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Abstract: High temperature is one of the most significant abiotic stresses reducing crop yield and
quality by inhibiting plant growth and development. Global warming has recently increased the
frequency of heat waves, which negatively impacts agricultural fields. Despite numerous studies
on heat stress responses and signal transduction in model plant species, the molecular mechanism
underlying thermomorphogenesis in Panax ginseng remains largely unknown. Here, we investigated
the high temperature response of ginseng at the phenotypic and molecular levels. Both the primary
shoot growth and secondary root growth of ginseng plants were significantly reduced at high
temperature. Histological analysis revealed that these decreases in shoot and root growth were
caused by decreases in cell elongation and cambium stem cell activity, respectively. Analysis of P.
ginseng RNA-seq data revealed that heat-stress-repressed stem and root growth is closely related
to changes in photosynthesis, cell wall organization, cell wall loosening, and abscisic acid (ABA)
and jasmonic acid (JA) signaling. Reduction in both the light and dark reactions of photosynthesis
resulted in defects in starch granule development in the storage parenchymal cells of the main tap
root. Thus, by combining bioinformatics and histological analyses, we show that high temperature
signaling pathways are integrated with crucial biological processes that repress stem and root growth
in ginseng, providing novel insight into the heat stress response mechanism of P. ginseng.

Keywords: Panax ginseng; heat stress; RNA-seq; hormone; photosynthesis

1. Introduction

Plants are constantly exposed to a wide range of abiotic and biotic stresses, which
negatively impact their growth, development, and productivity [1–4]. As sessile organisms,
terrestrial plants must coordinate their physiological responses to adapt to the broad
range of environmental stresses. The global temperature is expected to rise by 2–5 ◦C
by the end of the century, owing to global warming [5,6]. This is especially concerning
because an increase of 3–4 ◦C is expected to reduce crop productivity by 15–35% [7,8].
When exposed to extreme temperatures, plants suffer significant, and possibly irreversible,
damage. Plants have evolved sophisticated hormonal and physiological pathways to
respond to high temperature stress [9,10]. Therefore, to ensure food security under future
climate scenarios, it is critical to investigate the high temperature response mechanisms
and signaling pathways of plants.

Korean ginseng (Panax ginseng C.A. Meyer) has a long history of use as a valuable
medicinal plant in Asian countries, particularly Korea, China, and Japan [11,12]. The roots
of P. ginseng plants contain a variety of beneficial compounds, including ginsenosides,
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which exhibit a wide range of therapeutic effects, and boost the immune system and
promote vitality in humans [13–16]. However, because of the restricted special cultivation
features and limited genome information of P. ginseng, the genetic and physiological
analyses of its growth and development have been challengeable [17–19]. P. ginseng is a
perennial shade plant that exhibits hypersensitivity to high temperatures. Ginseng leaves
exhibit growth retardation and typically burn after being exposed to 30 ◦C for longer than
5 days. The development and output of P. ginseng plants are seriously threatened by rising
temperatures brought on by global warming. Moreover, the cultivable area of P. ginseng is
gradually diminishing. Therefore, a number of physiological and morphological studies
have been carried out to comprehend the high temperature response of P. ginseng [20–22].
However, to better understand how P. ginseng responds to high temperatures, a thorough
investigation incorporating morphological, genomic, transcriptomic, and physiological
analyses is still necessary.

During the domestication of root crops, plants were largely selected for their capacity
to store beneficial chemicals and energy sources in their storage roots. Since P. ginseng re-
quires a culture period of 4–6 years and exhibits a moderate growth rate, high temperature
tolerance has a great effect on its secondary root growth and consequently is important for
increasing yield [23]. The expression of genes encoding heat shock transcription factors
(HSFs) and heat shock proteins (HSPs) are upregulated by high temperature and primarily
regulated by plant hormones such as abscisic acid (ABA), jasmonic acid (JA), and sali-
cylic acid (SA) [10,24,25]. Previous studies show that phytohormones and their crosstalk
influence the plant response to high temperature, which damages the photosynthetic sys-
tem and chloroplasts in diverse ways, ranging from a mild reduction in photosynthetic
rate to permanent impairment of photosynthesis [26–28]. In a recent study, genome-wide
transcriptional changes were evaluated and compared in two representative P. ginseng
cultivars to better understand their response to high temperature [29]. The results showed
that genes encoding WRKY transcription factors, fatty acid desaturases, and chlorophyll
a/b binding proteins are important for the adaptation of P. ginseng to cold and shade, and
their expression has a significant negative impact on heat and light tolerance. Addition-
ally, transcript levels of genes associated with photosynthesis and sugar metabolism were
significantly decreased by long-term exposure to high temperature [29]. Furthermore, pro-
teomics investigation of P. ginseng leaves under heat stress revealed that the abundance of
photosynthesis and phytohormone signaling related proteins was diminished, whereas that
of RNA transport and ribosome biogenesis-related proteins was stimulated [30]. However,
the majority of studies conducted to date on the high temperature response of P. ginseng
focused mainly on the physiological and genetic analyses of shoots and leaves.

In general, high temperatures shorten the life cycle of plants and limit their ability to
photosynthesize, which lowers agricultural production [31]. In this study, we examined the
physiological effects of high temperature on the development of P. ginseng roots and shoots.
Under extreme heat, P. ginseng shoots and roots exhibited drastically reduced primary
and secondary growth. It has been proposed that the primary and secondary growth
of high temperature-treated P. ginseng plants is controlled by a transcriptional network,
which comprises genes involved in controlling the growth-promoting response to high
temperature as well as stress-related hormones such as ABA, JA, SA, and ethylene (ET).
Genes related to cell wall organization, photosynthesis, and carbohydrate biosynthesis
were downregulated in response to high temperature. Additionally, the formation of starch
granules in storage parenchymal cells was reduced as a result of interactions among these
signaling networks. Overall, our findings offer insight into the connection between the
plant response to high temperature and the mechanism regulating plant development in
P. ginseng.
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2. Results
2.1. High Temperature Retards Primary Shoot Growth in P. ginseng

Long-term exposure to high temperature typically causes dramatic changes in plant
growth and development through a process known as thermomorphogenesis, which is
characterized by petiole hyponasty, the inhibition of shoot and root growth, and a reduction
in leaf blade size [9,10]. This phenotypic and developmental plasticity under heat stress
enables plants to maximize their fitness in the changed environment. To investigate whether
high temperature stress affects the growth and development of P. ginseng plants, 1-year-old
seedlings were exposed to normal conditions (23 ◦C, control) and high temperatures (28 ◦C
and 30 ◦C) for 1 week after rhizome germination (Figure 1). Primary shoot growth, leaf
expansion, and hyponasty were retarded at both 28 ◦C and 30 ◦C (Figure 1A). The shoot
lengths of plants exposed to 28 ◦C and 30 ◦C were significantly reduced by approximately
29% and 59%, respectively, compared with the control (Figure 1B). We then performed
a histological analysis of paraffin-embedded sections of ginseng shoots to gain a better
understanding of the physiological effects of high temperature on ginseng shoot growth.
High temperature-treated shoots contained approximately 32% lower epidermal cells than
control shoots (Figure 1C,D). These findings imply that primary shoot growth in P. ginseng,
unlike that in other plant species, is sensitive to high temperature stress.
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Figure 1. Characterization of thermomorphogenic responses in shoot and root development of
P. ginseng. (A) Phenotype of 1-year old P. ginseng cultivar, Yunpoong, treated for one week after
germination at optimal temperature (23 ◦C) or high temperature (28 ◦C or 30 ◦C). Scale bar = 20 mm.
(B) Measurement of stem length of (A). Different lowercase letters indicate statistically significant
differences p < 0.05; one-way analysis of variance [ANOVA], followed by Tukey’s multiple range test).
(C) Longitudinal cross-sections of P. ginseng stems treated with 23 ◦C or 30 ◦C. Scale bar = 0.5 mm.
(D) Quantification cell length in (C) was measured using ImageJ software (** p > 0.01, the significance
of the difference was analyzed by t-test method). In (B,D), dots represent individual values. Error
bars represent standard error; n = 20 (B), n = 30 (D).
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2.2. Transcriptome Analysis of P. ginseng Plants Exposed to High Temperatures

To investigate the unique mechanism of thermomorphogenesis in P. ginseng, we reana-
lyzed the previously reported RNA-seq data of P. ginseng plants treated with prolonged
heat stress [29]. A total of 4057 differentially expressed genes (DEGs; q < 0.05, fold change
≥ 1.5) were identified, of which 1777 were upregulated and 2280 were downregulated
(Figure 2A). Gene ontology (GO) enrichment analysis of the DEGs showed that high tem-
perature treatment was significantly associated with the following functional categories:
(1) ‘carbohydrate metabolic process’ (p-values of sub-GO terms: p = 9.9 × 10−16 for carbo-
hydrate metabolic process; p = 3.7 × 10−11 for carbohydrate biosynthetic process), (2) ‘cell
growth’ (p = 4.4 × 10−5), ‘cell wall organization or biogenesis’ (p = 7.2 × 10−10 for cell
wall biogenesis; p = 0.0004 for cell wall organization), (3) ‘photosynthesis’ (p = 1.0 × 10−90

for photosynthesis; p = 8.0 × 10−13 for photosynthesis, light reaction; p = 0.002 for pho-
tosynthesis, dark reaction), (4) ‘response to heat’ (p = 3.8 × 10−9), and (5) ‘response to
hormone’ (p = 8.3 × 10−7 for response to abscisic acid; p = 3.4 × 10−6 for response to sal-
icylic acid; p = 2.3 × 10−5 for response to jasmonic acid; p = 6.2 × 10−5 for response to
ethylene) (Figure 2B). Gene set enrichment analysis (GSEA) revealed that the response
to heat-related term was not significantly enriched in high temperature-treated ginseng
(false discovery rate [FDR] = 0.053), whereas the response to abscisic acid was significantly
enriched (FDR = 0.02) (Figure 2C). In terms of expression variations, we discovered 81 and
165 key leading-edge subset genes that were enriched gene set groups and produced enrich-
ment scores (ES) (Figure S1A,B and Table S1). The expression levels of genes that respond
to heat were determined using RNA-seq data and validated by quantitative real-time PCR
(qRT-PCR) (Figure S1C). Additionally, GSEA demonstrated that the leading-edge subset
identified in high temperature-treated P. ginseng plants was composed of genes activated
by ET, SA, and JA (Figure S2).

Next, we focused on the functional enrichment analysis of genes related to ‘plant type-
cell wall organization’ in high temperature-treated ginseng. GESA was used to validate
the significantly enriched GO terms, including ‘plant type-cell wall organization’, ‘plant
type-cell wall biogenesis’, and ‘cell growth’ (Figures 2D and S3A,B). A total of 52 genes
were found to comprise a critical leading-edge subset of the enriched gene set group in
the GSEA (Figures 2E and S3C,D). These leading-edge subset genes, including EXPANSIN
(EXP) genes (EXPAs and EXPBs), were significantly downregulated in the high temperature-
treated ginseng samples. Subsequently, the expression pattern of DEGs related to plant-type
cell wall organization was confirmed by real-time qRT-PCR (Figure S4). These findings
reveal that high temperature controls shoot elongation by regulating the structure and
biogenesis of the cell wall.

2.3. High Temperature Retards Root Secondary Growth in P. ginseng

RNA-seq results further revealed that long-term heat stress greatly reduced pho-
tosynthesis and carbohydrate metabolism (Figure 2B). This led us to hypothesize that
heat-stress-induced reduction in photosynthesis has deleterious effects on the develop-
ment of storage organs in P. ginseng. To gain insight into the physiological effects of
high temperatures on root secondary growth in P. ginseng, we performed a histological
analysis of paraffin-embedded sections of roots (Figure 3). Initially, we monitored the
growth phenotypes of dividing meristematic stem cells in the cambial zone (CZ) and the
size of divided cells surrounding the cambium layer of the storage tap roots from July to
September under optimal conditions (control, Figure 3). The number and length of divided
starch-deposited storage parenchymal cells located between the xylem vessels (XVs) and
resin ducts (RDs) increased significantly in the control treatment from July to September
(Figure 3B,C). However, ginseng samples treated with high temperature for 1 or 2 months
in the soil-plant-atmosphere-research (SPAR) chamber showed a significant reduction in
the number and length of cambium-derived cells in the XVs and RDs. Additionally, high
temperature-treated ginseng roots exhibited approximately 42% and 55% shorter XV–RD
length than mock-treated roots at +2 ◦C and +4 ◦C, respectively, in August (Figure 3C). In
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September, the XV–RD length was shortened by 29% and 49% in high temperature-treated
roots at +2 ◦C and +4 ◦C, respectively, compared with mock-treated roots. Moreover,
high temperature-treated ginseng roots showed a greater reduction in the number and
length of cells at +4 ◦C than at +2 ◦C compared with the control, suggesting that secondary
root growth in P. ginseng decreases with increasing temperature (Figure 3). The results of
phenotypic analysis were consistent with those of transcriptome analysis (Figures 2 and 3).
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Figure 2. Genome-wide transcriptome profiling of P. ginseng treated with or without high temperature.
(A) MA plot comparing the differential expression of control and heat-treated ginseng samples. The
genes that were either upregulated (1777) or downregulated (2280) with a q value of less than 0.05
and a fold change of more than 1.5 are represented by the red dots and bar graph. (B) An examination
of the enrichment of the gene ontology (GO) category for differentially expressed genes (DEGs),
which was determined by comparing control and heat-treated samples. We chose GO terms from
the biological process level 3 and level 5 categories that had an EASE score of less than 0.01 (left
panel). The right panel displays the total number of genes that were either upregulated (shown
in red) or downregulated (shown in green) as a result of the enriched GO terms. (C) Enrichment
plot for a response to heat (GO:0009408) and abscisic acid (GO:0009737). (D) Enrichment plot for
plant-type cell wall organization (GO:0009664). The red line indicates the leading-edge subset, which
were selected in the enrichment plot. This line indicates the gene subset that had the greatest impact
on the enrichment score (ES) and had a false discovery rate (FDR) of less than 0.05. (E) A heatmap
depicting the expression of the leading-edge subset of genes that are associated with the plant-type
cell wall organization.
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Figure 3. High temperature treatment represses root secondary growth in P. ginseng. (A) Representa-
tive root images of stained stem cross-sections of P. ginseng plants treated with a mock control (Con)
or high temperature (+2 ◦C or +4 ◦C) from July to September. XV: xylem vessel, CZ: cambial cell layer
zone, RD: resin duct cells. Scale bar = 200 µm. (B) Quantification of cambium-derived cells in XV
and RD of each ray. (C) Quantification cell length in (A) was measured using ImageJ software. Dots
represent individual values. Different lowercase letters indicate statistically significant differences
p < 0.05. Error bars represent standard error; n = 15 (B), 41 (C). p < 0.05; one-way ANOVA.

2.4. High Temperature Negatively Regulates Both the Light and Dark Reactions of Photosynthesis

Among the GO processes affected by high temperature treatment, we focused on the
highly significantly downregulated processes: ‘carbohydrate process’, ‘chlorophyll process’,
and ‘photosynthesis process’. Following GO enrichment analysis, we identified the signifi-
cant pathway (FDR < 0.05) of GO terms related to photosynthesis (Figure 4A). The enriched
terms included ‘photosynthesis light harvesting’, ‘photosynthesis light reaction’, photosyn-
thesis dark reaction’, ‘chlorophyll biosynthetic process’, ‘carbohydrate biosynthetic process’.
We performed the GSEA to identify the major terms related to the leading-edge subset
genes (Figures 4B,C and S5). We found that chlorophyll biosynthesis, photosynthesis, and
carbohydrate biosynthetic process–related terms were significantly enriched in the GSEA
(Figures 4B,C and S5). In addition, our data showed that GO terms related to the light
and dark reactions of photosynthesis and those related to starch biosynthesis were nega-
tively correlated with the long-term high temperature stress treatment (Figure S6). These
findings suggest that defects in photosynthesis and its ensuing metabolic processes are
strongly linked with high temperature-mediated growth and developmental retardation.
To further investigate this idea more specifically, we confirmed the expression patterns of
DEGs encoding chloroplast-localized photosynthetic proteins and cytosol-localized sucrose
biosynthesis and transport related proteins (Figure 4D). The selected DEGs, which were
picked based on their similarity to Arabidopsis genes, were primarily downregulated
by prolonged exposure to high temperature in the major pathways of the light and dark
reactions of photosynthesis, starch biosynthesis, and sucrose transport (Figure 4D). These
finding led us to hypothesize that high temperature treatment retards the development of
starch granules in storage parenchymal cells in the main tap root. We monitored the devel-
opment of starch granules in high temperature-treated ginseng roots for 1 month (Figure 5).
The results demonstrated that high temperature treatment repressed the differentiation of
storage parenchymal cells and the production of starch granules in these cells (Figure 5).
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Figure 4. Functional enrichment of photosynthesis and carbohydrate related terms in the high
temperature-mediated growth retardation of P. ginseng. (A) Photosynthesis and carbohydrate related
biological processes of DEGs are represented and are sorted by fold enrichment. The dot size
indicates the number of DEGs associated with the process and the dot color indicates the significance
of the enrichment (−log10 (FDR-corrected p-values)). The vertical grey dashed line represents a
fold enrichment of 1. (B,C) Enrichment plot for photosynthesis (GO:0015979) and carbohydrate
biosynthesis process (GO:0016051). Red lines indicate the leading-edge subset genes in the GSEA. (D)
Diagram of the photosynthesis pathway among the upregulated (blue circle) and downregulated
(red) genes involved in photosynthesis. Red/blue semicircle indicated that all of the upregulated and
downregulated genes in P. ginseng were included. The list of genes is in Table S2. Thick gray dashed
lines indicate membrane.

Taken together, our findings reveal that prolonged exposure to high temperature
is detrimental to the growth and development of P. ginseng. High temperature appears
to be recognized primarily in the shoot and induces the retardation of stem growth and
leaf expansion by repressing the expression of cell wall organization and biogenesis as
well as cell growth related genes such as EXPs. Furthermore, high temperature activates
stress-related hormones and reactive oxygen species (ROS) signaling pathways and gradu-
ally reduces photosynthetic activity. These effects inhibit carbohydrate biosynthesis and
subsequently diminish phloem transport, decreasing the sink activity of ginseng storage
roots. In addition, we discovered that cambium activity was reduced in storage roots, and
the differentiation of storage parenchymal cells and the development of starch granules
were inhibited by the extended exposure to high temperature (Figure 6).
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3. Discussion

Global warming has increased the frequency of heat waves and tropical nights in
recent years [5,6,8]. Growth of ginseng is frequently inhibited by biotic and abiotic stresses,
with high temperature being the most detrimental environmental stress. In the last decade,
the molecular genetic mechanisms of plant physiological responses to high temperature
have been studied in model plants including Arabidopsis, rice, and tomato [9,32]. How-
ever, only a few studies have been conducted in P. ginseng to investigate the regulatory
networks involved in the plant response to high temperature [29,30]. Some genes may
have functionally diverged over the course of evolution, and homologous genes in other
plant species may have evolved to perform different functions. Therefore, additional
research on P. ginseng is necessary to enhance our understanding of the regulatory mecha-
nisms involved in the response to high temperatures. The response of P. ginseng to high
temperature and the integration of signaling pathways with the downstream signaling
network that controls plant growth and development need to be elucidated. In this study,
the physiological roles of the high temperature response of P. ginseng in shoot and root
growth retardation were investigated, and the core transcriptional network involved in
this process was elucidated (Figure 6). Our results demonstrated that high temperature
inhibits the primary and secondary growth of P. ginseng shoots and roots, respectively
(Figures 1 and 3). In addition, high temperatures inhibited the development of starch
granules in storage parenchymal cells by downregulating photosynthesis and carbohydrate
biosynthesis-related genes (Figures 4 and 5).

To date, extensive research has been conducted on the complex hormonal regulation of
plant growth at high temperature [10,32]. Studies show that plant hormones such as ABA,
JA, SA, and ET contribute to thermotolerance by reducing oxidative damage and providing
physiological protection from high temperature-induced damage [33–36]. The results of
RNA-seq data analysis and GESA showed that high temperature enhanced the expression
of P. ginseng genes involved in the response to ABA, JA, SA, and ET (Figures 2 and S2).
These results are consistent with those of previous studies in other plant species [19].
Further research is needed to determine the function of these genes and other downstream
genes involved in the response to well-known stress hormones (ABA, JA, SA, and ET) in
P. ginseng.

Histological analysis of shoot and root sections was performed to understand the high
temperature-induced changes in plant growth and development in P. ginseng (Figures 1
and 3). Transcriptome profiling of P. ginseng suggests that high-temperature-repressed
shoot and root growth is associated with cell wall organization and biogenesis (Figures 2
and S3). The remodeling of plant cell wall composition, which is highly flexible and diverse
in nature, is critical during plant growth [37–39]. The cell wall is the first physical barrier
that protects plants against heat stress. The modification of cell wall structure is important
as it improves the ability of plants to perceive and respond to multiple abiotic stresses,
thus conferring stress tolerance [40]. In addition, studies show that plants respond to high
temperature stress through cell wall loosening [41–43]. However, in the current study, high
temperature treatment retarded the growth of P. ginseng shoots and roots by repressing
cell wall loosening (Figures 1 and 3). Furthermore, our RNA-seq data analysis and GSEA
results revealed that high temperature decreased the expression of genes related to cell
wall loosening and biogenesis (Figure 2, Figures S3 and S4). These results suggest that the
genetic and physiological effects of high temperature on plant growth differ between sun
and shade plants. Additionally, these findings indicate that the formation of a signaling
network through plant hormone crosstalk is important for the high temperature response
and growth in P. ginseng. This further emphasizes the importance of understanding the
response to and mechanisms of development under high temperature stress in P. ginseng.

GO enrichment analysis revealed that the GO term ‘photosynthesis’ was significantly
enriched in the biological process category (Figures 2B and 4A). Genes related to light
harvesting and the light and dark reactions of photosynthesis were significantly selected in
the GSEA (Figure S6), and many photosynthesis-related genes were differentially regulated
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in high temperature-treated ginseng (Figure S5). Many previous studies have shown that
photosynthesis is extremely sensitive to high temperature and is inhibited long before the
impairment of photosystems [3,44]. Accordingly, the expression patterns of photosynthesis-
related genes (light harvesting, light reaction, dark reaction, carbohydrate, and chlorophyll)
were reduced in high temperature-treated ginseng plants (Figures 4D and S5). Consistently,
high temperature treatment appeared to repress starch granule development and reduce
shoot and root growth in ginseng (Figure 5). In addition, starch is the key determinant
of plant fitness under abiotic stress conditions such as high temperature [45,46]. These
results suggest that the inhibition of photosynthesis and plant fitness at high temperature
represses the production of starch granules in storage parenchymal cells of P. ginseng roots
(Figure 5).

4. Materials and Methods
4.1. Plant Materials and Growth Condition

One-year-old P. ginseng Yunpoong cultivar seedlings were provided by the National
Institute of Horticultural and Herbal Science of Korea. To test thermomorphogenic re-
sponses of P. ginseng, the seedlings were germinated for 3 days at 23 ◦C with a 16 h light/8
h dark cycle into the ginseng cultivation soil medium in a greenhouse. The fully germi-
nated seedlings were transferred into growth chambers at 23, 28, and 30 ◦C for 7 days. To
investigate the response to prolonged high temperature exposure, on 22April 2021, the
seedlings were transplanted in plastic pots with a mixture of commercial horticultural
medium soil (Golden Root; Nongkyung Co., Jincheon, Korea). They were transferred to
the SPAR (soil-plant-atmosphere research) chambers at the Department of Herbal Crop
Research in Eumseong, South Korea (127◦45′13.14 E, 36◦56′36.63 N), where a four-layered
shade net was placed over them. To prepare appropriate heat-treated ginseng root samples,
1-year-old seedlings were placed in SPAR chamber from June to September of 2022. The
temperature in the SPAR chamber was 2 ◦C, 4 ◦C, and 6 ◦C higher than the 10-year (2012
to 2021) hourly average temperature of Eumsung, South Korea. The chambers’ relative
humidity and CO2 concentrations were set to 60% and 400 ppm, respectively, and an
auto-dripper irrigation system was used to maintain the soil water content at about 15–20%.
With information from the Korea Meteorological Administration, the average hourly tem-
peratures in Eumseong during the previous 10 years (2011–2020) were determined. From
June through August, four ETC treatments were applied to the plants in the SPAR chambers:
0 ◦C (control treatment) and 2 ◦C above the mean hourly average air temperature.

4.2. Histological Sections and Microscopy

We used paraffin-mediated sectioning to obtain histological section images of P. ginseng
root and shoot samples. The paraffin sectioning method was carried out in the same manner
as described in our previous work [23]. Fresh P. ginseng roots and shoots were fixed in 1%
glutaraldehyde and 4% formaldehyde in PBS pH 7.0 overnight at 4 ◦C. The tissues were
dehydrated in 30%, 50%, 70%, 90%, and 100% EtOH three times for one hour each before
being embedded in paraffin. Microtome sections of 5–10 µm thickness were mounted on
slides and stained with 1% Safranin-O (Cat. S2255, SIGMA, St. Louis, MO, USA) and 0.5%
Astra blue (Cat. sc-214558A, Santa-Cruz Biochem, Dallas, TX, USA). Using a Slideview
scanner and a BX53 microscope, bright and polarized light images of P. ginseng samples
were obtained (Olympus, Tokyo, Japan). The number of root cells was counted along
a straight line drawn by cambium layers from resin ducts to inner xylem vessel cells to
compare the secondary growth of storage roots.

4.3. RNA Extraction and qRT-PCR

Total RNA was extracted from P. ginseng shoots treated with mock and heat stress for
4 and 7 days, respectively, using an Easy Spin RNA Extraction Kit (iNtRON Biotechnology,
Seongnam, Korea) according to the manufacturer’s instructions. cDNA was produced with
the TOP scriptTM RT Dry MIX to confirm the RNA-seq data (Cat. no. RT200, Enzynomics,
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Daejeon, Korea). Quantitative real-time reverse transcription-polymerase chain reaction
(qRT-PCR) was carried out with a KOD SYBR qRT MIX (TOYOBO, Osaka, Japan) to validate
the transcripts level of Gene Set Enrichment Analysis (GSEA) transcriptome data that is
down or upregulated by heat stress. The internal control for qRT-PCR was PgACT. All
primer sequences are presented in Table S3.

4.4. Differentially Expressed Genes Analysis

Using prinseq-lite version (0.20.4) and the following parameters: min len 50; min qual
score 5; min qual mean 15; derep 14; trim qual left 15; trim qual right 15 [47]. Using Bowtie
2 [48], each sample’s paired-end reads were aligned to the ginseng reference sequences.
For each transcript, read counts and TMM-normalized TPM (trimmed mean of M value-
normalized transcripts per million) values were obtained using the RSEM 1.3.0 program [49].
EdgeR version 3.16.5 was used to identify differentially expressed genes by calculating the
negative binomial dispersion across conditions for differential gene expression analysis [50].
Significantly differentially expressed genes were considered to have a false discovery rate
(FDR)-adjusted p value of 0.05 [51]. The Ginseng Genome Database (http://ginsengdb.
snu.ac.kr/index.php, accessed on 26 February 2022) was used for reference sequences
of ginseng.

4.5. Functional Annotation

For functional annotation of DEGs, the BLAST program was used with e-value thresh-
old of 1E–5 against Arabidopsis thaliana protein database. The DAVID platform was used for
gene ontology (GO) term enrichment analysis, and the enriched GO term was determined
by modified Fisher Exact test (p < 0.05) [52,53]. GSEA was used to further analyze enriched
GO genes, as described in our previous work [51]. The bar graph was visualized with
the ‘ggplot2’ R package [54]. In the enrichment plot, the red line represents the subset of
genes that contributed the most to the enrichment score (ES) as the leading-edge group.
In the plot, the ranking list metric measures the association between a gene and the plant
phenotype. In the ranking list, positive and negative values indicate genes upregulated
(red color gradient) and downregulated (blue) in control samples, respectively. To identify
the most representative GO term from the list of enriched photosynthesis-related terms, we
used REVIGO (http://revigo.irb.hr/, accessed on 3 July 2022) with a strict dispensability
cutoff (0.05). Visualization of enriched GO terms was performed using the R package
‘ggplot2’ [55].

5. Conclusions

Understanding the growth and fitness of P. ginseng under high temperature stress
can extend our knowledge of the mechanisms of high temperature responses in P. ginseng.
Although this study demonstrates that high temperature reduces shoot and root growth
and inhibits starch granule production in P. ginseng, the downstream signaling pathways
that interact with the upstream plant hormone signaling pathways to regulate plant growth
and fitness at high temperature remain unclear. Identification of the molecular mechanisms
underlying the crosstalk between high temperature response-related genes and other
signaling pathways during the growth and development of P. ginseng, a shade plant, is
expected to facilitate the breeding and development of high-temperature-tolerant cultivars.
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