the proton
permeation pathway of HCNL1 does not involve the central PD.
Third, we investigated a channel mutant where M169 in the S4

segment was replaced by an Arg residue (M169R). Thereby, we
generated a sequence of charges in S4 that is similar to that of
classic HCN channels that do not transport ions via S4 (Fig. 2B).
This mutant, in inside-out patches from Xenopus oocytes, carried
only small transient currents, much smaller than the currents that
we robustly obtained for wild-type channels (Fig. 4A). Low ex-
pression of the mutant was not responsible for the small current
because patch clamp fluorometry of GFP-tagged variants of wild-
type and M169R channels demonstrated similar expression levels,
despite large differences in patch current (Fig. 4 B and C). We
studied the M169R mutant in more detail in CHO cells. Here, in
whole-cell recordings, the transient currents were larger and ro-
bust (Fig. 4D). We reasoned that the transient currents could ei-
ther originate from fast channel inactivation or might represent
gating currents due to S4 movement across the electric field of the
membrane. To discriminate between the two possibilities, we ac-
tivated M169R channels and, when the peak current was reached,
stepped to various voltages from −80 to +80 mV under symmetric
ion concentrations (Fig. 4 E, Left). Under these conditions, ionic
currents, but not gating currents, are expected to reverse direction
at Vrev = 0 mV. However, currents did not reverse (Fig. 4 E,
Right), a behavior incompatible with ionic currents. Currents also
did not reverse under Na+- and K+-based solutions (Fig. 4 E,
Right). We conclude that the residual currents produced by the
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M169R mutant predominantly represent gating currents. The
charge–voltage relationships, obtained by integrating on- and off-
gating currents, saturated, and their voltage dependence was
similar (Fig. 4F). On-gating charges of HCNL1 were much larger
than off-gating charges (Fig. 4F). A similar behavior of Hv1 and
Shaker K+ channels has been attributed to a phenomenon called
“voltage sensor immobilization” (27, 33). During prolonged acti-
vation, the voltage sensor enters a more stable conformation from
which it recovers only slowly. This immobilization results in an
apparent loss of off- compared to on-gating charges. Voltage
sensor immobilization is initially small and increases during long
stimulation times. Therefore, we recorded on- and off-gating
currents of HCNL1 for different pulse lengths. For short stimu-
lation times, on- and off-gating charges were similar (Fig. 4G).
With longer stimulation times, the ratio of off- to on-gating
charges decayed exponentially (τdecay = 50.6 ± 8.3 ms, n = 5,
Fig. 4G), which is diagnostic for voltage sensor immobilization. In
summary, in the M169R mutant, proton currents are suppressed,
and gating currents become apparent, suggesting that M169 lines
the pore.
Fourth, we mutated M169 to cysteine, which can be chemically

modified with 2-(trimethylammonium)ethyl methanethiosulfonate
(MTSET). Activation of the M169C mutant produced proton
currents that were blocked by MTSET modification; the wild-type
HCNL1 control was not affected by MTSET (Fig. 4H). Collec-
tively, these results show that protons pass HCNL1 via the VSD
and M169 lines the proton permeation pathway; furthermore, the

“classic” central pore region of HCNL1 does not pass protons or
alkali metal ions.

HCNL1 Mediates Hyperpolarization-Activated Currents in Zebrafish
Sperm. Next, we studied the native HCNL1 channel in zebra-
fish sperm by whole-cell patch clamping. In a Cs+-based solu-
tion, which eliminates K+ currents carried by the K+-selective
cyclic-nucleotide-gated channel (CNGK) (12), we recorded
hyperpolarization-activated currents that were similar to currents
of heterologously expressed HCNL1 (V1/2 = −105.3 ± 11.4 mV,
s = 13.0 ± 2.1, n = 5) (Fig. 5A). These currents were also not
cyclic nucleotide sensitive (cAMP: V1/2 = −100.6 ± 17.2 mV,
s = 11.0 ± 2.6 mV, n = 4; cGMP: V1/2 = −110.0 ± 6.6 mV,
s = 10.0 ± 2.6 mV, n = 3). Furthermore, during current activa-
tion, the fluorescence of the pH dye pHrodo Red increased
(Fig. 5B, 5.3 × 10−3 ± 1.9 × 10−3 pA−1 s−1, n = 8), indicating
acidification by proton flux into sperm. Finally, ClGBI (100 μM)
blocked the inward current in sperm (Fig. 5C, 73 ± 9%, n = 4).
These results show that HCNL1 mediates hyperpolarization-
activated currents in zebrafish sperm.

HCNL1 Forms Tetramers and Is Expressed in the Head of Zebrafish
Sperm. We examined the presence of HCNL1 protein in zebra-
fish sperm by two independent monoclonal antibodies directed
against N- (anti-Nterm) and C-terminal (anti-Cterm) epitopes of
HCNL1. In Western blots of HCNL1-HA-injected oocytes, anti-
HCNL1 and anti-HA antibodies labeled a polypeptide with an
apparent molecular weight (Mw) of about 62 kDa, similar to the
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calculated Mw of 60.4 kDa (Fig. 6A). In Western blots of control
oocytes, no band was detected, demonstrating the specificity of
these antibodies. The antibodies also detected a smear between

65 and 75 kDa. Upon treatment with PNGase, the smear col-
lapsed into a single 62-kDa band, suggesting that HCNL1 pro-
teins are glycosylated (Fig. 6B). The anti-Cterm antibody detected
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HCNL1 protein in tissue of zebrafish testis and in zebrafish
sperm (Fig. 6B) but not in the ovary, eyes, and brain (SI Ap-
pendix, Fig. S5A); PNGase treatment also lowered the Mw of
HCNL1 in testis and sperm (Fig. 6B).
Classic HCN channels are composed of four subunits that form

a single pore (34), whereas Hv1 forms a dimer (35, 36) with two
proton pores (17). In Western blots of chemically cross-linked
HCNL1 protein, bands at 59.3, ∼120, ∼180, and ∼240 kDa were
detected. The higher molecular species are multiples of the
monomer (SI Appendix, Fig. S5B), suggesting a tetrameric

organization. Thus, each HCNL1 channel probably carries four
proton pores (SI Appendix, Fig. S5C).
We studied the cellular distribution of HCNL1 in sperm by

immunocytochemistry. The anti-Nterm, anti-Cterm, and anti-HA
antibodies stained HCNL1-HA-transfected but not control CHO
cells, demonstrating that these antibodies are suitable for im-
munocytochemistry (Fig. 6 C and D). Both anti-HCNL1 anti-
bodies stained heads from zebrafish sperm, whereas the
flagellum was only weakly recognized (Fig. 6 E and F). More-
over, currents recorded from isolated sperm heads and from
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whole sperm were similar in amplitude (SI Appendix, Fig. S6).
Thus, HCNL1 is predominantly localized to the sperm head.
This finding is remarkable because CNGK, the only other ion
channel identified in zebrafish sperm, is also localized to the
head (12).

HCNL1 Is Functionally Linked to the K+ Channel CNGK. Finally, we
addressed the physiological role of HCNL1. We previously iden-
tified in zebrafish sperm the K+-selective CNGK channel (12).
CNGK is pH dependent: At alkaline pH, CNGK opens, and at
acidic pH, CNGK closes. Current clamp recordings from zebrafish
sperm show that intracellular alkalization hyperpolarizes the
membrane potential, suggesting that CNGK is involved in setting
the resting membrane potential (12). We confirm here the K+

dependence of the resting membrane potential in single sperm cells
loaded with the fluorescent voltage-sensitive dye di-8-ANEPPS (4-
(2-[6-(dioctylamino)-2-naphthalenyl]ethenyl)-1-(3-sulfopropyl)pyr-
idinium): When external K+ was high, like in the seminal fluid of
most freshwater fish species (37), the membrane potential was
depolarized; when external K+ was low, like in fresh water, the
membrane potential was more hyperpolarized (Fig. 6G). Next, we
tested whether hyperpolarization by low extracellular K+ concen-
trations also activates HCNL1. Indeed, reducing the extracellular
K+ concentration from 5.4 mM to 40 μM leads to intracellular
acidification (Fig. 6H, 8.8 ± 5.1% ΔF/F, see SI Appendix, Materials
and Methods for details, n = 22), suggesting that hyperpolarization
by CNGK activates HCNL1, which leads to subsequent proton
influx. In turn, proton influx through HCNL1 decreases pHi and
thereby should lower the open probability of the pH-sensitive
CNGK. The reciprocal interaction of the two channels creates an
intricate negative feedback loop (Fig. 6I). In conclusion, the
HCNL1 function in zebrafish sperm is similar to that of classic
HCN channels: It limits hyperpolarization and initiates recovery
from hyperpolarization.
Upon spawning into fresh water, sperm are exposed to a

hypoosmotic shock, which eventually activates motility. We em-
ulated a hypoosmotic shock during spawning by rapid mixing in a
stopped-flow device pHrodo Red-loaded sperm in isoosmotic
solution with a hypoosmotic solution. Changes in pHi were de-
tected by changes in fluorescence of the pH-sensitive dye.
Challenging sperm with such a hypoosmotic shock triggered a
decrease of pHi (Fig. 6J, 12.1 ± 4.5% ΔF/F0, n = 5). These ex-
periments suggest a role of HCNL1 during sperm activation.

Discussion
HCNL1 is the founding member of a family of hyperpolarization-
activated channels that are highly selective for protons; only three
other proton channels have been identified: Hv1 and Otopetrin in
eukaryotes (15, 16, 38) and M2 in the influenza virus (39, 40).
Although HCNL1 channels and classical HCN channels are

highly homologous, two specific modifications have completely
changed their physiology. First, the PD of the channel carries
mutations that “plug the pore.” The central pore, key to ion
permeation in all other members of voltage-gated ion channels,
is nonfunctional in HCNL1. Second, replacing a single arginine,
present in the S4 segment of all classic HCN channels, by me-
thionine (M169 in drHCNL1) endows HCNL1 with proton
permeability. How do protons pass the VSD in HCNL1? The
VSD of classic voltage-gated channels adopts an hourglass shape
with a central hydrophobic constriction site (HCS) that is formed
by hydrophobic residues in segments S1 to S3 and that separates
the extra- from the intracellular side (32, 41–43). During acti-
vation, the voltage-sensing S4 segment travels through the HCS.
While S4 moves, the constriction is always occupied by one of the
positively charged residues of S4, and no ions can pass the HCS.
However, mutations of Arg residues in S4 of Kv, Nav, and Cav
channels can cause voltage-dependent currents flowing through
the VSD, so-called gating pore currents (22–25). Some of these

mutants have been identified in human voltage-gated channels
that give rise to nonselective currents through the VSD and
cause channelopathies (25). A similar mechanism may give rise
to proton currents in HCNL1, with the major difference that the
currents through HCNL1 are exquisitely proton selective. We
envision that hyperpolarization might relocate M169 to the VSD
constriction site and thereby generate a proton-selective pore.
Remarkably, introducing at position M169 an Arg residue that
“fills the gap” in the string of regularly spaced Arg residues
abolishes proton permeation, and gating currents become ap-
parent. Similarly, in Hv1, an Arg residue introduced at the fourth
S4 position in register with the three other Arg residues blocks
proton permeation (17) and reveals gating currents (26, 27). In
this respect, HCNL1 and Hv1 seem to share a common mecha-
nism of proton permeation. For Hv1, the mechanism of proton
permeation is not completely understood and is debated in the
community (44, 45). The discovery of a second channel pos-
sessing an analogous, yet hyperpolarization-activated, proton
permeation pathway will give ample opportunities to gain insight
into the requirements for proton pores in VSDs.
Vrev for proton currents is not affected by orders-of-magnitude

higher concentrations of monovalent cations, suggesting a more
than a millionfold higher permeability for protons than for other
ions. In fact, the relative permeability of H+ vs. Na+ is 3 × 106.
Proton selectivity of HCNL1 is therefore within the same order
of magnitude as that of the Hv1 proton channel (46). Channels
that conduct ions through a classic PD typically feature a much
lower selectivity (PK+:PNa+ = 1,000 to 10,000 for K+ channels
and PNa+:PK+ = 100 to 500 for Na+ channels) (18). Given the
extremely low concentration of protons in most physiological
environments (10−7 to 10−8 M), this exquisite proton selectivity is
essential for HCNL1 to actually function as a proton-conducting
channel (21).
The pore sequence of HCNL2 is more conserved than that of

HCNL1: HCNL2 channels carry AISYG, QISYG, or ALSYG
sequence motifs (SI Appendix, Table S1), which is similar to the
canonical CIGYG motif of classic HCN channels. In Kv chan-
nels, however, the analogous Gly to Ser exchange at the first
position of the GYG motif renders the Kv pore nonconducting
(47), and a CISYG sequence in human HCN4 results in non-
conducting, dominant negative subunits (48), suggesting that the
pore of HCNL2 might be nonfunctional as well. All HCNL2
channels carry the characteristic Met in S4 that is crucial for
proton conduction in HCNL1. Therefore, we speculate that
HCNL2 also conducts protons via the same VSD pathway.
Functional expression of HCNL2 in heterologous systems was
unsuccessful. HCNL2 transcripts are enriched in zebrafish hair
cells (49).
Zebrafish sperm become activated by hypoosmotic shock

during the release into fresh water. After activation, sperm have
about 1 min to find the egg and the micropyle, a tiny hole in the
chorion of the egg through which the sperm can reach the plasma
membrane for fertilization. The molecular signaling pathways
that control the sperm’s journey to the egg are not known.
Fresh water is extremely low in Na+ and K+ (0.1 to 0.7 mM).

Not much is known about the ion channel inventory of zebrafish
sperm, except for the alkaline-activated, K+-selective CNGK
channel (12). CNGK is active under resting conditions and closes
upon intracellular acidification (12). HCNL1 is the second
channel type identified in zebrafish sperm. CNGK and HCNL1
are both present in the sperm head. Classic HCN channels in the
heart and brain carry a Na+ inward current that depolarizes the
cell. However, because of the low Na+ and K+ concentrations of
fresh water, HCN channels instead would strongly hyperpolarize
zebrafish sperm. The proton selectivity enables HCNL1 to de-
polarize cells in a freshwater environment. Thus, the hyperpo-
larization produced by the K+-selective CNGK channel upon
release into fresh water activates HCNL1; the ensuing proton
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influx limits the hyperpolarization in two ways: 1) Proton influx
directly depolarizes the membrane potential, and 2) the in-
tracellular acidification will close CNGK channels. Although
CNGK and HCNL1 carry a CNBD, both channels are insensitive
to cyclic nucleotides, suggesting that protons instead of cyclic
nucleotides serve as cellular messengers in zebrafish sperm.
Across phyla, Ca2+ ions control sperm motility and navigation

(50). The sperm-specific Ca2+ channel CatSper mediates Ca2+ in-
flux in many but not all species from marine invertebrates to hu-
mans. Some teleost fish, including zebrafish, and birds and
amphibians lack CatSper channels (51). The channel(s) and
mechanisms that promote voltage-activated Ca2+ influx in CatSper-
deficient sperm are not known. In marine invertebrates, the in-
terplay between hyperpolarization, alkalization, and, ultimately,
depolarization activates CatSper channels (52, 53). The opening of
K+-selective, cyclic nucleotide-gated CNGK channels hyperpolar-
izes sperm; HCN channels counteract hyperpolarization. During
recovery from hyperpolarization, CatSper channels open. We hy-
pothesize that, in zebrafish sperm, a similar interplay between the
pH-sensitive CNGK and the proton-selective HCNL1 may control a
voltage- and/or pHi-gated Ca2+ conductance. The swimming pat-
tern of zebrafish sperm depends on the intracellular Ca2+ concen-
tration (12), and Ca2+ signaling might be crucial for successful
navigation to the micropyle. We speculate that activation of CNGK
and HCNL1 during spawning changes the intracellular Ca2+ con-
centration and thereby activates and modulates sperm swimming.
To further delineate the signaling pathway that controls zebrafish
sperm motility and navigation, it will be necessary to identify ad-
ditional molecular components that control the intracellular Ca2+

concentration.

Materials and Methods
Expression in CHO Cells and X. laevis Oocytes. For channel expression in X.
laevis oocytes, oocytes were injected with mRNA obtained from in vitro
transcription and incubated at 14 to 16 °C for 1 to 5 d. For channel ex-
pression in CHO cells, either a stable cell line was generated, or for transient
expression, cells were transfected at least 24 h before use. Additional in-
formation on channel expression is provided in SI Appendix, Materials
and Methods.

Biochemistry. Zebrafish sperm were solubilized using a hypotonic solubili-
zation buffer and sonification. X. laevis oocytes were mechanically devi-
tellinated and homogenized by trituration. Standard procedures were used
for sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE)
and Western blot. Anti-HCNL1 antibodies were generated from stable rat
hybridoma clones. Cross-linking was performed with the amino-specific
cross-linker disuccinimidyl suberate. Additional information on biochemical
protocols is provided in SI Appendix, Materials and Methods.

Electrophysiology and Fluorometry. Electrophysiological recording of CHO
cells and X. laevis oocytes was performed using standard experimental
procedures. For pH fluorometry, cells were loaded with the pH indicator
BCECF. To record gating currents, online leak subtraction was applied using
the p/4 protocol. In some cases, leak currents were subtracted off-line.
Junction potentials were calculated with pClamp 10 and subtracted off-line.
For whole-cell recordings of intact zebrafish sperm and isolated sperm
heads, gigaseals were formed at the neck region of the sperm cell. For patch
clamp fluorometry measurements of zebrafish sperm, sperm cells were
loaded with the pH indicator pHrodo Red AM prior to recording. All elec-
trophysiological measurements were performed at room temperature.
Changes in pHi of single zebrafish sperm in response to changes in the ex-
tracellular K+ concentration (Fig. 5B) were measured by superfusing sperm
loaded with pHrodo Red AM with solution containing different concentra-
tions of K+. The fluorescence signal was determined from the spatial average
of a region of interest covering the sperm head. Additional information on
electrophysiological and fluorometric recording procedures is provided in SI
Appendix, Materials and Methods.

Immunocytochemistry. A stable CHO cell line expressing HCNL1-HAwas mixed
with wild-type CHO cells and seeded onto glass coverslips, fixed with ice-cold
methanol, and stained with anti-HCNL1 antibodies, a monoclonal anti-HA
antibody, and DAPI. For detection, fluorescently labeled secondary anti-
bodies (Alexa488 or Cy3) were used. After mounting, cells were imaged
under a confocal microscope. Zebrafish sperm were immobilized on adhe-
sion microscope slides. Fixation, staining, and imaging were performed as
for CHO cells. Additional information on immunocytochemical protocols is
provided in SI Appendix, Materials and Methods.

Data Availability.Data generated and analyzed over the course of the current
study are included within the paper or SI Appendix.
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