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ABSTRACT

SV-plaudit is a framework for rapidly curating structural variant (SV) predictions. For each SV, we generate an image that
visualizes the coverage and alignment signals from a set of samples. Images are uploaded to our cloud framework where
users assess the quality of each image using a client-side web application. Reports can then be generated as a tab-delimited
file or annotated Variant Call Format (VCF) file. As a proof of principle, nine researchers collaborated for 1 hour to evaluate
1,350 SVs each. We anticipate that SV-plaudit will become a standard step in variant calling pipelines and the crowd-sourced
curation of other biological results.
Code available at https://github.com/jbelyeu/SV-plaudit
Demonstration video available at https://www.youtube.com/watch?v=ono8kHMKxDs
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Background

Large genomic rearrangements, or structural variants (SVs),
are an abundant form of genetic variation within the hu-
man genome [1, 2], and they play an important role in both
species evolution [3, 4] and human disease phenotypes [5–9].
While many methods have been developed to identify SVs from
whole-genome sequencing (WGS) data [10–14], the accuracy of
SV prediction remains far below that of single-nucleotide and
insertion-deletion variants [1]. Improvements to SV detection al-
gorithms have, in part, been limited by the availability and appli-
cability of high-quality truth sets. While the Genome in a Bottle
[15] consortium has made considerable progress toward a gold-
standard variant truth set, the incredibly high quality of the data
underlying this project (300x and PCR free) calls into question

the generality of the accuracy obtained in typical quality WGS
datasets (30x with PCR amplification).

Given the high false positive rate of SV calls from genome
and exome sequencing, manual inspection is a critical quality
control step, especially in clinical cases. Scrutiny of the evidence
supporting an SV is considered to be a reliable “dry bench” val-
idation technique, as the human eye can rapidly distinguish a
true SV signal from alignment artifacts. In principle, we could
improve the accuracy of SV call sets by visually validating every
variant. In practice, however, current genomic data visualiza-
tion methods [16–21] were designed primarily for spot checking
a small number of variants and are difficult to scale to the thou-
sands of SVs in typical call sets. Therefore, a curated set of SVs
requires a new framework that scales to thousands of SVs, min-
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imizes the time needed to adjudicate individual variants, and
manages the collective judgment of large and often geographi-
cally dispersed teams.

Here we present SV-plaudit, a fast, highly scalable framework
enabling teams of any size to collaborate on the rapid, web-
based curation of thousands of SVs. In the web interface, users
consider a curation question for a series of pre-computed im-
ages (Fig. 1, Supplementary Fig. S1) that contain the coverage,
paired-end alignments, and split-read alignments for the region
surrounding a candidate SV for a set of relevant samples (e.g., tu-
mor and matched normal samples). The curation question is de-
fined by the researcher to match the larger experimental design
(e.g., a cancer study may ask if the variant is a somatic variant,
a germline variant, or a false positive). Responses are collected
and returned as a report that can be used to identify high-quality
variants.

While a team of curators is not required, collecting multi-
ple opinions for each SV allows SV-plaudit to report the consen-
sus view (i.e., a “curation score”) of each variant. This consensus
is less susceptible to human error and does not require expert
users to score variants. With SV-plaudit, it is practical to inspect
and score every variant in a call set, thereby improving the ac-
curacy of SV predictions in individual genomes and allowing cu-
ration of high quality-truth sets for SV method tuning.

Results

To assess SV-plaudit’s utility for curating SVs, nine researchers
in the Quinlan laboratory at the University of Utah manually
inspected and scored the 1,350 SVs (1,310 deletions, 8 duplica-
tions, 4 insertions, and 28 inversions) that the 1000 Genomes
Project [1] identified in the NA12878 genome (Supplemental File
1). Since we expect trio analysis to be a common use case of
SV-plaudit, we included alignments from NA12878 and her par-
ents (NA12891 and NA12892), and participants considered the
curation question “The SV in the top sample (NA12878) is:” and
answers “GOOD,” “BAD,” or “DE NOVO.” In total, the full exper-
iment took less than 2 hours with Amazon costs totaling less
than $0.05. The images (Supplemental File 2) were generated in
3 minutes (20 threads, 2.7 seconds per image) and uploading to
S3 required 5 minutes (full command list in Supplemental File
3). The mean time to score all images was 60.1 minutes (2.67 sec-
onds per image) (Fig. 2A, reports in Supplemental Files 4, 5). In
the scoring process, no de novo variants were identified. Forty
images did not render correctly due to issues in the alignment
files (e.g., coverage gaps) and were removed from the subsequent
analysis (Supplemental File 6).

For this experiment, we used a curation score that mapped
“GOOD” and “DE NOVO” to the value one, “BAD” to the value
zero, and the mean as the aggregation function (Fig. 2B). Most
(70.5%) variants were scored unanimously, with 67.1% being
unanimously “GOOD” (score = 1.0, e.g., Fig. 1A) and 3.4% being
unanimously “BAD” (score = 0.0, e.g., Fig. 1B). Since we had nine
scores for each variant, we expanded our definition of “unam-
biguous” variants to be those with at most one dissenting vote
(score <0.2 or >0.8), which accounted for 87.1% of the variants.
The 12.9% of SVs that were “ambiguous” (more than one dis-
senting vote, 0.2 <= score <= 0.8) were generally small (median
size of 310.5 bp vs 899.5 bp for all variants, Fig. 2C) or contained
conflicting evidence (e.g., paired-end and split-read evidence in-
dicated an inversion and the read-depth evidence indicated a
deletion, e.g., Fig. 1C.).

Other methods, such as SVTYPER [22] and CNVNATOR [23],
can independently assess the validity of SV calls. SVTYPER geno-

types SVs for a given sample by comparing the number of dis-
cordant paired-end alignments and split-read alignments that
support the SV to the number of pairs and reads that support
the reference allele. CNVNATOR uses sequence coverage to es-
timate copy number for the region affected by the SV. Both of
these methods confirm the voting results (Fig. 2D). Considering
the set of “unambiguous” deletions, SVTYPER and CNVNATOR
agree with the SV-plaudit curation score in 92.3% and 81.7% of
cases, respectively. Here, agreement means that unambiguous
false SVs (curation score <0.2) have a CNVNATOR copy num-
ber near 2 (between 1.4 and 2.4) or an SYTYPER genotype of
homozygous reference. Unambiguous true SVs (curation score
>0.8) have a CNVNATOR copy number near 1 or 0 (<1.4), or an
SYTYPER genotype of nonreference (heterozygous or homozy-
gous alternate).

Despite this consistency, using either SVTYPER or CNVNA-
TOR to validate SVs can lead to false positives or false negatives.
For example, CNVNATOR reported a copy number loss for 44.2%
of the deletions that were scored as unanimously BAD, and
SVTYPER called 30.7% of the deletions that were unanimously
GOOD as homozygous reference. Conversely, CNVNATOR had
few false negatives (2.4% of unanimously GOOD deletions were
called as copy neutral), and SVTYPER had few false positives
(0.2% of nonreference variants were unanimously BAD). This
comparison is meant to demonstrate that different methods
have distinct strengths and weaknesses and should not be taken
as a direct comparison between SVTYPER and CNVNATOR, since
CNVNATOR was one of nine methods used by the 1000 Genomes
project while SVYTPER was not.

These results demonstrate that, with SV-plaudit, manual cu-
ration can be a cost-effective and robust part of the SV detection
process. While we anticipate that automated SV detection meth-
ods will continue to improve, due in part to the improved truth
sets that SV-plaudit will provide, directly viewing SVs will remain
an essential validation technique. By extending this validation
to full call sets, SV-plaudit not only improves specificity but can
also enhance sensitivity by allowing users to relax quality filters
and rapidly screen large sets of calls. Beyond demonstrating SV-
plaudit’s utility, our curation of SVs for NA12878 is useful as a
high-quality truth set for method development and tuning. A
Variant Call Format (VCF) file of these variants annotated with
their curation score is available in Supplementary File 5.

Discussion

SV-plaudit is an efficient, scalable, and flexible framework for the
manual curation of large-scale SV call sets. Backed by Amazon
S3 and DynamoDB, SV-plaudit is easy to deploy and scales to
teams of any size. Each instantiation of SV-plaudit is completely
independent and can be deployed locally for private or sensi-
tive datasets or be distributed publicly to maximize participa-
tion. By rapidly providing a direct view of the raw data underly-
ing candidate SVs, SV-plaudit delivers the infrastructure to man-
ually inspect full SV call sets. SV-plaudit also allows researchers
to specify the questions and answers that users consider to en-
sure that the curation outcome supports the larger experimen-
tal design. This functionality is vital to a wide range of WGS ex-
periments, from method development to the interpretation of
disease genomes. We are actively working on machine learning
methods that will leverage the curation scores for thousands of
SV predictions as training data.
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Figure 1: Example samplot images of putative deletion calls that were scored as (A) unanimously GOOD, (B) unanimously BAD, and (C) ambiguous with a mix of GOOD
and BAD scores with respect to the top sample (NA12878) in each plot. The black bar at the top of the figure indicates the genomic position of the predicted SV, and the
following subfigures visualize the alignments and sequence coverage of each sample. Subplots report paired-end (square ends connected by a solid line, annotated as
concordant and discordant paired-end reads in A) and split-read (circle ends connected by a dashed line, annotated in A) alignments by their genomic position (x-axis)

and the distance between mapped ends (insert size, left y-axis). Colors indicate the type of event the alignment supports (black for deletion, red for duplication, and
blue and green for inversion) and intensity indicates the concentration of alignments. The grey filled shapes report the sequence coverage distribution in the locus for
each sample (right y-axis, annotated in A). The samples in each panel are a trio of father (NA12891), mother (NA12892), and daughter (NA12878).

Conclusions

SV-plaudit was designed to judge how well the data in an align-
ment file corroborate a candidate SV. The question of whether
a particular SV is a false positive due to artifacts from sequenc-
ing or alignment is a broader issue that must be answered in
the context of other data sources such as mappability and re-
peat annotations. While this second level of analysis is crucial,
it is beyond the scope of this paper, and we argue this analysis
be performed only for those SVs that are fully supported by the
alignment data. While SV-plaudit combines samplot and PlotCritic
to enable the curation of structural variant images, we empha-
size that the PlotCritic framework can be used to score images of

any type. Therefore, we anticipate that this framework will facil-
itate “crowd-sourced” curation of many other biological images.

Methods
Overview

SV-plaudit (Fig. 3) is based on two software packages: samplot for
SV image generation and PlotCritic for staging the Amazon cloud
environment and managing user input. Once the environment
is staged, users log into the system and are presented with a
series of SV images in either a random or predetermined order.
For each image, the user answers the curation question and re-



4 SV-plaudit

B

D

A

C

Unambiguously
GOOD

AmbiguousUnambiguously 
BAD

U
na

ni
m

ou
s

U
na

ni
m

ou
s

Figure 2: (A) The distribution of the time elapsed from when an image was presented to when it was scored. (B) The distribution of curation scores. (C) The SV size
distribution for all, unanimous (score 0 or 1), unambiguous (score <0.2 or >0.8), and ambiguous (score >= 0.2 and <= 0.8) variants. (D) A comparison of predictions for

deletions between CNVNATOR copy number calls (y-axis), SVTYPER genotypes (color, “Ref.” is homozygous reference and “Non-ref.” is heterozygous or homozygous
alternate), and curation scores (x-axis). This demonstrates a general agreement between all methods with a concentration of reference genotypes and copy number
2 (no evidence for a deletion) at curation score <0.2, and non-reference and copy number one or zero events (evidence for a deletion) at curation score >0.8. There are
also false positives for CNVNATOR (copy number <2 at score = 0) and false negatives for SVTYPER (reference genotype at score = 1).

sponses are logged. Reports on the progress of a project can be
quickly generated at any point in the process.

Samplot

Samplot is a Python program that uses pysam [24] to extract align-
ment data from a set of BAM or CRAM files and matplotlib [25] to
visualize the raw data for the genomic region surrounding a can-
didate SV (Fig. 3A). For each alignment file, samplot renders the
depth of sequencing coverage, paired-end alignments, and split-
read alignments where paired-end and split-read alignments
are color-coded based by the type of SV they support (e.g., black
for deletion, red for a duplication, etc.) (Fig. 1, Supplementary
Fig. S2, which considers variants at different sequencing cov-
erages, and Supplementary Fig. S3, which depicts variants sup-
ported by long-read sequencing) [26, 27]. Alignments are posi-
tioned along the x-axis by genomic location and along the left y-
axis by the distance between the ends (insert size), which helps
users to differentiate normal alignments from discordant align-
ments that support an SV. Depth of sequencing coverage is also
displayed on the right y-axis to allow users to inspect whether
putative copy number changes are supported by the expected
changes in coverage. To improve performance for large events,
we downsample “normal” paired-end alignments (a +/- orien-
tation and an insert size range that is within Z standard devi-
ations from the mean; by default Z = 4). Plots for each align-
ment file are stacked and share a common x-axis that reports
the chromosomal position. By convention, the sample of inter-
est (e.g., proband or tumor) is displayed as the top track, followed

by the set of related reference genomes tracks (e.g., parents and
siblings, matched normal sample). Users may specify the exact
order by using command line parameters to samplot. A visual-
ization of genome annotations and genes and exons within the
locus is displayed below the alignment plots to provide context
for assessing the SV’s relevance to phenotypes. Rendering time
depends on the number of samples, sequence coverage, and the
size of the SV, but most images will require less than 5 seconds,
and samplot rendering can be parallelized by SV call.

PlotCritic

PlotCritic (Fig. 3B) provides a simple web interface for scoring
images and viewing reports that summarize the results from
multiple users and SV images. PlotCritic is both highly scalable
and easy to deploy. Images are stored on Amazon Web Ser-
vices (AWS) S3 and DynamoDB tables store project configuration
metadata and user responses. These AWS services allow Plot-
Critic to dynamically scale to any number of users. It also pre-
cludes the need for hosting a dedicated server, thereby facilitat-
ing deployment.

After samplot generates the SV images, PlotCritic manages
their transfer to S3 and configures tables in DynamoDB based
on a JSON configuration file (config.json file in Fig. 3B). In this
configuration file, one defines the curation questions posed to
reviewers as well as the allowed answers and associated key-
board bindings to allow faster responses (curationQandA field
in Fig. 3B). In turn, these dictate the text and buttons that ap-
pear on the resulting web interface. As such, it allows the inter-
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Figure 3: The SV-plaudit process. (A) Samplot generates an image for each SV from VCF considering a set of alignment (BAM or CRAM) files. (B) PlotCritic uploads the

images to an Amazon S3 bucket and prepares DynamoDB tables. Users select a curation answer (“GOOD,” “BAD,” or “DE NOVO”) for each SV image. DynamoDB logs
user responses and generates reports. Within a report, a curation score function can be specified by mapping answer options to values and selecting an aggregation
function. Here “GOOD” and “DE NOVO” were mapped to 1, “BAD” to 0, and the mean was used. An especially useful output option is a VCF annotated with the curation
scores (shown here in bold as a SVP).

face to be easily customized to support a wide variety of curation
scenarios. For example, a cancer experiment may display a tu-
mor sample and matched normal sample and ask users if the SV
appears in both samples (i.e., a germline variant) or just in the
tumor sample (i.e., a somatic variant). To accomplish this, the
curation question (question field in Fig. 3B) could be “In which
samples does the SV appear?”, and the answer options (answers
field in Fig. 3B) could be “TUMOR,” “BOTH,” “NORMAL,” or “NEI-
THER.” Alternatively, in the case of a rare disease, the interface
could display a proband and parents and ask if the SV is only
in the proband (i.e., de novo) or if it is also in a parent (i.e., in-
herited). Since there is no limit to the length of a question or
number of answer options, PlotCritic can support more complex
experimental scenarios.

Once results are collected, PlotCritic can generate a tab-
delimited report or annotated VCF that, for each SV image, de-
tails the number of times the image was scored and the full set of
answers it received. Additionally, a curation score can be calcu-
lated for each image by providing a value for each answer option
and an aggregation function (e.g., mean, median, mode, stan-
dard deviation, min, max). For example, consider the cancer ex-
ample from above where the values 3, 2, 1, and 0 mapped to the
answers “TUMOR,” “BOTH,” “NORMAL,” and “NEITHER,” respec-
tively. If “mode” were selected as the curation function, then the
curation score would reflect the opinion of a plurality of users.
The mean would reflect the consensus among all users, and
the standard deviation would capture the level of disagreement
about each image. While we expect mean, median, mode, stan-

dard deviation, min, and max to satisfy most use cases, users
can implement custom scores by operating on the tab-delimited
report.

Each PlotCritic project is protected by AWS Cognito user au-
thentication, which securely restricts access to the project web-
site to authenticated users. A project manager is the only au-
thorized user at startup and can authenticate other users using
Cognito’s secure services. The website can be further secured us-
ing HTTPS, and additional controls, such as IP restrictions, can
be put in place by configuring AWS IAM access controls directly
for S3 and DynamoDB.

Availability of source code and requirements

Project name: SV-plaudit
Project home page: https://github.com/jbelyeu/SV-plaudit
Operating systems: Mac OS and Linux
Programing language: Python, bash
License: MIT
Research Resource Initiative Identification ID: SCR 01 6285

Availability of supporting data and material

The datasets generated and/or analyzed during the current
study are available in the 1000 Genomes Project repository, ftp:
//ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase3/data/

https://github.com/jbelyeu/SV-plaudit
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase3/data/
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All test data used or generated during this study, and a snap-
shot of the code, are available in the GigaScience GigaDB reposi-
tory [28].

Additional files

Supplemental Figure 1. Plots for different structural variant
types shown in sample NA12878. (A) A region is shown where
a duplication event was called. (B) A region is shown where an
inversion event was called.
Supplemental Figure 2. A deletion call for sample NA12878 using
different sequencing data to compare variant plots from high,
medium, and low coverage levels. Mean sequencing depth of the
BAM files used was (A) 58x (1000 Genomes Project, high cover-
age), (B) 33x (Genome in a Bottle Consortium), (C) and 5x (1000
Genomes Project, low coverage).
Supplemental Figure 3. A selection of structural variant visual-
izations from the Genome in a (A and B), “LongReadHomRef” in
(C), and “NoConsensusGT” in (D).
Supplemental File 1.vcf
Supplemental File 3.sh
Supplemental File 4.csv
Supplemental File 5.vcf
Supplemental File 6.txt

SV: structural variant; VCF: Variant Call Format; WGS: Whole
Genome Sequencing.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

The authors declare that they have no competing interests.

Funding

This research was supported by US National Human Genome Re-
search Institute awards to R.M.L. (NIH K99HG009532) and A.R.Q.
(NIH R01HG006693 and NIH R01GM124355) as well as a US Na-
tional Cancer Institute award to A.R.Q. (NIH U24CA209999).

Authors’ contributions

J.R.B. and R.M.L. developed the software. J.R.B., T.J.N., B.S.P., T.A.S.,
J.M.H., S.N.K., M.E.C., B.K.L., and R.M.L. scored variants for the ex-
periment. J.R.B., A.R.Q., and R.M.L. wrote the manuscript. A.R.Q.
and R.M.L. conceived the study.

References

1. Sudmant PH, Rausch T, Gardner EJ et al. An integrated map
of structural variation in 2,504 human genomes. Nature
2015;526:75–81.

2. Redon R, Ishikawa S, Fitch KR et al. Global variation in copy
number in the human genome. Nature 2006;444:444–54.

3. Newman TL, Tuzun E, Morrison VA et al. A genome-wide sur-
vey of structural variation between human and chimpanzee.
Genome Res. 2005;15:1344–56.

4. Bailey JA, Eichler EE. Primate segmental duplications: cru-
cibles of evolution, diversity and disease. Nat Rev Genet
2006;7:552–64.

5. Payer LM, Steranka JP, Yang WR et al. Structural variants

caused by Alu insertions are associated with risks for many
human diseases. Proc Natl Acad Sci U S A 2017;114:E3984–92.

6. Schubert C. The genomic basis of the Williams-Beuren syn-
drome. Cell Mol Life Sci 2009;66:1178–97.

7. Pleasance ED, Cheetham RK, Stephens PJ et al. A comprehen-
sive catalogue of somatic mutations from a human cancer
genome. Nature 2010;463:191–96.

8. Venkitaraman AR. Cancer susceptibility and the functions of
BRCA1 and BRCA2. Cell 2002;108:171–82.

9. Zhang F, Gu W, Hurles ME et al. Copy number variation in
human health, disease, and evolution. Annu Rev Genomics
Hum Genet 2009;10:451–81.

10. Ye K, Schulz MH, Long Q et al. Pindel: a pattern growth ap-
proach to detect break points of large deletions and medium
sized insertions from paired-end short reads. Bioinformatics
2009;25:2865–71.

11. Rausch T, Zichner T, Schlattl A et al. DELLY: structural variant
discovery by integrated paired-end and split-read analysis.
Bioinformatics 2012;28:i333–39.

12. Handsaker RE, Korn JM, Nemesh J et al. Discovery and geno-
typing of genome structural polymorphism by sequencing
on a population scale. Nat Genet 2011;43:269–76.

13. Kronenberg ZN, Osborne EJ, Cone KR et al. Wham: Identify-
ing structural variants of biological consequence. PLoS Com-
put Biol 2015;11:e1004572.

14. Layer RM, Chiang C, Quinlan AR et al. LUMPY: a probabilis-
tic framework for structural variant discovery. Genome Biol.
2014;15:R84.

15. Zook JM, Chapman B, Wang J et al. Integrating human se-
quence data sets provides a resource of benchmark SNP and
indel genotype calls. Nat Biotechnol 2014;32:246–51.
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