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Abstract: Long non-coding RNA (LncRNA) and microRNA (miRNA) are both non-coding RNAs that
play significant regulatory roles in many life processes. There is cumulating evidence showing that
the interaction patterns between lncRNAs and miRNAs are highly related to cancer development,
gene regulation, cellular metabolic process, etc. Contemporaneously, with the rapid development of
RNA sequence technology, numerous novel lncRNAs and miRNAs have been found, which might
help to explore novel regulated patterns. However, the increasing unknown interactions between
lncRNAs and miRNAs may hinder finding the novel regulated pattern, and wet experiments to
identify the potential interaction are costly and time-consuming. Furthermore, few computational
tools are available for predicting lncRNA–miRNA interaction based on a sequential level. In this
paper, we propose a hybrid sequence feature-based model, LncMirNet (lncRNA–miRNA interactions
network), to predict lncRNA–miRNA interactions via deep convolutional neural networks (CNN).
First, four categories of sequence-based features are introduced to encode lncRNA/miRNA sequences
including k-mer (k = 1, 2, 3, 4), composition transition distribution (CTD), doc2vec, and graph
embedding features. Then, to fit the CNN learning pattern, a histogram-dd method is incorporated
to fuse multiple types of features into a matrix. Finally, LncMirNet attained excellent performance in
comparison with six other state-of-the-art methods on a real dataset collected from lncRNASNP2
via five-fold cross validation. LncMirNet increased accuracy and area under curve (AUC) by more
than 3%, respectively, over that of the other tools, and improved the Matthews correlation coefficient
(MCC) by more than 6%. These results show that LncMirNet can obtain high confidence in predicting
potential interactions between lncRNAs and miRNAs.

Keywords: LncRNA–miRNA interactions; RNA sequence features; deep learning; computational
frame

1. Introduction

Although noncoding RNAs (ncRNAs) [1] cannot encode proteins, they play indispensable roles in
numerous life processes [2–7]. Accumulated studies show that many ncRNAs are involved in various
life regulation processes [8,9]. LncRNA and miRNA, as two typical ncRNAs, are proof related to cancer
development, gene regulation, cellular metabolic process, etc. miRNA is a small ncRNA with 20–25 nt
adhering to lncRNA (more than 200 nt) to indirectly regulate gene expression [5], adjust lncRNA
function, and cooperate with lncRNA to finish regulation processes. The increasing evidence shows
that the interaction between lncRNA and miRNA contributes to finding some potential regulation
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relationships. Therefore, exploring lncRNA–miRNA interactions can support the understanding of
some of the complicated functions between lncRNAs and miRNAs. In earlier studies, researchers
mainly explored unknown lncRNA–miRNA interactions through laboratory experiments. However,
finding potential interaction between lncRNAs and miRNAs by a biological laboratory is labor-intensive,
time-consuming, and costly. Meanwhile, with the rapid development of RNA sequencing technology,
a fair number of novel lncRNAs and miRNAs have been detected. Hence, many computational methods
to predict lncRNA–miRNA interactions have been proposed. In 2018, Huang et al. introduced a group
preference Bayesian collaborative filtering model (GBCF) for picking up a top-k probability ranking list
for an individual miRNA or lncRNA based on the known miRNA–lncRNA interaction network [10].
In the same year, Huang et al. employed a graph-based prediction method (Expression Profile-based
prediction model for LncRNA-MiRNA Interactions, EPLMI) to infer the most potential lncRNA–miRNA
interactions based on the known lncRNA–miRNA interaction network, lncRNA–lncRNA similarity,
and miRNA–miRNA similarity [11]. In 2019, Huang et al. proposed a graph convolution auto-encoder
network method that incorporated the raw data of node attributes and topology of the interaction
network to predict the link between lncRNA and miRNA [12]. With the rapid development of
graph embedding technology, in 2019, Zhou et al. proposed an ensemble graph embedding method
(GEEL) [13] that used linear neighborhood similarity (LNS) method and known interactions to
construct a lncRNA–miRNA interaction graph, and then introduced four graph embedding methods
(Laplacian Eigenmaps, GraRep, High Order Proximity preserved Embedding, DeepWalk) and a graph
auto encoder model to represent the lncRNA/miRNA node. Based on the embedding results, GEEL
used the random forest classifier to predict the potential interactions between lncRNAs and miRNAs.
In 2020, Kang et al. used raw RNA sequence and 110 sequence-based features to feed a BiGRU
model and a random forest model, respectively, to train a hybrid model (PmliPred) for predicting
the potential interactions between lncRNAs and miRNAs [14]. Although the above methods can
relieve some problems, they also have some limitations. For example, EPLMI needs the expression
of lncRNAs and miRNAs as input, but it is difficult to obtain the special expression of lncRNAs and
miRNAs most times. Additionally, the expression of lncRNAs and miRNAs are tissue specific and
inconsistent between different quantitative methods. Another popular method, GBCF, can predict
potential interaction between known lncRNA and miRNA, while it is difficult to predict the interaction
between novel lncRNAs and miRNAs. Additionally, PmliPred is an expert in predicting the interaction
between lncRNAs and miRNAs in plants, while it performs poorly in animals. In order to solve these
limitations, we propose a sequence features-based model called LncMirNet. LncMirNet introduces
RNA sequence-based features including k-mer features and composition transition distribution (CTD)
features [15] as well as deep learning-based features including doc2vec and graph embedding as input
properties. LncMirNet employed the convolutional neural networks (CNN) model to predict potential
interactions between lncRNAs and miRNAs. It contains three main steps: (1) constructing k-mer, CTD,
doc2vec, and graph embedding features; (2) using the histogram-dd method to convert the constructed
lncRNA/miRNA sequence features into their corresponding matrix, respectively; and (3) employing
the CNN model to relearn the above constructing matrix features to predict the potential interactions
between lncRNAs and miRNAs. For the public benchmark datasets (lncRNASNP2) [16], LncMirNet
successfully predicted the potential interactions between lncRNAs and miRNAs with high evaluation
performances. Compared with the other six state-of-the-art methods by five-fold validation, LncMirNet
achieved more than 3% higher accuracy and AUC, respectively. Specifically, in terms of MCC,
LncMirNet obtained over 6% improvement compared with other methods. Furthermore, LncMirNet
outperformed all the competing methods on other metrics. From the experimental results, we can
conclude that LncMirNet is a robust and high confidence tool for predicting the potential interactions
between lncRNAs and miRNAs with RNA sequence-based features alone.



Molecules 2020, 25, 4372 3 of 12

2. Materials and Methods

2.1. Materials

2.1.1. Datasets

The positive training data were obtained from the lncRNASNP2 database (January 2018
version) [16], which is available at http://bioinfo.life.hust.edu.cn/. In the lncRNASNP2 database,
the true interactions were confirmed by laboratory examinations with the research literature. lncRNAs
in lncRNASNP2 are indicated by Ensemble ID and we downloaded the corresponding human lncRNA
sequences from GENCODE (https://www.gencodegenes.org/) [17]. We also extracted human miRNA
sequences from the miRbase database (http://www.mirbase.org/) [18]. To filter out true interactions,
we selected positive lncRNA–miRNA pairs when a record in lncRNASNP2 appeared as ‘hsa-miR’
and ‘ENST’ simultaneously. Finally, we obtained 258 miRNAs, 1663 lncRNAs, and 15,386 validation
lncRNA–miRNA interactions and their corresponding sequences.

2.1.2. Constructing Positive and Negative Samples

In the lncRNASNP2 database, there were 15,386 validation lncRNA–miRNA interactions treated
as positive samples. For negative interactions, we applied the same strategy widely used in the
previous research to construct negative interactions including GEEL, SG-LSTM [19], and GCLMI. First,
the Knuth–Durstenfeld shuffle algorithm [20] was utilized to shuffle the lncRNA set and miRNA set
10 times, respectively, and then a lncRNA (as lncRN1) and a miRNA (as miRNA1) were randomly
selected from the lncRNA set and miRNA set individually. Second, if the lncRNA1–miRNA1 pair did
not appear in the positive interactions and negative interactions, the lncRNA1–miRNA1 interaction
was regarded as a negative sample. Finally, for the balance of true and negative samples, we repeated
the shuffle and selection process and obtained 15,386 negative samples.

2.2. Methods

2.2.1. Overall Workflow

In our method, k-mer [21], CTD [15], and doc2vec [22] features were computed first for the
lncRNA/miRNA sequences. Then, based on these features, the linear neighborhood similarity measure
(LNS) [13] was applied to construct a lncRNA/miRNA neighborhood graph. After that, role2vec [23],
a graph embedding method, was employed to embed each node. Role2vec incorporates both the
graph structure and node attribute information to learn the representation for each node. Sequentially,
the k-mer, CTD, doc2ve, and graph embedding features of lncRNAs/miRNAs were fused to a matrix
for fitting the CNN learning pattern by a Histogram-dd. Histogram-dd can fuse multiple vectors to a
histogram matrix. Finally, histogram matrices are fed to a CNN model. The CNN model uses filters to
distill deep features to learn how to predict the potential interactions between lncRNAs and miRNAs.
The overall workflow of LncMirNet is shown in Figure 1.

http://bioinfo.life.hust.edu.cn/
https://www.gencodegenes.org/
http://www.mirbase.org/
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Figure 1. The overall workflow of LncMirNet. (A) Sub-sequence of a lncRNA/miRNA starting with 
position 0, 1, 2 respectively; (B) process to construct k-mer, CTD, and doc2vec and graph embedding 
features; (C) process to convert the lncRNA/miRNA vectors into a matrix; (D) process to predict 
potential interaction between lncRNA and miRNA by a CNN model. 

2.2.2. Construction Features 

k-mer Features of RNA Sequence 

The RNA sequence consists of Adenine (A), Uracil (U), Cytosine (C), and Guanine (G). In this 
paper, Uracil (U) in the RNA sequence was replaced by T (Thymidine). For a RNA sequence, the k-
mer frequency distribution is a basic and indispensable feature that can be represented by the k-mer 
frequency. Four kinds of k-mer features including 1-mer, 2-mer, 3-mer, and 4-mer are introduced, 

Figure 1. The overall workflow of LncMirNet. (A) Sub-sequence of a lncRNA/miRNA starting with
position 0, 1, 2 respectively; (B) process to construct k-mer, CTD, and doc2vec and graph embedding
features; (C) process to convert the lncRNA/miRNA vectors into a matrix; (D) process to predict
potential interaction between lncRNA and miRNA by a CNN model.

2.2.2. Construction Features

k-mer Features of RNA Sequence

The RNA sequence consists of Adenine (A), Uracil (U), Cytosine (C), and Guanine (G). In this
paper, Uracil (U) in the RNA sequence was replaced by T (Thymidine). For a RNA sequence, the k-mer
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frequency distribution is a basic and indispensable feature that can be represented by the k-mer
frequency. Four kinds of k-mer features including 1-mer, 2-mer, 3-mer, and 4-mer are introduced, where
1-mer records the counts of A, T, C, G; 2-mer saves the frequencies of AA, AT, . . . , GG; 3-mer holds the
times of AAA, AAT, . . . , GGG; and 4-mer stores the numbers of AAAA, AAAT, . . . , GGGG. Finally,
four kinds of k-mer features are merged into a vector with 340 (41 + 42 + 43 + 44 = 340) dimensions in
all. Notedly, in this paper, for a miRNA sequence, we only computed 1-mer, 2-mer, and 3-mer features
since the miRNA sequence is usually short (average length less than 30 nt) and 4-mer features for a
miRNA are usually sparse.

Composition/Transition/Distribution (CTD) Features

Composition transition distribution (CTD) [1] is primarily proposed for predicting the protein
folding class, which is a global protein sequence descriptor established by Dubchak’s work [24]. Lately,
CTD features are found to relate to RNA structure and are seldom used to predict the interactions
between lncRNAs and miRNAs. Therefore, in this paper, we applied CTD features to represent RNA
structure information. CTD features with 30 dimensions are sourced from Composition, Transition,
and Distribution, where the Composition features are the number of amino acids of a particular
property divided by the total number of amino acids, the Transition features characterize the percent
frequency with which amino acids of a particular property are followed by amino acids of different
property, and the Distribution features measure the chain length within which the first, 25%, 50%, 75%,
and 100% of the amino acids of a particular property are located.

For example, we used a toy RNA sequence ATACGTACTGCT GACGTAGC to show how to
calculate the CTD features. The toy RNA sequence contains 5 A, 5 T, 5 G, and 5 C, so the composition
is equal to 5/20 = 0.25, 5/20 = 0.25, 5/20 = 0.25, and 5/20 = 0.25. Transition includes AT, AC, AG, TG,
TC, and GC, six features that describe the percent frequency with the conversion of four nucleotides
between adjacent positions. AT represents the percent frequency of A adjoining T or T adjoining A.
AC, AG, TG, TC, and GC are the same formulation of AT. Therefore, the transition for the toy RNA
sequence is equal to 2/19 = 0.105, 3/19 = 0.158, 2/19 = 0.105, 4/19 = 0.211, 2/19 = 0.105, and 4/19 = 0.211.
Distribution is five relative positions along the transcript sequence of each nucleotide, with 0 (first node),
25, 50, 75, and 100% (last node) to measure the nucleotide distribution. For As, the 0% was located
at the first position in the toy RNA sequence, 25, 50, 75, and 100% at the third, seventh, fourteenth,
and eighteenth position, respectively. So, As was 1/20 = 0.05, 3/20 = 0.15, 7/20 = 0.35, 14/20 = 0.7,
and 18/20 = 0.9. Likewise, Ts, Gs, and Cs were 0.1, 0.3, 0.45, 0.6, 0.85, 0.25, 0.5, 0.65, 0.8, 0.95, 0.2, 0.4,
0.55, 0.75, and 1. We used A0, A1, A2, A3, A4, T0, T1, T2, T3, T4, G0, G1, G2, G3, G4, C0, C1, C2, C3,
and C4 to represent the 20 features [1].

Distributed Representation Feature of RNA Sequence by doc2vec

A RNA sequence can be regarded as a sentence. Therefore, encoding sentence methods in neural
language process (NLP) [25] can be introduced to represent RNA sequences. In this paper, doc2vec [22]
was recommended to construct the distributed representation feature for a RNA sequence. Doc2vec
uses local context and sentence global information to learn sentence representation. First, a continuous
RNA sequence is segmented by a 3-mer window with forwarding step 1. Second, the segmented
3-mers are applied to train a doc2vec model. Finally, based on the trained doc2vec, any RNA sequence
can be encoded into a fixed-size vector. The pipeline of RNA sequence encoded by doc2vec is shown
in Figure 2 where the sequence global information records the sequence index that will be inferred to a
fixed size vector to represent the RNA sequence.
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Figure 2. The training and inferring pipeline of doc2vec. (A) 3-mer segmentation process; (B) training 
process of a doc2vec model; (C) inferring process of doc2vec to encode a RNA sequence to a fixed-
size vector. 
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regulation problems. Hence, CNN is employed to predict the interactions between lncRNAs and 

Figure 2. The training and inferring pipeline of doc2vec. (A) 3-mer segmentation process; (B) training
process of a doc2vec model; (C) inferring process of doc2vec to encode a RNA sequence to a
fixed-size vector.

Graph Embedding Methods to Represent RNA Sequence

The lncRNA–lncRNA/miRNA–miRNA interaction graph contains graph structure information.
The graph information contributes to encoding the lncRNA/miRNA sequence. Each node in the graph
indicates a lncRNA/miRNA and each edge illustrates their interaction. To construct the lncRNA/miRNA
interactions graph, the k-mer count, CTD, and doc2vec encoding feature of a lncRNA/miRNA sequence
were merged into union vectors. Sequentially, the union vectors were utilized to construct the
lncRNA–lncRNA similarity matrix by LNS. For example, a lncRNA (as lnc1) whose top 15 close
distance lncRNAs with a similarity weight larger than 0 is thought to be existing connections. Based on
this strategy, the closely homologous lncRNAs are linked to Lnc1 to build the lncRNA–lncRNA
interaction graph. For the miRNA–miRNA interaction graph, the building process was similar to
the construction of the lncRNA–lncRNA interaction graph. Finally, the role2vec embedding method
was employed to encode each node since role2vec can fully use graph structure and node attributes.
In this paper, the embedding dimension was set as 128, the random walk order was set as one, and the
rest of the parameters were set as the value based on author suggestion. After the graph embedding
process, both lncRNA and miRNA were represented by 128 dimensional-vector fusing sequence and
geometric information.

Constructing Matrix Features by Histogram-Dd

The strategy of fusing multiple category features may support the improvement of the performance
of a classifier. Therefore, we used the histogram-dd method to convert lncRNA/miRNA vectors into
their corresponding matrices, which exactly fit the CNN learning pattern. Like the approaches used
in [26], a lncRNA/miRNA sequence can be disintegrated into three sub-sequences by starting at
positions 0, 1, and 2, respectively. For these sub-sequences of lncRNA/miRNA, each sub-sequence was
used to compute their corresponding k-mer, CTD, doc2vec, and graph embedding features. Finally,
histogram-dd integrated these four categories of features of lncRNA/miRNA into their corresponding
matrices with a size of 20 × 20 × 4, respectively. The advantage of converting the lncRNA/miRNA
vectors into matrices is that the transformed matrices not only save the original information of
one-dimensional features but also fit the CNN learning pattern that supports the interaction prediction
between lncRNAs and miRNAs.
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2.2.3. Prediction Model by Convolutional Neural Networks

Deep learning technology has obtained numerous achievements in many bioinformatics
applications. As one of the important deep learning models, CNN applies convolutional kernels to
automatically extract potential features from the raw input data matrix. Many successful bioinformatics
applications have proven that CNN is a powerful algorithm to solve classification and regulation
problems. Hence, CNN is employed to predict the interactions between lncRNAs and miRNAs.
The CNN predictor model consists of multiple convolution layers, dense layers (fully connected layers),
batch normalization layers, dropout layers, etc. First, the inputs of the CNN model are two tensors
with size a 20× 20× 4 corresponding to lncRNA and miRNA. After traversing multiple CNN layers,
respectively, lncRNA tensors and miRNA tensors are merged as a fusing tensor for connecting dense
layers. Each convolution layer consists of multiple filters with a 3× 3 kernel size, stride one, and Rule
activation function. Dropout layers are embedded into convolution layers to enhance the robustness of
CNN. Batch normalization layers are employed to normalize the intermediate data to accelerate better
training. We selected a sigmoid activation function on the output layer. When the predicted result was
larger than 0.5, we believe that the candidate lncRNA–miRNA pair interaction exists. The detailed
structure and parameters of LncMirNet are shown in Supplementary Figure S1.

2.3. Implementation of LncMirNet

LncMirNet was implemented by Keras 2.3.1 with backend Tensorflow 1.15.0 and all scripts were
written by Python 3.6. LncMirNet was run on a PC with 4.3 GHz, 8 cores CPU, and 16 GB RAM under
an open Linux operating system.

2.4. Evaluation Criteria

LncMirNet was evaluated by the widely used standard performance metrics, which are sensitivity
(SN), specificity (SP), accuracy (ACC), F1-score (F1), and Matthews correlation coefficient (MCC).
These evaluation metrics are defined as follows:

Sensitivity(SN) =
TP

TP + FN
(1)

Specificity(SP) =
TN

TN + FP
(2)

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
(3)

F1− score(F1) =
2TP

2TP + FP + FN
(4)

Mattews correlation coefficient (MCC) =
TP× TN− FP× FN√

(TP + FN) × (TP + FP) × (TN + FP) × (TN + FN)
(5)

where TP, FP, TN, and FN represent the true positives, false positives, true negatives, and false
negatives, respectively. We also plotted the receiver operating characteristic curves (ROC) and
computed the area under the curve (AUC) to precisely show the different performances of each model.

3. Results

3.1. Experimental Settings

When constructing the k-mer features, 1-mer (41 = 4), 2-mer (42 = 16), 3-mer (43 = 64), and 4-mer
(44 = 256) with forwarding step one were used, so altogether, 340 features were generated to
represent a lncRNA sequence, while only 1-mer, 2-mer, and 3-mer were used for a miRNA sequence
due to the short length of miRNA. The CTD method produces a 30-dimensional feature to encode a
lncRNA/miRNA sequence. Doc2vec is an unsupervised method that combines local context information
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and sequence global information of a RNA sequence to indicate any RNA length sequence to a fixed
size vector. Before training a doc2vec model, a lncRNA/miRNA sequence will be segmented into 3-mer
items. Based on the segmented 3-mer items of a lncRNA/miRNA sequence, the distributed memory
(PV-DM) [27] strategy is utilized to train a doc2vec model. We set a 128-dimensional vector and a
64-dimensional vector to hold the sequence global information of a lncRNA sequence and a miRNA
sequence, respectively. For the graph embedding method, we employed the role2vec method. Role2vec
is utilized to generate embedding expressions that focus on both the structure and neighbor information
of networks. Each node in the lncRNA/miRNA graph is embedded into a 128-dimensional vector.
After the process of feature construction, we obtain a 340-dimensional k-mer vector, a 30-dimensional
CTD vector, a 128-dimensional doc2vec vector, and a 128-dimensional neighbor graph embedding
vector for a lncRNA sequence as well as an 84-dimensional k-mer vector, a 30-dimensional CTD
vector, a 64-dimensional doc2vec vector, and a 128-dimensional neighbor graph embedding vector
for a miRNA sequence. Due to the CNN learning pattern, being friendly with the matrix data as
input, we adopted a histogram-dd method to convert lncRNA/miRNA vectors into a 20× 20× 4 matrix,
respectively, and fed these matrices to a CNN model for training.

3.2. The Effects of Feature Combination

To explore the performance of different combinations of four types of characteristics (k-mer features,
CTD, doc2vec, graph embedding features), a five-fold cross validation experiment was conducted
on all data. As shown in Table 1, on the training and test datasets, LncMirNet trained with all kinds
of features achieved better performance and obtained the lowest accuracy when it used the k-mer
features alone. The results show that the integration of four types of characteristics is a compelling
combination for predicting the potential interactions between lncRNAs and miRNAs. Table 1 records
the five-fold cross validation results.

Table 1. Effects of feature information in terms of prediction accuracy.

k-mer k-mer,
CTD

k-mer,
CTD,

doc2vec

k-mer, CTD,
doc2vec,

Graph Embedding

Training 0.8609 0.8802 0.9048 0.9140
Test 0.8004 0.8188 0.8321 0.8534

3.3. Comparison with Six Other Methods on All Data

To evaluate the performance of LncMirNet, LncMirNet was compared with the other six
state-of-the-art methods including GEEL, PmliPred, BiLSTM, SEAL, SVD, and Katz. GEEL calculated
the lncRNA–lncRNA/miRNA–miRNA similarity matrix by the linear neighborhood similarity method
by 5-mer features and constructed the lncRNA/miRNA interaction heterogeneous network. GEEL uses
multiple graph embedding methods and a graph auto encoder [28] to represent each lncRNA/miRNA
sequence and trains a random forest classifier to predict feasible interactions. PmliPred is based on a
hybrid model and fuzzy decision for plant lncRNA–miRNA interactions prediction. PmliPred approves
110 features including k-mer frequency, GC content, base pairs number, and minimum free energy of
lncRNA/miRNA sequences to form features and trains a random forest model. Furthermore, PmliPred
also encodes the RNA sequence by one-hot and trains a CNN-BiGRU model. Based on the predicted
result of the random forest model and CNN-BiGRU model, PmliPred uses the fuzzy decision to predict
the final result. LncRNA–miRNA interaction problems can be regarded as a graph link prediction
problem. In this paper, we also introduced a link prediction model, namely Subgraphs, Embeddings
and Attributes for Link prediction (SEAL), as a compared method. SEAL learns heuristics from local
subgraphs using a graph neural network (GNN), which is enabled to obtain better graph feature learning
ability. BiLSTM, a time-series deep learning model, was also introduced as a compared method since
the RNA sequence is a time-series data struct. BiLSTM is fed by one-hot embedding matrix of RNA
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sequence and outputs the predicted interaction probability. Additionally, we also selected Singular
Value Decomposition (SVD), a traditional matrix factorization method, as a compared method, which
uses the decomposition method of adjacency matrix to represent lncRNA and miRNA. Based on the
representation of SVD, the random forest model was used to classify the interaction between lncRNA
and miRNA. Katz is often used to link prediction problems, which can distinguish the influence of
different neighbor nodes and get the influence value of each node. Based on the node influence, Katz
utilizes the random forest model to predict the potential interactions between lncRNAs and miRNAs.

Five-fold cross validation was used to evaluate the performance of seven models.
All lncRNA–miRNA interactions were randomly divided into five equal-sized subsets. Furthermore,
Sensitivity, Specificity, F1-score, Accuracy, and MCC were adopted as evaluation metrics and AUCs
were calculated and ROCs plotted to distinguish the performance of each prediction model. As shown
in Table 2, LncMirNet achieved a MCC score of 0.7124 and AUC score of 0.9381, which outperformed
GEEL (MCC score: 0.6445; AUC score: 0.8982), PmliPred (MCC score: 0.6004; AUC score: 0.9030),
BiLSTM (MCC score: 0.4359; AUC score: 0.7876), SEAL (MCC score: 0.5754; AUC score: 0.8658),
SVD (MCC score: 0.3142; AUC score: 0.7156), and Katz (MCC score: 0.1930; AUC score: 0.6459). On the
other metrics including Sensitivity, Specificity, F1-score and Accuracy, LncMirNet outperformed the
compared methods most times. The superior performances of LncMirNet are due to two reasons. On one
hand, LncMirNet fully exploits the structure information of the lncRNA–lncRNA/miRNA–miRNA
graph by graph embedding methods and integrates multiple RNA sequence features including k-mer,
CTD, and doc2vec features. On the other hand, LncMirNet converts lncRNA/miRNA vectors to a matrix
by histogram-dd and employs a powerful CNN model to relearn potential features for improving the
performance of LncMirNet. Based on these superiorities, LncMirNet obtained better performance
compared with the other state-of-the-art methods. Moreover, LncMirNet is not limited to predict the
interactions between known lncRNAs and known miRNAs. The learning pattern of LncMirNet also
fits other interaction problems. We also plotted the ROC curve of seven methods to further show the
distinct performance. Figure 3 shows the seven ROC curves, and we can see that the LncMirNet curve
was above on all compared methods.

Table 2. The results of the six methods by five-fold cross validation on all data.

Sensitivity Specificity F1-Score Accuracy AUC MCC

GEEL 0.8040 0.8401 0.8187 0.8220 0.8982 0.6445
PmliPred 0.8800 0.7118 0.8117 0.7959 0.9030 0.6004
BiLSTM 0.8027 0.6263 0.7239 0.7145 0.7876 0.4359

SEAL 0.7650 0.8097 0.7825 0.7874 0.8658 0.5754
SVD 0.6548 0.6594 0.6595 0.6571 0.7156 0.3142
Katz 0.5969 0.5961 0.5953 0.5964 0.6459 0.1930

LncMirNet 0.9158 0.7910 0.8620 0.8534 0.9381 0.7124
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3.4. Negative Samples Analysis

In this paper, the pairs between lncRNAs and miRNAs without interaction were treated as
negative samples. We generated the same number of negative samples as known positive samples to
obtain a balanced dataset. However, positive datasets and negative datasets are not balanced most
of time. Therefore, we tried to explore the performance of LncMirNet in the different sample ratios.
β records the different ratios between negative samples and positive samples and ranged from 0.25,
0.5, 1.0, 2.0 to 4.0. Table 3 shows the experimental results. Although the dataset was not balanced,
LncMirNet could still obtain excellent results. When the ratio β was 1.0, LncMirNet had a higher AUC
value. The unbalanced dataset experiments showed that LncMirNet is a robust and reliable model to
predict potential interactions between lncRNAs and miRNAs.

Table 3. Different β in negative sample generation.

β Number of Positive Samples Number of Negative Samples AUC

0.25 15,386 3846 0.8519
0.5 15,386 7693 0.8729
1.0 15,386 15,386 0.9381
2.0 15,386 30,772 0.9067
4.0 15,386 61,544 0.8834

4. Discussion

Deep learning technology has yielded inspiring achievements for many bioinformatics issues [29].
Due to the increasing training data and relatively complex network struct, the issue of identifying
lncRNA–miRNA interaction is a significant and indispensable step in exploring the functions between
lncRNA and miRNA. With the increasing development of RNA sequence technology, numerous
novel lncRNA and miRNA have been found. How to determine their interactions easily is of utmost
urgency. In this paper, a hybrid features-based deep learning model was proposed. First, k-mer,
CTD, and doc2vec features were utilized to represent lncRNA/miRNA sequences. Then, based on
the sequence features of lncRNAs/miRNAs, a lncRNA-lncRNA graph and a miRNA–miRNA graph
were generated by LNS. To fully distill the graph information, role2vec, a graph embedding method,
was introduced to indicate each node (lncRNA/miRNA). The hybrid features can fully encode a
lncRNA/miRNA sequence from different perspectives. Sequentially, lncRNA/miRNA features were
converted to their corresponding matrices by histogram-dd for feeding a CNN model. These converted
matrices not only hold original information, but also fit a CNN learning pattern. These pipelines are
homologous to cascade learning with twice-feature learning. Additionally, the learning pattern can be
extended to other similar problems such as protein–protein interaction, gene–miRNA interaction, etc.
Therefore, due to the hybrid features embedding and CNN learning patterns, LncMirNet achieved a
superior performance.

5. Conclusions

In this paper, we proposed a novel method based on hybrid sequence features including k-mer,
CTD, doc2vec, and graph embedding features and a CNN model, namely LncMirNet, to predict
lncRNA–miRNA interactions. LncMirNet is an efficient method that only relies on RNA sequence-based
features. The compared experiments on lncRNASNP2 show that LncMirNet achieved more than 3%,
a 6% improvement in terms of AUC and MCC, respectively, and has good generalization ability on
unbalanced datasets. The predicted results of LncMirNet may lay the foundation for the construction of
the lncRNA–miRNA interaction database in the future. LncMirNet may also provide valuable references
for other interaction prediction studies. Overall, LncMirNet successfully identified lncRNA–miRNA
interactions by sequence features alone and may contribute to other interaction research.



Molecules 2020, 25, 4372 11 of 12

6. Data Availability Statement

Publicly available datasets were analyzed in this study. Codes and data are available at
https://github.com/abcair/LncMirNet, which contains detailed steps to run LncMirNet. Moreover,
a Supplementary Manual S1 is available to illustrate how to predict interactions between novel lncRNAs
and miRNAs.

Supplementary Materials: The following are available online, (Figure S1: The detailed struct of LncMirNet,
Manual S1: How to run LncMirNet.pdf).
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