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Suppression of a broad spectrum of liver
autoimmune pathologies by single
peptide-MHC-based nanomedicines
Channakeshava Sokke Umeshappa 1, Santiswarup Singha1, Jesus Blanco2, Kun Shao1,

Roopa Hebbandi Nanjundappa1, Jun Yamanouchi1, Albert Parés 2,3, Pau Serra2, Yang Yang1,4 &

Pere Santamaria1,2

Peptide-major histocompatibility complex class II (pMHCII)-based nanomedicines displaying

tissue-specific autoantigenic epitopes can blunt specific autoimmune conditions by re-

programming cognate antigen-experienced CD4+ T-cells into disease-suppressing T-reg-

ulatory type 1 (TR1) cells. Here, we show that single pMHCII-based nanomedicines displaying

epitopes from mitochondrial, endoplasmic reticulum or cytoplasmic antigens associated with

primary biliary cholangitis (PBC) or autoimmune hepatitis (AIH) can broadly blunt PBC, AIH

and Primary Sclerosing Cholangitis in various murine models in an organ- rather than

disease-specific manner, without suppressing general or local immunity against infection

or metastatic tumors. Therapeutic activity is associated with cognate TR1 cell formation

and expansion, TR1 cell recruitment to the liver and draining lymph nodes, local B-regulatory

cell formation and profound suppression of the pro-inflammatory capacity of liver and liver-

proximal myeloid dendritic cells and Kupffer cells. Thus, autoreactivity against liver-enriched

autoantigens in liver autoimmunity is not disease-specific and can be harnessed to treat

various liver autoimmune diseases broadly.
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Nanoparticles (NPs) coated with mono-specific type 1
diabetes (T1D), experimental autoimmune encephalo-
myelitis (EAE) or collagen arthritis (CIA)-relevant

peptide-major histocompatibility complex (MHC) class II
(pMHCII) molecules can restore normoglycemia in diabetic
animals or motor function in paralyzed mice, and resolve
joint swelling and destruction in arthritic mice1. pMHCII-NPs
directly trigger sustained ligation of cognate antigen receptors on
autoantigen-experienced FoxP3–CD25– T-cells, promoting their
differentiation into T-regulatory-type-1 (TR1)-like cell progeny
in a phagocyte-independent manner, followed by systemic
expansion1,2. Consequently, these compounds cannot trigger
TR1-like cell formation or expansion in mice that are either
disease-free or do not express the cognate autoantigen1. These in
vivo-expanded TR1-like cells then broadly suppress the poly-
clonal T-cell responses underlying T1D, EAE, and CIA devel-
opment in a disease-specific manner, by suppressing local
autoantigen presentation and antigen-presenting cell (APC)
activation in a cognate antigen-dependent but non-antigen-
specific manner (i.e. by recognizing cognate pMHC molecules
on costimulation-competent, autoantigen-loaded APCs)1.

In autoimmune disorders like T1D, multiple sclerosis (MS)
or rheumatoid arthritis (RA), disease results from recruitment of
T-lymphocytes and B-lymphocytes recognizing a diverse reper-
toire of organ-specific autoantigens3,4. In other organ-specific
autoimmune disorders, such as in liver autoimmune diseases—
primary biliary cholangitis (PBC), primary sclerosing cholangitis
(PSC) or autoimmune hepatitis (AIH)—the autoimmune response
focuses on liver-enriched, non-organ-specific antigens, such as
the mitochondrial pyruvate dehydrogenase complex-E2 compo-
nent (PDC-E2) in PBC; or nuclear, cytoplasmic, or Golgi-enriched
proteins, such as F-actin, formimidoyltransferase cyclodeaminase
(FTCD), or cytochrome P450 (CYPD2D6) in AIH; or tropo-
myosin isoform 5 (hTM5) in PSC, among several others5–7.

Although AIH, PBC, and PSC are considered as distinct dis-
eases, there is a group of patients presenting with features of both
cholestatic liver disease and AIH. Furthermore, PBC is frequently
associated with extra-hepatic autoimmune conditions8. The
existence of these overlap syndromes suggests that activation of
T-cells targeting such liver-enriched autoantigens may contribute
to various liver autoimmune conditions. In that case, pMHCII-
based nanomedicines displaying epitopes from antigens relevant
to one disease (e.g. from PDC-E2 in PBC) might be able to trigger
the formation and expansion of epitope-specific TR1 cells capable
of blunting both the corresponding liver autoimmune disease
(e.g. PBC) and other liver autoimmune diseases.

We sought to test this hypothesis by asking if pMHCII-based
nanomedicines displaying epitopes from various PBC-relevant or
AIH-relevant antigens could blunt liver autoimmunity broadly.
We find that pMHCII-based nanomedicines displaying epitopes
from various liver-autoimmune disease-relevant antigens can
blunt not only the relevant liver autoimmune disease (i.e. PDC-
based nanomedicines blunt PBC) but also their irrelevant coun-
terparts (i.e. PSC and AIH in addition to PBC). Remarkably, they
do so without impairing the ability of the host to mount antibody
responses against exogenous antigens, to clear viral or bacterial
infections or to kill metastatic allogeneic tumors. Thus, hepato-
cyte and cholangiocyte autoimmune insults can readily trigger the
stimulation of peripheral T-cells recognizing liver-prevalent self-
antigens, and such T-cell responses can be harnessed by pMHCII-
based nanomedicines to treat liver autoimmunity broadly.

Results
TR1 cell formation and expansion by PBC-relevant pMHCII-
NPs. NOD.c3c4 mice, which carry anti-diabetogenic regions from

C57BL/6 chromosomes 3 and 4, spontaneously develop a form
of autoimmune biliary disease that resembles human PBC9.
Like >90% of PBC patients, these mice develop autoreactive T-cell
and B-cell responses against the dihydrolipoyl acetyltransferase
(E2) and dihydrolipoyl dehydrogenase-binding protein (E3BP)
components of the PDC complex10–12, leading to biliary epithelial
cell destruction, cholestasis, small bile duct proliferation, and
liver failure.

We searched for peptides in murine PDC-E2 capable of
binding to the NOD/NOD.c3c4 class II molecule IAg7 in silico.
IAg7-based pMHCs displaying two such epitopes (PDC-E2166–181
and PDC-E282–96) or a negative control peptide (the T1D-
relevant BDC2.5 mimotope) were purified from culture super-
natants of transgenic CHO cells and coated onto functionalized
iron-oxide NPs or used to produce pMHC tetramers1,2.

pMHC tetramer staining showed that the peripheral blood of
untreated NOD.c3c4 (but not NOD) mice harbor both PDC-
E2166–181-reactive and PDC-E282–96-reactive but not BDC2.5mi-
reactive CD4+ T-cells, particularly as mice age (Fig. 1a).
Treatment of 15-week-old NOD.c3c4 mice with PDC-E2166–181/
IAg7-NP (twice a week i.v.) triggered the expansion of the PDC-
E2166–181/IAg7 (but not PDC-E282–96/IAg7) tetramer+ T-cell pool
in peripheral blood (Fig. 1b), spleen, liver, portal/celiac (liver-
draining) lymph nodes, and bone marrow, as compared to
control NP-treated NOD.c3c4 littermates (having PBC) or
untreated NOD mice (not having PBC) (Fig. 1c, d). In fact,
this expansion was associated with significant reductions in the
frequencies of endogenous PDC-E282–96/IAg7 tetramer+ cells
(Fig. 1d). Treatment with T1D-relevant (but PBC-irrelevant)
BDC2.5/IAg7-NPs did not trigger cognate T-cell expansion
(Fig. 1b–e), confirming that pMHC-based nanomedicines exclu-
sively operate on autoantigen-experienced T-cells (BDC2.5-
like CD4+ T-cells are not expected to undergo activation by
their cognate beta cell autoantigen in the absence of diabetogenic
autoimmunity)1. As was the case for the TR1-like CD4+ T-cells
induced by T1D-relevant pMHC class II-NPs in NOD mice1,
the PDC-E2166–181/IAg7 tetramer+ T-cells that expanded in
response to PDC-E2166–181/IAg7-NP treatment were CD25–/
FoxP3– and expressed the TR1 markers lymphocyte-activation
gene-3 (LAG-3), CD49b (integrin a2 or very-late antigen-2), LAP
(transforming growth factor beta latency-associated peptide),
program cell death protein-1 (PD1), and inducible T-cell
costimulator (ICOS) (Fig. 1f and Supplementary Fig. 1a–c).
Although most of the tetramer+ cells expressed LAG-3,
expression of CD49b was less penetrant, particularly in the
spleen (Supplementary Fig. 1b). This phenotype is similar to that
described for the TR1-like CD4+ T-cells arising in NOD mice in
response to T1D-relevant pMHC class II-NPs1. Increased levels
of these markers on tetramer+ CD4+ T-cells isolated from
target-organ draining LNs vs. spleen (Supplementary Fig. 1b) is
consistent with the positive effects of antigen-induced activation
of these cells on TR1 marker expression1,2. In addition, the
tetramer+ CD4+, but not the tetramer–CD4+ cells from these
mice (FACS-sorted) produced IL-10 (but not IFNγ, IL-2, IL-4, IL-
9, or IL-17) specifically in response to DCs pulsed with their
cognate but not non-cognate peptides ex vivo (PDC-E2166–181 vs.
BDC2.5mi, respectively; Fig. 1g). Similar results were obtained in
mice treated with PDC-E282–96/IAg7-NPs, displaying a second
PDC-E2-derived IAg7-binding peptide (Fig. 1b–d and Supple-
mentary Fig. 1a–c). These TR1-like CD4+ T-cells were not
“exhausted” CD4+ T-cells, because unlike CD4+PD1+LAG-3
+KLRG1+ (killer-cell lectin-like receptor 1) T-cells isolated from
old untreated NOD.c3c4 mice, PDC-E2166–181/IAg7 tetramer
+CD4+LAG-3+CD49b+ T-cell isolated from PDC-E2166–181/
IAg7-NP-treated animals proliferated in response to stimulation
with anti-CD3/anti-CD28 mAb-coated beads ex vivo, without
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undergoing activation-induced cell death (AICD) (Supplemen-
tary Fig. 1d). Thus, as it was the case for T1D, CIA, and EAE-
relevant pMHC class II-NPs, PBC-relevant pMHC class II-NPs
induce the formation and expansion of TR1-like CD4+ T-cells
in vivo.

TR1 cell-driven reversal of established PBC. NOD.c3c4 mice
display biliary epithelial proliferation, mononuclear cell infiltra-
tion of the biliary tree, massive bile duct involvement, and
enlargement of the common bile duct (CBD) by 6–8 weeks
(Fig. 2b−d). By ~15 weeks, they display increased total bile acid
(TBA) levels (Fig. 2a), anti-mitochondrial/PDC-E2-specific
autoantibodies (absent in NOD mice; Fig. 2e), and macroscopic
signs of liver disease (bile cysts) (Fig. 2d). The severity of these
read outs peaks at ~24 weeks (Fig. 2a–d), accompanied by ele-
vated levels of serum alanine aminotransferase (ALT) (Fig. 2a),
massive infiltration of the biliary epithelium by both CD4+ and

CD8+ T-cells (Fig. 2f), high titers of anti-nuclear autoantibodies
(ANAs) (Fig. 2e, right, also absent in NOD mice) and a nearly
three-fold increase in liver weight by ~38 weeks of age (Fig. 2d,
bottom).

Treatment of 15-week-old NOD.c3c4 mice with PDC-E2166–181/
IAg7-NPs and PDC-E282–96/IAg7-NPs, but not BDC2.5/IAg7-
NPs (displaying a pancreatic beta cell-specific epitope), resulted
in significant reductions in all examined biochemical, immuno-
logical, macroscopic, and microscopic readouts of PBC (Fig. 3a–f).
Similar results were obtained when treatment was initiated at
the peak of disease (24 weeks) (Fig. 3g–i and Supplementary
Fig. 1e). As was the case for the TR1 cells arising in response
to T1D and EAE-specific pMHC class II-NPs 1, mAb-based
in vivo blockade of IL-10 and TGFβ in pMHC-NP-treated
NOD.c3c4 mice showed that the therapeutic effects of PDC-
E2166–181/IAg7-NPs required these two TR1 cell-derived cytokines
(Fig. 4a–c).
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Fig. 1 Mitochondrial autoantigen-based pMHCII-NPs expand cognate TR1 cells. a Percentages of tetramer+ CD4+ cells in blood of NOD vs. NOD.c3c4
mice vs. age (4 and 5 mice/strain, respectively). b Percentage of tetramer+ CD4+ cells in blood of pMHCII-NP-treated NOD.c3c4 vs. untreated or
control NP-treated NOD or NOD.c3c4 mice. Data correspond to: 2–5 untreated NOD mice (1 experiment); 2–5 untreated and 15 Cys-NP-treated
NOD.c3c4 mice and 18 PDC166–181/IAg7-NP-treated NOD.c3c4 mice (5 experiments); three untreated and five PDC82–96/IAg7-NP-treated NOD.c3c4
mice (2 experiments); and 3–5 untreated and 3–5 BDC2.5mi/IAg7-NP-treated NOD.c3c4 mice (2 experiments). c Percentages of tetramer+CD4+ cells in
various organs from the mice in (c) at the end of therapy. d Percentages of tetramer+CD4+ cells in lymphoid organs and liver of NOD.c3c4 mice treated
for 9 weeks with PDC82–96/IAg7-NPs or PDC166–181/IAg7-NPs. Data correspond to four untreated and three PDC166–181/IAg7-NP treated, and six untreated
and eight PDC82–96/IAg7-NP-treated NOD.c3c4 mice. e Percentages of tetramer+CD4+ cells in liver and various lymphoid organs in the NOD.c3c4 mice
treated with BDC2.5mi/IAg7-NPs from panel b. f Expression of TR1 markers by PCLN tetramer+CD4+ cells. g Cytokine profile of sorted splenic tetramer
+CD4+ and tetramer–CD4+ cells upon stimulation with peptide-pulsed DCs. Data correspond to four PDC166–181/IAg7-NP-treated NOD.c3c4 mice from
three experiments. Data are represented as mean ± SEM. P values were calculated via two-way ANOVA (a and b) or Mann–Whitney U (c–e)
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To ascertain if the TR1-like CD4+ T-cells arising in these
mice in response to pMHC class II-NP treatment were, at least
in part, responsible for therapeutic activity, we transferred
purified splenic CD4+ cells from PDC-E2166–181/IAg7-NP-treated
or untreated mice into NOD.scid.c3c4 hosts reconstituted with
splenocytes from diseased (untreated) NOD.c3c4 donors. As
shown in Fig. 4d–g, CD4+ cells from PDC-E2166–181/IAg7-NP-
treated mice had significant disease-suppressive activity as
compared to CD4+ T-cells from untreated mice, and treatment
of the hosts with PDC-E2166–181/IAg7-NPs enhanced this effect.
The specificity of this in vivo disease-suppressive effect was
tested by repeating these adoptive transfer experiments but using
FACS-sorted PDC-E2166–181/IAg7 tetramer+ CD4+ T-cells from
PDC-E2166–181/IAg7-NP-treated NOD.c3c4 donors or control

BD2.5mi/IAg7 tetramer+ CD4+ T-cells from BDC2.5mi/IAg7-
NP-treated NOD mice; only the former, but not the latter, were
able to suppress disease progression in the hosts as compared
to hosts only receiving effector T-cells (Fig. 4h). Thus, these
PDC-E2 epitope-based nanomedicines trigger the formation and
expansion of cognate TR1-like cells, which then go on to suppress
the progression of PBC.

Suppression of local and proximal APCs. We have previously
shown that T1D-relevant antigen-specific TR1-like CD4+ T-cells
selectively suppress the proinflammatory and antigen-presenting
capacity of pancreatic lymph node-associated APCs by recog-
nizing cognate pMHC class II complexes on autoantigen-loaded
APCs draining the pancreas (the source of autoantigenic
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but not NOD mice spontaneously develop anti-PDC-E2-specific autoantibodies (left; n= 13 and 4 mice/strain type, respectively, from 2 to 3 experiments)
and ANAs (right). Photos show representative staining patterns of Hep2 cell nuclei with NOD and NOD.c3c4 sera at 1:160 dilution. Scale bars: 100 μm.
f Representative images of liver infiltration by CD4+ and CD8+ T-cells (left: ×20; right: ×40). Scale bars: left photographs: 100 μm; right photographs:
50 μm. Averaged data correspond to the mean ± SEM. P values were compared via Mann–Whitney U
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material)1,2. To investigate whether this is also the case for liver
autoimmune disease-relevant TR1-like CD4+ T-cells, we com-
pared the cytokine/chemokine profiles of CD11b+ cells purified
from the portal/celiac (liver-draining) and mesenteric (non-
draining, control) lymph nodes (PCLN and MLN, respectively) of
PDC-E2166–181/IAg7-NP-treated vs. control NP-treated animals
(Supplementary Fig. 2a). LPS-challenged CD11b+ cells from the
PCLN of control NP-treated animals secreted significantly higher

levels of a broad range of pro-inflammatory cytokines and che-
mokines (n= 14/30) than their MLN-associated counterparts,
consistent with an increased pro-inflammatory capacity of liver-
draining CD11b+ cells in diseased mice (Fig. 5a and Supple-
mentary Fig. 2b). Conversely, the PCLN CD11b+ cells of PDC-
E2166–181/IAg7-NP-treated mice secreted significantly lower levels
of these 14 pro-inflammatory mediators than both their mesen-
teric counterparts and the CD11b+ cells isolated from the
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PCLNs of control-NP-treated animals. This indicated that, in
NOD.c3c4 mice, treatment with PDC-E2166–181/IAg7-NPs selec-
tively downregulates the pro-inflammatory capacity of CD11b+
cells draining the liver (Fig. 5a and Supplementary Fig. 2b),
presumably because they are loaded with PDC-E2 antigenic
material shed from the injured liver and thus display the
TR1 cells’ cognate pMHC class II complexes on their surface.
pMHC-NP treatment also decreased the secretion of CCL4, IFNγ,

and IL-10 by PCLN-associated CD11b+ cells, but this reduction
was also seen in MLN-associated CD11b+ cells (Supplementary
Fig. 2b). Interestingly, Kupffer cells isolated from PDC-E2166–181/
IAg7-NP-treated mice (Supplementary Fig. 2a) also secreted sig-
nificantly lower levels of 8 of these 30 mediators (Fig. 5b and
Supplementary Fig. 2c). Thus, systemic expansion of PDC-E2-
specific TR1 CD4+ cells in NOD.c3c4 mice is associated with
dramatic inhibition of the pro-inflammatory properties of local

Fig. 3 Mitochondrial autoantigen-based pMHCII-NPs blunt PBC in NOD.c3c4 mice. a Changes in serum TBA and ALT levels [n= 15, four experiments;
n= 13, three experiments; and n= 8, two experiments (left to right)]. b Representative liver micrographs (×4 and ×10) of liver sections from Cys-NP-
treated vs. PDC166–181/IAg7-NP-treated mice (top) and average scores (bottom) [n= 5, two experiments; n= 20, five experiments; n= 17, four
experiments; and n= 6, two experiments (left to right)]. Scale bars: 100 μm. c and d Representative common bile duct (CBD) images (c, top), average CBD
scores/diameters (c, bottom), representative livers (d, top) and average liver scores/weight (d, bottom) [n= 5, two experiments; n= 30, seven
experiments; n= 19, four experiments; and n= 8, two experiments (left to right)]. e Representative images of treated NOD.c3c4 mice. f Anti-PDC-E2
positive antibody activity levels (PAA, see “Methods” for details) and ANA titers (top), and representative images of Hep2 cells stained with diluted (1:160)
sera (bottom) (n= 16, five experiments; n= 13, three experiments; n= 8, two experiments, respectively –left–; n= 7, 8 and 5, 1–3 experiments, respectively
–right–). Scale bars: 100 μm. g Percentages of tetramer+ cells in 38–44 week-old mice treated from 24 weeks (n= 6 and 7, respectively, two experiments).
h and i Macroscopic (h) and microscopic scores (i) for the mice in g [n= 31 (h) or 25 (i); n= 19 (h) or 7 (i); and n= 8 (h and i) (left to right)]. Data
correspond to mean ± SEM. P values were calculated via Mann–Whitney U
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Fig. 4 Therapeutic activity of PBC-relevant pMHCII-NPs can be suppressed by IL-10 and TGFβ blockade. a Percentages of tetramer+CD4+ T cells in blood
and lymphoid organs of NOD.c3c4.scid hosts reconstituted with whole splenocytes from untreated NOD.c3c4 donors a day after transfusion with splenic
CD4+ T-cells from untreated or PDC166–181/IAg7-NP-treated NOD.c3c4 mice. The hosts were either left untreated or were treated with PDC166–181/IAg7-
NPs. b Representative FACS staining histograms (left) and average mean fluorescence intensity values for TR1 markers on tetramer+CD4+ vs. tetramer
−CD4+ T-cells (right) of the hosts treated with PDC166–181/IAg7-NPs. c and d Macroscopic scores and liver weights (c) and microscopic scores (d) of the
mice studied in a. Data in a–d correspond to means ± SEM, were compared with Mann–Whitney U, and correspond to n= 9 (blue in c) or 7 (blue in d), 5
(red in a, c, and d), and 5 mice (green in a, c, d)/treatment group, respectively. e Percentages of tetramer+ CD4+ T-cells in mice treated with pMHCII-
NPs and rat-IgG (control) or blocking rat mAbs against mouse IL-10 or TGFβ. f–gMacroscopic (f) and microscopic (g) scores of the mice studied in a. Data
in e–g correspond to n= 5, 3–4 and 4 mice/treatment group, respectively. h Macroscopic scores, liver weights, and microscopic scores of NOD.c3c4.scid
hosts reconstituted with whole splenocytes from untreated NOD.c3c4 donors a day after transfusion of the hosts with: FACS-sorted splenic/PCLN-derived
tetramer+CD4+ T-cells from PDC166–181/IAg7-NP-treated NOD.c3c4 mice; purified PCLN B-cells from PDC166–181/IAg7-NP-treated NOD.c3c4 mice; FACS-
sorted splenic/PLN-derived tetramer+CD4+ T-cells from BDC2.5mi/IAg7-NP-treated NOD; or purified PLN B-cells from BDC2.5mi/IAg7-NP-treated NOD
mice. Data in h correspond to n= 5/group (red, blue and yellow) or n= 4/group (orange and cyanine). Data in a–h correspond to mean ± SEM. P values
were calculated via Mann–Whitney U
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and proximal PDC-E2 autoantigen-loaded APC types, largely
sparing APCs elsewhere.

Liver B-regulatory (Breg) cell recruitment and formation. The
liver and the PCLNs, but not non-liver-draining inguinal LNs
(ILNs) of PDC-E2166–181/IAg7-NP-treated mice harbored sig-
nificantly higher numbers of PDC-E2166–181/IAg7-tetramer+ cells
and B-cells than those from control-NP-treated animals (Fig. 5c).
In addition, the B-cell and tetramer+ T-cell numbers in liver,
albeit not PCLNs, were correlated (Fig. 5d). Furthermore,

the liver and PCLN, but not the MLN B-cells of PDC-E2166–181/
IAg7-NP-treated mice produced IL-10 in response to LPS,
whereas neither the liver nor the PCLN B-cells of control NP-
treated animals produced IL-10 (Fig. 5e). Collectively, these
observations suggested that, in the liver-draining lymph nodes,
PDC-E2166–181/IAg7-NP-induced TR1-like cells promoted Breg
cell formation. These B-cells had disease-specific immunor-
egulatory activity in vivo, because transfer of purified PCLN B-
cells from PDC-E2166–181/IAg7-NP-treated NOD.c3c4 mice sup-
pressed the transfer of disease into NOD.scid.c3c4 hosts recon-
stituted with splenocytes from diseased NOD.c3c4 donors. In
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Fig. 5 Liver-specific regulatory network formation. a Cytokine profile of LPS-challenged CD11b+ cells from PCLNs and MLNs. b Cytokine profile of Kupffer
cells (only statistically significant analytes shown in a and b) (n= 3/group). c Absolute numbers of B-cells (top) and tetramer+ T-cells (bottom) in PCLNs,
ILNs, and liver. Data for B-cells correspond to n= 15 and 19 (PCLN), n= 11 and 11 (ILN), and n= 12 and 16, respectively (liver), from 3–5 experiments/
organ. Data for tetramer+ cells correspond to n= 14 and 19 (PCLN), n= 11 and 11 (ILN), and n= 15 and 16, respectively (liver), from 3–5 experiments/
organ. d Correlation between numbers of B-cells and tetramer+ cells in the PCLNs, liver, and ILNs of PDC166–181/IAg7-NP-treated mice (n= 19, 16 and 11;
4, 5 and 3 experiments, respectively). e IL-10 secretion by LPS-challenged B-cells from PCLNs, MLNs, and liver (n= 4 and 3 mice/treatment type,
respectively). f Representative FACS plots showing conversion of eGFP– B cells from NOD.Il10-eGFP donors into eGFP+/CD5+/CD1dhi Bregs in PDC-
E2166–181/IAg7-NP-treated hosts. g Percentages of B cell-to-Breg cell conversion in PDC-E2166–181/IAg7-NP vs. Cys-NP-treated NOD.c3c4 hosts, in liver,
spleen, PCLNs, and MLNs (n= 3 and 4 mice/treatment type, respectively). h Percentages of B cell-to-Breg cell conversion in PDC-E2166–181/IAg7-NP-
treated NOD.c3c4 hosts, in spleen, PCLNs, and MLNs, as a function of the peptide displayed on the B-cell surface (non-cognate: BDC2.5mi, n= 4/organ;
or cognate: PDC166–181, n= 3/organ). Data correspond to mean ± SEM. P values were calculated via multiple t-test analysis (a and b), Mann–Whitney
U (c, e, g and h) or Pearson’s correlation test (d)
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contrast, the pancreatic lymph node-associated B-cells from
BDC2.5mi/IAg7-NP-treated NOD mice, which can protect NOD.
scid mice from diabetes transfer 1, had no effect on the ability of
splenocytes from sick NOD.c3c4 mice to transfer PBC into NOD.
scid.c3c4 hosts, suggesting that these B cell-mediated immunor-
egulatory effects are antigen-specific (Fig. 4h).

To investigate this further, we ascertained the ability of PDC-
E2166–181/IAg7-specific TR1-like cells to promote the differentia-
tion of PDC-E2166–181 peptide-pulsed conventional B-cells
isolated from NOD.Il10-eGFP reporter mice (IL-10/eGFP– B-
cells) into CD1dhigh/eGFP+ and CD5+/eGFP+ progeny in vivo
(upon adoptive transfer into PDC-E2166–181/IAg7-NP-treated
hosts). As shown in Fig. 5f–g, there was a clear formation of
Breg cells in the hosts’ spleen, liver, and PCLNs (containing
cognate TR1 cells) but not in the MLNs (lacking cognate
TR1 cells). Thus, PDC-E2-specific TR1 cells promote the
recruitment and differentiation of conventional B-cells into
Breg-like cells. This outcome was driven by cognate pMHC class
II interactions between the host’s TR1 cells and the transfused
eGFP– B-cells, because it only occurred when the donor B-cells
were pulsed with cognate (PDC-E2166–181) but not an irrelevant
(BDC2.5mi) peptide (Fig. 5h).

Continued versus intermittent treatment. We next examined if
the size of the cognate TR1 cell pool arising in blood in response
to therapy could be used to gauge the need for re-treatment.
As the liver is a large organ, we suspected that the blood-
residence time of the PDC-E2-specific TR1 cells in diseased NOD.
c3c4 mice would be significantly shorter than in diabetic NOD
mice, where cells can persist in the circulation for months after
treatment withdrawal 1. The blood tetramer+ T-cell content from
most mice declined to ~50% of the original values within
4–6 weeks after treatment withdrawal. Re-treatment rapidly
restored these values (Fig. 6a, b). Intermittent therapy given up to
50 weeks of age did not compromise the pharmacodynamic or
therapeutic effects of pMHCII-NPs (Fig. 6c–g), as compared to
mice treated continuously, supporting the safety of these com-
pounds, even when administered for prolonged periods of time.

pMHCII-NPs versus the standard of care. Ursodeoxycholic acid
(UDCA, a hydrophilic bile acid) is the standard of care for PBC.
Although effective in ~50% of patients when given early, it is
ineffective at advanced stages of PBC13.

Intake of UDCA-supplemented chow by 6-week-old NOD.c3c4
mice for 14 weeks had a small therapeutic effect on the
progression of PBC, as manifested by reductions in liver scores
and liver weight, bile duct proliferation and mononuclear cell
infiltration, albeit not serum ALT or TBA levels, CBD scores,
CBD diameter, or bile duct involvement (Fig. 7a–d). However,
when UDCA was given at 24 weeks, it had none of these effects,
except for a very significant reduction in CBD diameter, possibly
because of its anti-cholestatic effects (Fig. 7e–g). In contrast,
PDC-E2166–181/IAg7-NPs had substantial therapeutic effects in
both 6-week-old and 24-week-old animals (Fig. 7a–h).

Therapeutic effects in another PBC model. The NOD.c3c4
model does not fully recapitulate the immunopathology of human
PBC, characterized by female prevalence, progression to liver
fibrosis, and absence of liver cyst formation. B6 mice carrying a
deletion of the IFNγ 3′-untranslated region adenylate uridylate-
rich element (ARE) (ARE-Del+/–) have a dysregulated Ifng locus,
and develop a form of PBC that, like the human disease, primarily
affects females and is associated with up-regulation of TBA,
production of anti-PDC-E2 autoantibodies, portal duct and
lobular liver inflammation, bile duct damage and fibrosis14.

Treatment of female (NODxB6.IFNγ ARE-Del–/–) F1 mice with
PDC-E2166–181/IAg7-NPs triggered TR1 cell formation/expansion
and suppressed the upregulation of TBA and ALT levels, liver
inflammation and fibrosis, as compared to mice treated with
control NPs (Supplementary Fig. 3a–d). Similar results were
obtained in B6.IFNγ ARE-Del–/– mice treated with NPs dis-
playing an IAb-binding PDC-E2-derived epitope (PDC-E294–108/
IAb-NP) (Supplementary Fig. 3e, f), indicating that the ther-
apeutic activity of these compounds is not a peculiarity of the
NOD genetic background or its unique MHC class II molecule.

Humanized mice with PBC. DRB4*0101 and DRB1*0801 have
been associated with PBC in some studies15. HLA-DRB-typing of
154 PBC patients from our cohort indicated that 61.7% carried
DRB4*01 and 14% DRB1*0801.

Several T-cell epitopes from PDC-E2 binding to two of these
HLA-DRB types have been described12,16. We compared the
ability of PDC-E2122–135/DRB4*0101-NPs, PDC-E2249–262/
DRB4*0101-NPs, and PDC-E2629–643/DRB1*0801-NPs to expand
cognate TR1-like CD4+ T-cells in NOD.scid/Il2rg–/– (NSG)
hosts reconstituted with PBMCs from 11 DRB4*0101+ and 5
DRB1*0801+ PBC patients (PBL-NSG mice, Supplementary Fig. 4
and Supplementary Table 1). Supplementary Fig. 4a–c show that
the hosts were engrafted with hCD45+ cells containing hCD4+
cells and hCD19+ cells, but no mCD4– cells, and that their
mCD45+ cells lacked mCD4+ or hCD4+ cells, as expected. We
saw expansion of tetramer+CD49b+LAG-3+CD4+ T-cells in the
spleen and/or liver and LNs from 5/6 PBL-NSG mice treated with
PDC-E2122–135/DRB4*0101-NPs, 4/6 PBL-NSG mice treated with
PDC-E2249–262/DRB4*0101-NPs and 2/5 PBL-NSG mice treated
with PDC-E2629–643/DRB1*0801-NPs (Supplementary Table 1).
Treated responsive mice had significantly higher percentages and
absolute numbers of tetramer+ cells in spleen, liver, lymph nodes,
and/or bone marrow (Supplementary Fig. 4d, e) than untreated or
unresponsive mice, and these cells expressed the TR1 markers
CD49b and LAG-3 (Supplementary Fig. 4f).

Disease versus organ specificity. Given that PDC-E2 is an
autoantigen expressed in virtually all cell types, our results begged
the question of whether PBC-relevant nanomedicines (i.e. PDC-
E2166–181/IAg7-NP) are disease-specific or not.

PSC is a chronic cholestatic disease characterized by inflamma-
tion of intra-hepatic and extra-hepatic bile ducts leading to a fibro-
obliterative cholangitis with periductal fibrosis around medium
and large bile ducts and degenerative changes of the biliary
epithelium, in the absence of anti-mitochondrial autoantibodies17.
Abcb4 knockout mice (lacking the multidrug resistance protein 3)
develop a form of cholangitis similar to human PSC that is caused
by impaired biliary phospholipid secretion17.

AIH is characterized by a portal mononuclear cell infiltration
of the liver parenchyma that is associated with presence of ANAs
and/or smooth muscle (AIH type 1) or anti-liver kidney
microsomal or anti-liver cytosol type 1 autoantibodies, which
target the microsomal cytochrome CYP2D6 or FTCD, respec-
tively (AIH Type 2)18. Recently, it has been shown that infection
of NOD mice with a replication-defective adenovirus encoding
human FTCD (Ad-hFTCD) triggers a form of chronic AIH that
resembles AIH type 219.

We reasoned that the large bile duct and parenchymal liver
damage that underlie PSC and AIH, respectively, might trigger
the release of PDC-E2, CYP2D22 (the mouse CYP2D6 ortholog,
herein referred to CYPD) and FTCD, and the priming of
autoreactive CD4+ T-cells capable of responding to the
corresponding pMHC-NPs. To investigate this, we tested the
ability of PDC-E2166–181/IAg7-NPs (PBC-relevant) and
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CYPD398–412/IAg7-NPs (AIH-relevant) to expand cognate TR1-
like CD4+ T-cells and ameliorate PSC in NOD.Abcb4–/– mice.
Remarkably, both PDC-E2166–181/IAg7 and CYPD398–412/IAg7-
NPs expanded cognate TR1 CD4+ T-cells (Fig. 8a and
Supplementary Fig. 5) and reduced liver necroinflammation
and fibrosis (Fig. 8b), as well as serum ALT and TBA levels
(Fig. 8c), as compared to controls. Likewise, PDC-E2166–181/IAg7-
NPs (PBC-relevant) and both mFTCD58–72/IAg7-NPs and
CYPD398–412/IAg7-NPs (AIH-relevant) triggered cognate TR1
cell expansion (Fig. 8d and Supplementary Fig. 6a, b) and
significant reductions in ALT levels, hepatocyte necrosis, liver

inflammation, and liver fibrosis in Ad-hFTCD-infected NOD
mice (Fig. 8e, f).

This ability of ubiquitous autoantigen-based pMHC-nanome-
dicines to blunt liver autoimmunity in an organ-specific rather
than disease-specific manner also occurred in NOD.c3c4 mice
treated with CYPD398–412/IAg7-NPs (Fig. 9a–c). In fact, the latter
were as efficient as PDC-E2166–181/IAg7-NPs at expanding
cognate TR1 cells (Fig. 9a) and blunting PBC in 15-week-old
mice (Fig. 9b, c).

Collectively, these observations suggest that hepatocyte (AIH)
and bile duct epithelial (PBC and PSC) damage in liver
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autoimmunity results in the delivery of significant amounts of
liver-prevalent autoantigens, including PDC-E2, CYPD2D6, and
FTCD to local and proximal APCs. In turn, this enables
autoreactive CD4+ T-cell priming (a sine qua non requirement
for pMHC-NP-induced TR1 cell formation1), cognate TR1 cell
generation by pMHC-NPs, Breg cell formation, and suppression
of the pro-inflammatory capacity of local and proximal
autoantigen-loaded APCs.

Normal immunity is spared. We next investigated if persistent
expansion of PDC-E2166–181/IAg7-specific TR1 cells results in
suppression of normal immunity against infection and cancer.

Cohorts of NOD.c3c4 mice received doses of PDC-E2166–181/
IAg7-NPs or control NPs twice a week for 9 weeks. At the end
of therapy, the mice were given an i.v. injection of recombi-
nant vaccinia virus. The viral titers in the ovaries of females
14 days after infection were similar in both cohorts of mice and
substantially lower than those found at the peak of infection,
indicating that pMHCII-NP therapy did not impair cellular
immunity against the virus-infected cells (Fig. 10a).

To probe this further, we infected PDC-E2166–181/IAg7-NP-
treated or untreated NOD.c3c4 mice with a laboratory strain
of influenza (HKx31 –H3N2–) i.p. to induce heterologous
(shared) immunity against a subsequent lethal infection with an
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H1N1 strain of Influenza (PR8) given via the intranasal route. As
shown in Fig. 10b, c, pMHCII-NP treated NOD.c3c4 mice
mounted protective immunity against the PR8 infection, as
documented by decreased viral load in lung tissue and clinical
signs of active infection, despite systemic presence of cognate
TR1-like CD4+ T-cells (Supplementary Fig. 7a).

Similar results were obtained in mice infected with the
intracellular pathogen Listeria Monocytogenes (LM). LM-
infected PDC-E2166–181/IAg7-NP-treated and untreated NOD.
c3c4 mice were equally efficient at clearing the bacteria from both
the spleen and liver, consistent with unimpaired immunity
against this intracellular pathogen (Fig. 10d and Supplementary
Fig. 7b). This outcome was also true when the mice were infected
with LM shortly before initiation of pMHC-NP treatment. As
shown in Supplementary Fig. 7c–f, diseased NOD.c3c4 mice
infected with LM immediately before initiation of treatment and
treated for 5 consecutive weeks had, at the end of follow up,
significantly reduced disease scores, as well as numbers of LM
colony forming units (cfu) in both the liver and spleen.
Importantly, this reduction in splenic and liver LM cfu was
similar in pMHC-NPs-treated vs. untreated mice. Thus, treat-
ment suppressed liver inflammation without impairing the ability
of the host to clear the pathogen, presumably because the

mechanisms involved in clearance of this intracellular pathogen
are not impaired by TR1 cell-driven immunoregulation.

PDC-E2166–181/IAg7-NP-treated and untreated NOD.c3c4 mice
also produced similar titers of anti-dinitrophenyl (DNP)
antibodies upon immunization with the hapten-carrier conjugate
DNP-keyhole limpet hemocyanin (KLH) (Fig. 10e), indicating
that these compounds do not impair humoral immunity against
foreign antigens.

Lastly, systemic expansion and liver accumulation of PBC-
suppressing PDC-E2-specific TR1-like CD4+ T-cells (Fig. 10f–n)
did not impair the ability of pMHC-NP-treated NOD.c3c4 mice
to mount immune responses against allogeneic colon carcinoma
(CT26) and melanoma (B16/F10) liver metastases arising upon
intra-splenic injection, as compared to untreated NOD.c3c4
mice or syngeneic hosts (Balb/c and C57BL/6J, respectively)
(Fig. 10i–q).

Thus, despite targeting a systemically expressed antigen, PDC-
E2166–181/IAg7-specific TR1 cells do not impair cellular or
humoral immunity against local or systemic foreign antigens.
This is potentially so because bacterial/viral antigenic load in local
APCs transiently overwhelms the APCs’ ability to present PDC-
E2 epitopes to cognate TR1-like CD4+ T-cells, hence the
manifestation of their immunoregulatory properties.
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Discussion
We have used mice undergoing PBC, PSC, or AIH, as well as
NSG mice humanized with PBMCs from PBC patients to inves-
tigate whether hepatocyte and/or cholangiocyte destruction in
autoimmunity results in the stimulation of autoreactive T-cells
capable of responding to disease-relevant and irrelevant pMHCII-
based nanomedicines.

We found that nanomedicines displaying various liver-
prevalent antigenic peptides triggered TR1-like cell formation
and expansion in mice undergoing various liver autoimmune
diseases, as well as in NSG mice humanized with PBMCs from
PBC patients. As a result, these nanomedicines effectively blunted
PBC, PSC, and AIH in various genetic backgrounds by sup-
pressing liver inflammation, even when initiated at the peak of
disease severity. In the liver, disease suppression involved TR1
cell-driven local Breg cell formation, required both IL10 and
TGFβ, could be transferred by both tetramer+CD4+ T-cells and
PCLN-associated B-cells from treated donors, and was associated
with profound suppression of the pro-inflammatory capacity of
both liver and liver-proximal myeloid DCs as well as Kupffer
cells. In contrast, a nanomedicine displaying a pancreatic beta
cell-specific epitope was unable to trigger cognate TR1 cell
responses in NOD.c3c4 mice undergoing liver autoimmunity in
the absence of pancreatic autoimmunity, consistent with the sine
qua non requirement for autoantigen-experience in T-cell
responsiveness to pMHCII-NPs1.

Importantly, suppression of liver inflammation by these
nanomedicines did not compromise immunity against viruses
(vaccinia, influenza), intracellular bacteria (Listeria), or metastatic
(liver) allogeneic tumors. The TR1-like CD4+ T-cells that are

triggered by pMHC-based nanomedicines can only effect reg-
ulation when they engage cognate pMHC class II of professional
APCs that are loaded with endogenous autoantigen1. Such APCs
must capture autoantigen shed from the damaged liver cells and
therefore are only present in significant numbers in the target
organ or in draining lymphoid tissue. As a result, it is not sur-
prising that pMHC-based nanomedicines do not impair immu-
nity against systemic infections or against vaccines, as the liver-
distal APCs that orchestrate these immune responses are not
loaded with liver-derived autoantigens. For intra-hepatic or liver-
proximal immunity, such as against a LM infection, the infected
liver APCs may be overwhelmed with LM-derived antigens,
decreasing their ability to elicit TR1 cell function and suppression
(by dilution of cognate pMHCs at the expense of pathogen-
derived pMHC complexes below the threshold required for TR1
cell activation). These cells may therefore be spared from sup-
pression. Given the short half-lives of myeloid-derived APCs
(days), replacement of these APCs by uninfected ones might be
sufficient to support continued TR1-mediated immunoregulation.
Alternatively, the mechanisms involved in clearance of this
intracellular pathogen and allogeneic liver tumor metastases may
not be impaired by TR1 cell-driven immunoregulation.

Collectively, these results have several important implications
for our understanding of both normal immunity and treatment of
autoimmunity. First, they demonstrate that tissue destruction in
specific autoimmune diseases has the potential to trigger the
stimulation or possibly outright activation of autoreactive T-cells
recognizing many, perhaps all, of their antigenic components,
suggesting that the antigenic repertoires in autoimmune diseases
may be much more extensive than currently thought. We note
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that the pMHCs tested herein were designed in silico, using
online MHC-binding algorithms, raising the possibility that any
peptide capable of binding to self-MHC molecules, from a whole
host of proteins expressed by hepatocytes and/or cholangiocytes,
might be recognized by, and be able to activate peripheral T-cells.
Second, our observations imply that penetrance of central and
peripheral T-cell tolerance to highly expressed antigens is
remarkably incomplete, even in disease-resistant genetic back-
grounds. From an evolutionary standpoint, such pervasive auto-
reactivity may have been sustained because it functions as a
source of regulatory cells capable of extinguishing pathology.
Third, from a translational standpoint, this study has identified
disease-modifying compounds for several complex liver auto-
immune diseases that share common immunopathological

pathways and represent unmet clinical needs20,21. Finally, these
observations suggest that a few pMHCII-based nanomedicines
displaying ubiquitous epitopes and HLA class II molecules
encoded in oligomorphic HLA loci might be sufficient to treat
various liver autoimmune diseases without impairing normal
immunity.

Methods
Mice. NOD/LtJ, BALB/c, C57BL/6, NOD.scid.Il2rg−/−(NSG), NOD.c3c4 and FVB/
N.Abcb4–/– (Abcb4 or ATP-binding cassette transporter, sub-family B, member 4)
mice were purchased from the Jackson Laboratory (Bar Harbor, ME). IFNγ ARE-
Del−/− B6 mice were obtained from H. Young (NIH, Bethesda, MD). NOD.c3c4.
scid mice were generated by backcrossing (NOD.c3c4 x NOD.scid) F1 mice with
NOD.c3c4 mice for five generations, followed by intercrossing of mice hetero-
zygous for the scid mutation and homozygous for the B6 chromosome 3 and 4
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Fig. 10 Liver disease-relevant pMHCII-NPs spare general immunity. a rVV titers in ovaries 4 and 14 days after rVV infection (n= 3–4/group). b Influenza
viral titers in lungs 3 and 7 days after infection with PR8 with or without HKx31 priming (n= 5, 3, 4, 5 and 5; left to right). c Clinical scores and body weight
(n= 5 mice/group). d Colony-forming units of L. monocytogenes in the spleen and livers 3, 7, and 14 days after infection (n= 4, 3, 3, 5, 3 and 4; left to right).
e Serum anti-DNP antibody titers upon KLH–DNP immunization (n= 3/group). f–k Percentages of tetramer+ cells (f), macroscopic PBC scores and liver
weight (g), microscopic PBC scores (h), liver images (i), microscopic tumor scores (j), and survival rates (k) of untreated vs. PDC166–181/IAg7-NP-treated
NOD.c3c4 (n= 5/group) or untreated Balb/c mice (n= 7) challenged with CT26 cells (overlapping 100% survival in untreated vs. PDC166–181/IAg7-NP-
treated mice). Scale bar in (i): 100 μm. l–p Percentages of tetramer+ cells (l), macroscopic (m), and microscopic PBC scores (n), and liver weight and
metastasis number (o), and liver images (p) of untreated vs. PDC166–181/IAg7-NP-treated NOD.c3c4 (n= 5 and 4) or untreated B6 mice (n= 6) challenged
with B16/F10 cells. q Survival rates of the mice in l–p (overlapping 100% survival in untreated vs. PDC166–181/IAg7-NP-treated mice). Data correspond to
mean ± SEM. P values were compared via Mann–Whitney U except for k, q (log-rank), or c (two-way ANOVA)
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intervals from NOD.c3c4 mice. NOD.Abcb4–/– mice were obtained by backcrossing
the mutant Abcb4 allele from FVB/N-Abcb4–/– mice onto the NOD/Ltj background
for six generations, followed by intercrossing. (NODxB6.IFNγ ARE-Del–/–) F1
mice were generated by intercrossing IFNγ ARE-Del−/− and NOD/LtJ mice. NOD.
Il10tm1Flv (Tiger) mice were obtained by backcrossing the Il10tm1Flv allele from
C57BL/6.Il10tm1Flv mice (Jackson Lab) onto the NOD/Ltj background for 10
generations. These studies were approved by the institutional animal care com-
mittee of the Cumming School of Medicine at the University of Calgary.

Human subjects. HLA-DRB4*0101+ PBC patients were recruited under informed
consent approved by the Institutional Ethics Review Board at Hospital Clinic
(see Supplementary Table 1 for demographic and other patient details). All the
work with human participants complied with all the relevant ethical regulations
and was approved by the Hospital Clinic human ethics review board.

Cell lines, pathogens, and tumors. CHO-S, BSC-1, MDCK, 293T, B16/F10, and
CT26 cell lines were purchased from the ATCC (Manassas, VA). The H3N2
HKx31 and H1N1 PR8 influenza strains were from P. Thomas (St. Jude Children’s
Research Hospital, Memphis, TN). LM was obtained from DMX Corporation
(Philadelphia, PA).

Antibodies and flow cytometry. FITC, PE, APC, PerCP, Alexa Fluor 647, BV605,
or biotin-conjugated mAbs against mouse CD4 (RM4–5), CD5 (53–7.3), CD19
(1D3), B220 (RA36B2), CD49b (HMα2), CD25 (PC61), and CD279 (PD1; J43),
anti-mCD45 (30-F11), and streptavidin–PerCP were purchased from BD Bios-
ciences (San Diego, CA). Anti-murine LAG-3 (C9B7W) and anti-murine Foxp3
(FJK-16s) mAbs were purchased from eBioscience (San Diego, CA). Anti-latent-
associated-TGF-β (LAP) (TW7–16B4), anti-CD278 (ICOS; C398.4A), anti-F4/80
(BM8), anti-hCD4 (OKT4), anti-hCD45 (HI30), and anti-mCD4 (GK1.5) anti-
bodies were from BioLegend (San Diego, CA). PE-conjugated pMHC class II tet-
ramers were produced using biotinylated pMHC monomers. pMHC class II
tetramer staining and phenotypic marker analysis were done as follows. After
avidin incubation (15 min at RT), blood leukocytes, and single cell suspensions
from spleen, lymph node, liver mononuclear cells, and bone marrow cells were
stained first with pMHC tetramer (5 μg ml−1) in FACS buffer (0.05% sodium azide
and 1% FBS in PBS) for 60 min at 37 °C, and later with FITC-conjugated anti-
mouse CD4 (5 μg ml−1) and PerCP-conjugated anti-mouse B220 (2 μg ml−1; as
a ‘dump’ channel) for 30 min at 4 °C. After washing, cells were fixed (1% paraf-
ormaldehyde in PBS) and analyzed with FACScan, FACSaria, or BD LSRII flow
cytometers. For phenotypic analyses, the cells were incubated with anti-FcR Abs,
and then stained with cell surface marker antibodies diluted 1:100 in FACS buffer
(at 4 °C for anti-CD49b and anti-LAP Abs, and at 37 °C for anti-LAG-3 Abs)
followed by pMHC tetramer, FITC-conjugated anti-mouse CD4 (5 μg ml−1) and
PerCP-conjugated anti-mouse B220. Upon staining, cells were washed, fixed, and
analyzed by flow cytometry. FlowJo software was used for all analyses.

NSG-engrafted human T cells were analyzed using the following mAbs: FITC-
conjugated anti-CD4 (OKT4, BioLegend), APC-conjugated anti-CD19 (HIB19, BD
Biosciences, San Jose, CA), PerCP-conjugated polyclonal goat anti-LAG-3 IgG
(R&D Systems, Minneapolis, MN), biotin-conjugated anti-CD49b (AK7, Pierce
Antibodies, Thermo Fisher Scientific, Waltham, MA), and eFluor 450-conjugated
streptavidin (eBioscience). Briefly, splenocytes and lymph node cells were
incubated with avidin (0.25μg ml−1 in FACS buffer) for 30 min at room
temperature, washed and stained with tetramer (5 μg ml−1) for 1 h at 37 °C, washed
and incubated with FITC-conjugated anti-CD4 (2/100), APC-conjugated anti-
CD19 (5/100; used as a ‘dump’ channel), PerCP-conjugated anti-LAG-3 (8/100),
and biotin-conjugated anti-CD49b (4/100) at 4 °C for 45 min. After washing, the
cells were incubated with eFluor 450-conjugated streptavidin for 30 min at 4 °C,
washed, fixed in 1% PFA in PBS and cells within the hCD4+/hCD19− gate
analyzed with a FACSCanto II (BD Bioscience).

pMHC monomers and peptides. Recombinant pMHC class II monomers were
purified from supernatants of CHO-S cells transduced with lentiviruses encoding a
monocistronic message in which the peptide-MHCβ and MHCα chains of the
complex were separated by the ribosome skipping P2A sequence. The peptide was
tethered to the amino terminal end of the MHCβ chain via a flexible GS linker and
the MHCα chains were engineered encode a BirA site, a 6xHis tag, a twin strep-tag,
and a free Cys at their carboxyterminal end. The secreted, self-assembled pMHC
class II complexes were purified by sequential nickel and Strep-Tactin® chroma-
tography and used for coating onto NPs or processed for biotinylation and tet-
ramer formation as described above. The epitopes encoded in the murine
monomeric constructs were selected based on predicted MHCII-binding capacity
using RANKPEP (http://imed.med.ucm.es/cgi-bin/rankpep_mif.cgi) using 7.54 as
the threshold score. PDC-E2166–181 had a score that fell below the threshold but
was selected for experimentation because it is contained within one of the lipoyl-
binding domains of PDC-E2, an antigenic target for AMAs. For CYPD and FTCD
epitope prediction, we used a second online algorithm (GPS-MBA) (http://mba.
biocuckoo.org/) and peptides predicted by both RANKPEP and GPS-MBA were
selected for experimentation. hPDC-E2122–135, hPDC-E2249–262 (both contained
within the lipoyl-binding domain of PDC-E2), and hPDC-E2629–643 have been

described previously (see main text). The sequences of the different epitopes are:
PDC-E2166–181/IAg7 (LAEIETDKATIGFEVQ), PDC-E282–96/IAg7 (EKPQDIEAF-
KNYTLD), FTCD58–72/IAg7 (VVEGALHAARTASQL), CYPD398–412/IAg7

(LITNLSSALKDETVW), 2.5mi/IAg7 (AHHPIWARMDA), PDC94–108/IAb

(TLDLAAAAAPQAAPA), hPDC-E2122–135/DRB4*0101 (GDLIAEVETDKATV),
hPDC-E2249–262/DRB4*0101 (GDLLAEIETDKATI), and hPDC-E2629–643/
DRB1*0801 (AQWLAEFRKYLEKPI). Synthetic PDC-E2166–181 and 2.5mi peptides
were purchased from Genscript (Piscataway, NJ). The amino acid residue numbers
for each peptide correspond to those found in the mature form of the corre-
sponding antigens.

NPs, pMHCII-NP synthesis, and purification. We coated pMHCs onto pegylated
iron oxide NPs (PFM-NPs)2. PFM-NPs were produced by thermal decomposition
of Fe(acac)3 in the presence of 2 kDa methoxy-PEG-maleimide. Briefly, 3 g
Maleimide-PEG (2 kDa MW, Jenkem Tech, USA) were melted in a 50 ml round
bottom flask at 100 °C and then mixed with 7 ml of benzyl ether and 2 mmol Fe
(acac)3. The reaction was stirred for 1 h and heated to 260 °C with reflux for 2 h.
The mixture was cooled to room temperature and mixed with 30 ml water. Inso-
luble materials were removed by centrifugation at 2000g for 30 min. The NPs were
purified using magnetic (MACS) columns (Miltenyi Biotec, Auburn, CA) and
stored in water at room temperature or 4 °C. The concentration of iron was
determined spectrophotometrically at 410 nm in 2 N hydrochloric acid (HCl). Free
cysteines (controls) or pMHCs, carrying a free carboxyterminal Cys, were con-
jugated to the maleimide-functionalized PFMs in 40 mM phosphate buffer, pH 6.0,
containing 2 mM EDTA, 150 mM NaCl overnight at room temperature. The
pMHC-conjugated NPs were separated from free pMHC using magnetic columns,
sterilized by filtration through 0.2 µm filters and stored in water or PBS at 4 °C.
Quality control was done using transmission electron microscopy, dynamic light
scattering, and native and denaturing gel electrophoresis. pMHC content was
measured using Bradford assay (Thermo Fisher Scientific) and SDS–PAGE.

Purification of exhausted CD4+ and TR1-like CD4+ T-cells. Exhausted CD4+
T-cells (CD4+PD1+KLRG1+LAG3+) were FACS-sorted from the spleens of 29-
week-old NOD.c3c4 mice (n= 4). PDC-E2166–181/IAg7-NP-induced TR1-like
CD4+ T-cells (CD4+PDC-E2166–181/IAg7-tetramer+LAG3+LAP+CD49b+) were
FACS-sorted from the spleens of 22–30-week-old NOD.c3c4mice that had received
14 or 29 doses of PDC-E2166–181/IAg7-NPs, starting at 15 weeks of age (n= 1 and 3,
respectively). The sorted cells were stimulated with anti-CD3/CD28 mAb-coated
beads for 36 h, to measure the extent of AICD (as measured using the viability
staining die 7-AAD), or for 6 days, to compare their proliferative response (by
measuring BrdU incorporation using the FITC BrdU Flow kit from BD
Biosciences).

Generation of FTCD-expressing adenovirus. A replication-deficient adenovirus
expressing human formiminotransferase cyclodeaminase (Ad-hFTCD) (a target
autoantigen in AIH Type 2) was generated by cloning the hFTCD DNA sequence
directly into Adeno-X Adenoviral System 3 (CMV) using In-Fusion® HD cloning
technology and Stellar Competent cells (Clontech, Mountain View, CA). Cloned
Ad-FTCD was amplified in Ad-293 T cells and purified using Adeno-X Maxi
Purification Kit (Clontech). The viral titer was measured using the End-point
Dilution Assay or Adeno-X Rapid Titer Kit (Clontech).

UDCA treatment. Cohorts of 5–6 or 24-week-old male and/or female NOD.c3c4
mice were left untreated, fed a diet supplemented with 0.5% UDCA (BOC Sciences,
Upton, NY; TestDiet, Richmond, IN)22, or treated with pMHCII-NPs for 14 or
9 weeks, respectively, and sacrificed for pMHCII tetramer staining, PBC scoring
and biochemical testing.

pMHCII-NP therapy for PBC in various genetic backgrounds. Cohorts of 15-
week-old male and/or female NOD.c3c4 mice with established PBC were left
untreated or treated with 20 μg of pMHCII–NPs or Cys-NPs (i.v.) twice weekly for
9 weeks unless indicated otherwise. Liver disease scoring involved macroscopic
evaluation of cyst content (0–5 for all experiments, except Fig. 6f, where cyst
content was scored from 0–8), liver weight, and CBD diameter (0–4), as well as
microscopic evaluation of bile duct involvement (0–4), bile duct proliferation
(0–4), and mononuclear cell infiltration (0–4)23. In other experiments, treatment
was initiated at the peak of disease (24 weeks of age) and given twice a week for
14–20 weeks. Intermittent treatment involved treating mice twice a week from
15 to 24 weeks of age, then withdrawing treatment until the percentages of tetramer
+ cells dropped to ~50% of the levels seen at treatment withdrawal (measurements
in peripheral blood were done once every 2 weeks), re-treating mice twice a week
until the percentages of tetramer+ cells reached original values, and repeating
this cycle until 50 weeks of age.

In in vivo cytokine blocking experiments, mAbs against HRPN (rIgG1), IL-10
(JES5–2A5), or TGF-β (1D11) (BioXcell, West Lebanon, NH) were given i.p. twice
a week at 500 μg per dose for 2 weeks, followed by 200 μg per dose for 7 additional
weeks. Mice were randomized into cytokine-neutralizing mAb-treatment (anti-IL-
10 or anti-TGFβ) or HRPN rat-IgG1 groups.
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In experiments involving (NOD x B6.IFNγ-ARE-Del–/–) F1 and B6.IFNγ-ARE-
Del–/– mice, 10-week-old male and female mice were treated for 5–6 weeks.
Histopathologic severity in the liver was assessed by scoring the extent of portal
inflammation, lobular inflammation, and granuloma formation from 0 to 4, and
bile duct damage from 0 to 2. The extent of portal inflammation and bile duct
damage were scored from 0 to 4 based on the ratio between affected vs. unaffected
area. The extent of lobular inflammation and granuloma formation were scored
from 0 to 4 based on number of lesions per specimen14. Inflammatory scores were
obtained by adding the scores for both severity and lesion number. The severity of
fibrosis was scored on a 0–6 scale as follows24: 0, no fibrosis; 1, fibrous expansion in
few portal areas with or without small fibrous septa; 2, fibrous expansion in most
portal areas with or without small fibrous septa; 3, fibrous expansion in most portal
areas with very few portal-to-portal bridging; 4, fibrous expansion in all portal
areas with marked bridging (portal-to-portal and portal-to-central); 5, marked
bridging with very few nodules (incomplete cirrhosis); and 6, complete cirrhosis.

Studies using NOD mice involved treating cohorts of 10-week-old pre-diabetic
female NOD/Ltj mice with 20 μg of pMHCII-NPs or Cys-NPs i.v. twice weekly
for 5 weeks.

pMHCII-NP therapy for PSC in NOD.Abcb4–/– mice. Cohorts of 5–6-week-old
male and/or female NOD.Abcb4–/– mice with established PSC25 were treated with
20 μg of pMHCII-NPs or Cys-NPs i.v. twice weekly for 5–6 weeks. Histopathologic
lesions were graded using the Ishak scoring system24,26, which evaluates both
fibrosis (0–6), as well as necroinflammatory sequelae of biliary cholangitis,
including interface hepatitis (0–4), confluent necrosis (0–6), lobular inflammation
(0–4), and portal inflammation (0–4).

pMHCII-NP therapy for AIH in NOD mice. We induced AIH by infecting
5–6-week-old female NOD/Ltj mice with an adenovirus encoding human FTCD
(Ad-hFTCD, 1010 plaque forming units (PFU) i.v.), as previously described19. Four
weeks later, cohorts of mice with established AIH were treated with 20 μg of
pMHCII-NP s or Cys-NPs (i.v.) twice weekly for 5–6 weeks. Histopathological
scoring was done using the Ishak scale as above24,26.

pMHCII-NP therapy in human PBMC-reconstituted NSG hosts. PBMCs from
HLA-DRB4*0101+ PBC patients (recruited under informed consent approved by
the Institutional Review Board at Hospital Clinic) were depleted of CD8+ T-cells
(to reduce the magnitude of GvHD in the hosts) using anti-CD8 mAb-coated
magnetic beads (Miltenyi Biotech, Auburn, CA) and injected i.v. (2 × 107) into
8–10-week-old NSG hosts. Mice were treated with 30–40 μg pMHC-NPs starting
on day 5 after PBMC transfusion, twice a week for 5 consecutive weeks, or left
untreated. Therapy-induced expansion of cognate CD4+ T-cells was measured in
liver, peripheral LNs, and spleen (Supplementary Table 1). The gender, age, anti-
mitochondrial autoantibody status, and type of pMHC-NP tested for each patient
are summarized in Supplementary Table 1. A mouse was considered a responder
if the percentage of tetramer+ T-cells in at least two different organs were higher
than the mean ± 10 standard deviation values seen in untreated hosts.

Evaluation of general adaptive immunity. Evaluation of cellular responses to
Vaccinia infection was performed as previously described1. Briefly, pMHCII-NP-
treated and untreated female mice were injected i.v. with 2 × 106 PFU of recom-
binant Vaccinia Virus (rVV) and sacrificed on days 4 and 14 after infection.
Samples were processed for pMHCII tetramer staining and rVV titer measure-
ments. Briefly, both ovaries were collected in DMEM containing 2% FBS, homo-
genized, freeze-thawed three times followed by sonication (three rounds, 20 s each).
Serial dilutions of the lysates were added to confluent BSC-1 cell cultures at 37 °C
for 1 h, washed twice with serum-free DMEM and then overlaid with DMEM
containing 2% FCS and 0.4% carboxymethyl cellulose (CMC; Sigma, Saint Louis,
MO). On day 3, the overlay was discarded, and the cell layers were stained with
crystal violet to count the number of plaques.

To evaluate cellular responses to Influenza infection, pMHCII-NP-treated and
untreated mice were first primed i.p. with the HKx31 (H3N2) strain at 106 EID50

per mouse. One cohort of mice was sacrificed 7 days after priming and processed
for tetramer staining to confirm presence of pMHC-NP-specific TR1-like cells
during priming. Other cohorts of primed mice were re-infected 30 days later with
an intranasal dose of PR8 virus, a lethal H1N1 strain of Influenza (8 × 104 EID50

per mouse), under anesthesia. PR8-challenged mice were weighed daily and scored
clinically from 0 to 4 based on the extent of ruffled fur, reduced motility, huddled
appearance, and rapid and/or labored breathing as previously described27. Mice
were sacrificed 7 days later and processed for tetramer staining and influenza titer
measurement. Briefly, lungs were collected in serum-free DMEM, homogenized
and freeze-thawed three times. Serial dilutions of the lysates were added to
confluent MDCK cell cultures at RT for 1 h and washed. Cultures were then
overlaid with DMEM containing 0.4% CMC and TPCK-trypsin for 2–3 days,
washed, fixed, and stained with crystal violet to count plaques.

Cellular immunity to intracellular bacteria was determined by infecting
pMHCII-NP-treated and untreated mice i.v. with 103 cfu of LM. In some
experiments, mice were sacrificed 7 days or 14 days after infection and samples
processed for tetramer staining and bacterial load measurements. Briefly, spleen

and liver were cut into several pieces, weighted and homogenized in PBS
containing 0.35% Triton X-100. Serial dilutions of the lysates were then plated onto
Bovine Heart Infusion agar containing 5 μg ml−1 erythromycin, incubated for
24–48 h at 37 °C and the number of colonies counted. In other experiments, mice
were infected with LM immediately before the initiation of pMHC-NP therapy and
sacrificed on day 3 to confirm presence of LM cfu in both liver and spleen, or on
day 35, after termination of treatment (two doses/week for 5 weeks).

Cellular immunity to liver metastatic tumors was ascertained upon intra-splenic
injections of B16/F10 melanoma and CT26 colon carcinoma tumors into syngeneic
(C57BL/6J or Balb/c, respectively) or allogeneic hosts (pMHC-NP-treated or
untreated NOD.c3c4 mice)28,29. A small incision was made in the abdomen, under
isofluorane inhalational anesthesia, to partially expose the spleen. Tumor cells
(0.2 × 106 and 0.1 × 106 for B16/F10 and CT26, respectively, in 100 μl of PBS) were
injected slowly for 1 min into the exposed spleen. Ten minutes later, the spleen was
removed and the peritoneal and skin layers sutured. pMHCII-NP therapy was
resumed within 5–7 days after surgery and continued until the end of follow-up.
Mice were monitored for up to 19–21 days and euthanized for tetramer staining,
PBC scoring, and tumor burden measurements. In B16/F10-injected mice, tumor
burden was assessed by measuring liver weight and counting the number of
metastases, easily distinguishable from liver parenchyma. In CT26-injected
animals, tumor burden was scored histologically by measuring the hepatic area
(HPA) occupied by metastatic tumors.

To evaluate humoral immunity, pMHCII-NP-treated and untreated mice were
immunized i.p. with 100 μg of DNP-KLH (Alpha Diagnostic International, San
Antonio, TX) in CFA and boosted again 3 weeks later as previously described1.
Mice were sacrificed 10 days later, to measure serum anti-DNP antibody titers
using an anti-DNP Ig ELISA Kit (Alpha Diagnostic International).

Cytokine secretion assays. Splenic and portal/celiac lymph node (PCLN) cell
suspensions from pMHCII-NP-treated mice were enriched for CD4+ T-cells
depleting CD19+ B-cells (EasySep™ Mouse CD19 Positive Selection Kit, Stem Cell
Technologies, Vancouver, BC) and CD8+ T-cells (CD8 Magnetic Particles, BD
Biosciences). Cells were stained with pMHCII tetramers and sorted by flow cyto-
metry. The sorted cells (2–3 × 104) were challenged with bone marrow-derived DCs
(2 x104) pulsed with 2 μg ml−1 peptide. Forty-eight hours later, supernatants were
harvested for measurement of cytokine content via Luminex®.

To ascertain whether pMHCII-NP therapy promoted the recruitment/
formation of IL-10-secreting B-cells, mesenteric LNs, PCLNs, and liver cell
suspensions were enriched for B-cells using a CD19 enrichment kit (Stem Cell
Technologies). The cells (2–3 × 105 in 200 μl/well) were stimulated in duplicate
with LPS (1 μg ml−1, Sigma) for 24 h in RPMI-1640 media containing 10% FCS.
The levels of IL-10 in the supernatants were measured via Luminex®.

CD11b+ cells and Kupffer cells. CD11b+ cells from LNs were obtained by
digestion in collagenase D (1.25 µg ml−1) and DNAse I (0.1 µg ml−1) for 15 min at
37 °C, washed, incubated with anti-FcR Abs, and purified using anti-CD11b mAb-
coated magnetic beads (BD Biosciences). The purified cells (2–3 × 105 in 200 μl/
well) were stimulated with LPS (2 μg ml−1) for 3 days, and the supernatants
analyzed for cytokine content using a Luminex® multiplex cytokine assay.

To isolate Kupffer cells (KCs), livers from treated and untreated mice were
minced and digested in 15 ml of 0.05% collagenase solution in HBSS for 20–30 min
at 37 °C. The resulting cell suspension was filtered through a nylon mesh (0.7 μm)
and centrifuged at 50×g for 3 min at 4 °C, to remove tissue debris and hepatocytes.
Cells in the supernatant were pelleted by centrifugation at 300×g for 5 min at 4 °C.
The cell pellet, mainly composed of non-parenchymal liver immune cells, KCs,
sinusoidal endothelial cells, and stellate cells, was re-suspended in 33% Percoll®

solution and centrifuged at 350×g for 30 min to isolate mononuclear cells. The
pellets were re-suspended in DMEM containing 10% FCS (5 × 106 cells ml−1) and
plated in six-well plate at 1–3 × 107 cells/well and incubated for 2–3 h in a 5% CO2

atmosphere at 37 °C. Non-adherent cells were removed by gentle washing with
PBS. The adherent fraction (enriched for KCs) was harvested by trypsin digestion
(5 min, 0.25% trypsin). The resulting cell suspension was plated in 96-well plates
at 1–2 × 105/200 μl/well and stimulated with LPS (2 μg ml−1) for 3 days. The
supernatants were analyzed for cytokine content using a Luminex® multiplex
cytokine assay.

Adoptive transfer of suppression. Splenic CD4+ T-cells (107) from untreated
mice or mice treated with 12 doses of PDC-E2166–181/IAg7-NPs were adoptively
transferred (i.v.) into 10–14-week old, sex-matched NOD.c3c4.scid hosts. One day
later, the recipients were adoptively transferred with 4 × 107 whole splenocytes
from sex-matched NOD.c3c4 donor mice with established PBC (>35-week old).
One of the cohorts of mice transfused with CD4+ T-cells from pMHCII-NP-
treated donors was further treated with 12 doses of PDC-E2166–181/IAg7-NPs. The
recipients were sacrificed 6 weeks later for tetramer staining and PBC scoring.

In other experiments, the hosts were transfused with 5 × 105 CD19+ cells
purified from the PCLNs or PLNs of mice treated with 10 doses of PDC-E2166–181/
IAg7-NPs or BDC2.5 mi/IAg7-NPs, respectively, during the preceding 5 weeks. B-
cells were purified using the EasySep Mouse CD19-positive selection Kit II
(StemCell Technologies, Vancouver, BC). Other cohorts received PDC-E2166–181/
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IAg7 or BDC2.5mi/IAg7 tetramer+ (2 × 105) T-cells FACS-sorted from the spleen
and liver or pancreas-draining lymph nodes of PDC-E2166–181/IAg7-NP- or
BDC2.5mi/IAg7-NP-treated donors, respectively.

In vivo Breg induction assay. Splenic B-cells from NOD.Il10tm1Flv (Tiger) mice
were enriched using an EasySep Mouse B-cell Isolation Kit (Stem Cell Technolo-
gies) and pulsed with BDC2.5mi or PDC166–181 peptides (10 μg ml−1) for 2 h at 37 °
C as previously described1. The peptide-pulsed B-cells were washed twice with PBS,
labeled with PKH26 (Sigma) and transfused (3 × 106) into pMHC-NP-treated or
untreated mice. The hosts were killed 7 days later and their spleens, MLNs, PCLNs,
and liver mononuclear cells were labeled with anti-B220-APC and biotinylated
anti-CD1d or anti-CD5 mAbs followed by Streptavidin-PerCP. PKH26+ B-cells
were analyzed for presence of eGFP+/CD1dhigh and eGFP+/CD5+ cells by flow
cytometry.

Histology and immunohistochemistry. Livers were fixed in 10% formalin for
2 days, embedded in paraffin, cut into 5 μm sections and stained with H&E or
Picrosirius Red. We scored (~0.5 cm2) sections from the four liver lobes from each
mouse (right and left, median and caudal) and a minimum of four portal triads per
lobe section (16 portal triads/mouse). For immunohistochemistry, liver tissues were
embedded in Tissue-Tek OCT, sectioned into 30 µm cryosections and stored on
slides at −80 °C. Slides were fixed in chilled acetone, washed with PBS, treated with
a 1:10 dilution of 30% H2O2 in PBS, washed with PBS, blocked with 10% normal
goat serum in PBS, washed again, and stained with anti-mouse CD4 (GK1.5) or
CD8 (Lyt-2) antibodies (1.5 h, 4 °C). After washing, the slides were stained with a
biotinylated goat anti-rat secondary antibody (1:200 dilution), incubated with
horseradish peroxidase (HRP)-conjugated streptavidin, followed by 3,3-diamino-
benzidine (DAB) substrate. Slides were counterstained with hematoxylin before
mounting.

ALT and TBA assays. ALT levels in serum were determined using a kit from
Thermo Fisher Scientific following the manufacturer’s protocol. Briefly, serum
samples were mixed with pre-warmed (37 °C) InfinityTM ALT (GPT) Liquid
Stable Reagent at 1:10 ratio and OD readings were taken for 3 min at 1 min
intervals in a nanodrop at a 340 nm wavelength, 37 °C. The slope was calculated by
plotting absorbance vs. time using linear regression and multiplied with a factor to
obtain ALT levels in serum (U/l) as described in the kit. Serum TBA levels were
analyzed using a TBA Enzymatic Cycling Assay Kit (Diazyme, Poway, CA) fol-
lowing the manufacturer’s protocol but using 96-well plates instead of cuvettes14.

Anti-nuclear and anti-mitochondrial autoantibodies. Presence of ANAs in
serum was ascertained using NOVA Lite®HEp-2 Slides kit (Inova Diagnostics, San
Diego, CA). A semi-quantitative approach was followed to measure ANA titers.
Briefly, serum samples were serially diluted in PBS (at 1:160, 1:320, 1:640, 1:1280,
and 1:2560) and then added to pre-fixed Hep-2 substrate slides, washed, stained
with FITC-conjugated goat anti-mouse IgG in PBS containing 5% normal donkey
serum (1:200 dilution), washed, mounted, and read under a fluorescent
microscope.

Serum levels of anti-mitochondrial PDC-E2 antibodies were determined via
ELISA. Briefly, ELISA plates were coated with PDC-E2 protein (5 μg ml−1, 100 μl)
(SurModics Inc, Eden Prairie, MN) overnight at RT. Plates were washed, blocked
using 3% dry skim milk in PBS (pH 7.4, 150 μl), and incubated with serially diluted
serum samples (100 μl, at 1:250 dilutions prepared using reagent diluent) for 2 h at
RT. Wells were washed and incubated with 100 μl of HRP-conjugated anti-mouse
IgG (1:2000 in reagent diluent) for 2 h at RT, and washed. Finally, wells were
incubated in the dark with 100 μl of DAB substrate for 20 min at RT. Upon
stopping the enzymatic reaction with 50 μl 2 N H2SO4, the absorption was
measured at a 450 nm wavelength using an ELISA plate reader. The positive
antibody activity (PAA) levels were calculated by calculating the mean OD ± 2 SD
of the control NOD serum samples (positive index) and by dividing the OD values
corresponding to NOD.c3c4 serum samples by the positive index, whereby values >
1.0 correspond to PAA.

Statistical analyses. Unless specified, sample size values mentioned in the figure
legends correspond to the total number of mice examined, pooled from different
experiments. Data were compared in GraphPad Prism 6 using Mann–Whitney U-
test, Kruskal–Wallis test, Chi-Square, Log-Rank (Mantel–Cox), Pearson correla-
tion, two-way ANOVA or multiple t-test analyses using the Holm–Sidak correc-
tion. P-values < 0.05 were considered statistically significant. Only statistically
significant P values are displayed in figures.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw data used to generate the figures of the manuscript are available from the authors
upon request.
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