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THE BIGGER PICTURE Dimensionality reduction enables the visualization of high-dimensional single-cell
datasets. Typically, these algorithms are unsupervised, disregarding known biological labels such as cell
type or experimental time point. LDA identifies linear combinations of predictors that optimally separate
these a priori labels. Combined with HSS for feature selection, LDA generates interpretable axes for visu-
alization and analysis of single-cell data. LDA is extensible to unseen data and can also be used as an input
to other methods, for example, to integrate multi-label data for UMAP visualization.
LDA enables the exploration of different aspects of cellular heterogeneity, even within the same dataset, by
tailoring axes to separate specific, user-defined labels. More generally, this work introduces an alternative
approach to visualize single-cell data and highlights the abundance of experimental metadata and cellular
features that can be exploited for supervised analysis.

Production: Data science output is validated, understood,
and regularly used for multiple domains/platforms
SUMMARY
Single-cell technologies generate large, high-dimensional datasets encompassing a diversity of omics.
Dimensionality reduction captures the structure and heterogeneity of the original dataset, creating low-
dimensional visualizations that contribute to the human understanding of data. Existing algorithms are typi-
cally unsupervised, using measured features to generate manifolds, disregarding known biological labels
such as cell type or experimental time point. We repurpose the classification algorithm, linear discriminant
analysis (LDA), for supervised dimensionality reduction of single-cell data. LDA identifies linear combinations
of predictors that optimally separate a priori classes, enabling the study of specific aspects of cellular het-
erogeneity. We implement feature selection by hybrid subset selection (HSS) and demonstrate that this
computationally efficient approach generates non-stochastic, interpretable axes amenable to diverse biolog-
ical processes such as differentiation over time and cell cycle. We benchmark HSS-LDA against several
popular dimensionality-reduction algorithms and illustrate its utility and versatility for the exploration of
single-cell mass cytometry, transcriptomics, and chromatin accessibility data.
INTRODUCTION

Single-cell technologies have revolutionized our understand-

ing of biology, enabling granular dissection of the cellular het-
This is an open access article und
erogeneity present in complex biological samples. A surge of

innovative method development has provided researchers

with the means to quantify the transcriptome, immunopheno-

type, chromatin accessibility, clonality, and antigen-specificity
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of single cells, in some cases simultaneously.1–7 Mass cytom-

etry (CyTOF) facilitates the quantification of �50 parameters

on millions of cells in a single experiment, while sequencing-

based approaches can measure tens of thousands of features

on tens of thousands of cells.8,9 This deluge of data encom-

passing a diversity of omics, cell quantities, dimensionalities,

and biological samples is not amenable to a single computa-

tional pipeline or approach for analysis, but instead requires

a range of flexible computational tools to address different

biological questions and therefore analytical needs.

Dimensionality reduction facilitates the exploration of these

large, high-dimensional datasets by generating a two-dimen-

sional (2D) coordinate system that enables simultaneous visual-

ization of all datapoints in a single biaxial plot that captures the

high-dimensional relationships of cells. Principal-component

analysis (PCA) performs unsupervised dimensionality reduction

by identifying linear combinations of features that maximize

variance.10 While PCA has been applied to high-dimensional

single-cell data, non-linear unsupervised methods, such as uni-

form manifold approximation and projection (UMAP) and po-

tential of heat diffusion for affinity-based transition embedding

(PHATE), have been widely adopted for single-cell visualization

due to a superior ability to capture local and global structure,

while preventing coordinate overlap.4,11,12 While these algo-

rithms represent powerful tools for computational biology,

they may not always be the optimal choice for a given dataset,

based on biological question, analysis goal, and/or available

computational resources. Furthermore, while these unsuper-

vised methods provide an unbiased view of the data, they

cannot use a priori knowledge of sample composition to

improve the manifold.

Previously, we introduced linear discriminant analysis (LDA)

for the visualization of single-cell morphometry data for hema-

topathology diagnostics driven by previously defined healthy

cell classes.13 LDA is a classification algorithm that identifies

linear combinations of features that optimally separate previ-

ously determined class labels.14 LDA is used primarily to pre-

dict the class label of new observations, but we instead exploit

the inherent dimensionality reduction of the method for visual-

ization and hypothesis generation, rather than classification.

Here, we demonstrate that LDA is an effective supervised

tool to visualize and organize cells according to a priori labels

such as cell type, cell-cycle phase, or experimental time point.

We implement hybrid subset selection (HSS), a heuristic

approach using elements of both forward and reverse stepwise

selection, to identify a set of features that enable enhanced

separation of these labels. Furthermore, feature selection by

HSS for the optimization of class separation combined with

data visualization provides users with a visually intuitive and

interpretable understanding of key feature drivers underlying

the biological source of variation represented by class labels.

We compare and benchmark HSS optimized LDA against

PCA, UMAP, and PHATE across three mass cytometry data-

sets and demonstrate its utility and versatility for the visualiza-

tion of single-cell transcriptomics, epigenetics, and multi-omic

profiling. Finally, to empower researchers to apply supervised

dimensionality reduction to their own datasets, we introduce

our implementation of LDA with feature selection in the R pack-

age hsslda.
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RESULTS

HSS optimizes supervised dimensionality reduction for
single-cell visualization
Supervised dimensionality reduction by LDA takes in a matrix of

cells (n) and features (p), as well as a list of a priori classes (k), to

generate a set of k – 1 LDs (Figures 1A and S1A). LDA leverages

these class assignments as a response variable to derive the

LDs, which are interpretable linear combinations of features

that optimally separate cells by their known, user-defined class

assignment. These a priori labels can be biological features of

cells such as cell types, collection time points, cell lines, cell-cy-

cle phases, or other categorical/ordinal features. Traditionally,

dimensionality reduction relies on all defined features (p) as in-

puts. However, to obtain the optimal separation between classes

for visualization, the user needs to tune this feature set so that it

best separates the class labels in the data. This separate anal-

ysis can often be a time-intensive task for biologists. To facilitate

improved dimensionality reduction and visualization, we imple-

mented HSS to augment LDA with an automatic feature selec-

tion that optimizes class separation in an interpretable manner

(Figure 1B). The HSS-LDA algorithm uses a combination forward

and reverse stepwise feature selection heuristic, calculating sep-

aration scores acrossmany feature subsets, and selects the final

set of features that best separates classes for visualization (see

methods).

For example, to understand endoderm differentiation pat-

terns, Kimmey et al. collected endoderm cells across five

differentiation time points (k = 5) and applied CyTOF to obtain

a single-cell matrix of cells and protein markers (see resource

availability statement). In addition to this single-cell matrix of pro-

tein features, each cell was annotated with its collection time

point. By applying LDA and visualizing the first two LDs, cells

from different time points were separated across a single biaxial

plot (Figure 1C, left). Day 0 separated from the other time points

but its relationship to other time points in differentiation was not

evident. While LDA alone can visually separate cells according to

their class assignments, we applied HSS to identify the combina-

tion of features that optimizes this separation, resulting in

improved visualization (Figure 1C, right). HSS-LDA improved dif-

ferentiation time points with an optimized set of features and re-

vealed a continuous trajectory from human embryonic stem cell

(hESC) day 0 to day 6 differentiated endoderm-primed cells.

To assess the utility of HSS-LDA for single-cell visualization, we

applied LDA, HSS-LDA, andUMAP to three CyTOF datasets from

different biological systems and with different visualization

needs.11 Each dataset was assigned a specific name for this pa-

per: ‘‘Morphometry,’’ ‘‘T cell metabolic regulome,’’ and ‘‘Chromo-

typing’’ (datanot shown).13,15Thesemasscytometrydatasets had

unique challenges such as significantly imbalanced cell numbers

across classes (e.g., cell types), as well as different biological

processes to visualize such as discrete, continuous, or cyclical

systems. Compared to LDA, the HSS-LDA visualization either

qualitatively improved or retained the original separation of class

labels in the HSS-LDA embedding for the three datasets despite

using a lower dimensional feature matrix (Figures S1B–S1G).

HSS-LDA facilitated the separation of cell types in the morphom-

etry dataset using only 13 features from17 (FiguresS1BandS1C),

metabolic states of T cells over time using only 8 features from 32



Figure 1. HSS-LDA optimizes dimensionality reduction using feature selection

(A) Workflow demonstrating linear discriminant analysis (LDA) with prior knowledge of class labels of interest for supervised dimensionality reduction and feature

selection using hybrid subset selection (HSS).

(B) HSS-LDA performs feature selection to enhance dimensionality reduction and visualization of single-cell data by maximizing class separation via a stepwise

feature selection approach, selecting the final model based on a separation metric specified by the user.

(C) Comparison of LDA and HSS-LDA visualization using example endoderm differentiation data.
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(Figures S1D and S1E), and cell-cycle phases using only 24 fea-

tures from 32 (Figures S1F and S1G).

Wealsoexplored feature selection throughL2 regularizationus-

ing sparseLDA (sda).16 To compare performance, we performed

LDA, (lda) HSS-LDA, (hsslda), and sda on our three mass cytom-

etry datasets using default settings. Tuning sda parameters did

not result in substantially different results (data not shown). We

used thesame input cells for eachalgorithmandvisualized thefirst

two discriminants (Figures S1H, S1J, and S1L).While all of the ap-

proaches rendereduseful visualizations that separatedclasses for

each dataset, HSS-LDA provided better separation of blasts from

neutrophils and lymphocytes in the Morphometry dataset. This is

likely due to our implementation of HSS, which specifically

rewards visualizations with the greatest separation of the least-

separated groups, enriching for plots that separate all of the clas-

ses. Furthermore, in sparseLDA, regularization is performed using

the L2 penalty (no L1 implementation is currently available), which

drives feature coefficients close to zero, but still retains all of the

features in the final model (Figures S1I, S1K, and S1M). HSS

explicitly removes features that do not add to class separation,

which improves interpretability. Feature weighting was similar be-

tween sparseLDA and HSS-LDA in the Metabolism dataset, while

more substantial differences arose in the Morphometry and

Chromotyping datasets. While sda proved to be a viable tool for

single-cell visualization, we focused on HSS-LDA in this paper

for the reasons outlined above.

HSS enriches features useful for separating multiple classes.

In the Chromotyping dataset, pHH3_S10 expression defines

mitotic cells. LDA selected this marker to separate these cells

along LD1, but in doing so, obscured other features selected
by HSS-LDA that also delineate mitotic cells, such as H3K27ac

and H4K16ac (Figures S1F, S1G, and S2E). Furthermore, these

markers have the additional value of being differentially ex-

pressed in other cell-cycle phases. We observed a similar phe-

nomenon in the Morphometry dataset, in which LD2 in LDA

was dominated by CD14, which uniquely marks monocytes

(Figures S1B, S1C, and S2A). HSS-LDA instead selected CD45

as a dominant feature of LD2, a marker that is uniquely high in

monocytes, absent in erythroids, and moderately expressed in

other cell populations. Thus, in addition to identifying an opti-

mized minimum feature set through feature selection to reduce

the feature space, the HSS-LD coefficients also provide inter-

pretability of key drivers of class separation in both magnitude

and direction, which can be used to guide other analyses

(Figure S3A).

HSS-LDA reconstructs both discrete and continuous
biological processes
The Morphometry dataset uses a set of markers called scatter-

bodies that capture immune cellular identities based on struc-

tural features that are consistent even in malignancy, thereby

discriminating immune and hematopoietic cells extracted from

bonemarrow (Figure 2A). There are often drastic cell-type imbal-

ances in human tissues, exemplified in theMorphometry dataset

by a predominance of neutrophils compared to other cell popu-

lations in the bonemarrow (Figures 2B and 2C). While this can be

re-balanced through equal sampling of each cell type, subsetting

the data potentially discards valuable cell information reliant on

prior system knowledge. UMAP spreads data to avoid coordi-

nate overlap, but in this imbalanced dataset, the result is
Patterns 3, 100536, August 12, 2022 3
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neutrophils dominating the entire manifold, making it difficult to

see differences between classes. HSS-LDA treats discrete cell

types equally and separated cell types regardless of their cell

abundance, while preserving cellular relationships by protein

abundance (Figures 2C, S2A, and S2B). To test the function of

HSS-LDA as a classification algorithm, we trained HSS-LDA

for both visualization and classification of discrete cellular

identities using cells only from healthy donors (Figure S3B). We

visualized HSS-LDA plots and accuracy metrics, finding that

HSS-LDA accurately predicted cellular identities of cells derived

from patients with hematopoietic malignancies, with a median

accuracy of �90% (Figures S3C and S3D). Thus, both the visu-

alization and classification aspects of HSS-LDA bear utility for

biological applications.

The T cell metabolic regulome dataset includes a feature set of

markers that capture the metabolic state of human peripheral

blood mononuclear cell (PBMC)-derived CD8+ T cells collected

across multiple time points after ex vivo T cell receptor (TCR)

stimulation (Figure 2D). Hartmann et al. demonstrated that

markers for metabolic regulation capture the continuous trajec-

tory of metabolic cellular states over time.15 Cells were labeled

by their experimental time point and separated by HSS-LDA,

facilitating the visualization of the linear trajectory of T cell activa-

tion using ordinal labels. Both HSS-LDA and UMAP separated

cells across each time point (Figures 2E, 2F, S2C, and S2D),

but LDA uniquely provided both (1) interpretable feature coeffi-

cients across each linear discriminant, and (2) facilitated the

projection of unseen data onto previously trained LD axes for

exploratory analysis. We demonstrated this utility by stratifying

T cells by CD57 expression, a marker of senescence and termi-

nal differentiation (Figures 2G and 2H). We trained LDA on

CD57low cells and visualized both the linear trajectory of these

cells and the respective linear combination of coefficients in a

biaxial plot to generate a latent space representation of the

metabolic progression of a non-senescent T cell during TCR

stimulation (Figures 2I and S3E–S3G). To visualize the metabolic

progression of senescent T cells compared to non-senescent

T cells during TCR stimulation, we projected the unseen

CD57high cells onto the CD57low LD axes and found that

CD57high cells had a stunted metabolic progression starting be-

tween days 1 and 2 of TCR stimulation compared to CD57low

cells (Figure 2I). The mean coordinates of CD57high cells at day
Figure 2. HSS-LDA reconstructs both discrete and continuous biologic

for exploratory analysis

(A) Conceptual diagram of immune cells extracted from healthy bone marrow an

(B) Bar plot summarizing imbalanced class distribution of immune cell populatio

(C) Comparison of HSS-LDA using pixel class entropy (PCE) score for feature se

input cells.

(D) Conceptual diagram of human CD8 naive T cells extracted from PBMCs for

metabolic markers for CyTOF analysis.

(E) Comparison of HSS-LDA using Euclidean distance for feature selection and UM

each time point. The number of cells is balanced across each time point. UMAP

(F) Unfaceted HSS-LDA and UMAP plot of (E).

(G) Biaxial CD57 versus CD45 plot colored by density, showing train-test split for

and the unseen CD57high cells are used as a test set projected onto the CD57low

(H) Bar plot summary counts for CD57low and CD57high training and test sets.

(I) Biaxial LD plots of CD57low cells and embedded CD57high cells labeled with th

(J) Protein expression of biaxial HSS-LD plots for 3 example markers: CD3, CD9

(K) Boxplot summary of protein expression for CD57low and CD57high cells acros

CD57high cells across each time point. *p % 0.05; **p % 0.01; ***p % 0.001; ****p
5 overlapped on the manifold with the CD57low cells at approxi-

mately days 2–3 of TCR stimulation, reflecting the idea that these

cells shared a common metabolic state on different days of TCR

stimulation (Figure 2J). Notably, the three features that contrib-

uted most to HSS-LD1, were significantly differentially ex-

pressed between CD57low and CD57high cells at all time points

(Figures 2J, 2K, and S1E). These differences were not an artifact

of test/train sampling (Figures S3H and S3I). We explicitly as-

sessed all of themetabolic markers and implemented LDA rather

than HSS-LDA to train a more metabolically integrative model

that is less biased toward a CD57low-specific feature set.

Through supervised dimensionality reduction by LDA, we show

that a supervised method can be trained on a baseline cellular

state such as T cells with healthy proliferation potential, and

distinct cellular states such as those with senescent or terminally

differentiated phenotypes can be compared to a baseline state

while integrating high-dimensional data in a visually intuitive

manner. These results demonstrate that LDA and HSS-LDA

can be applied to datasets with both categorical and ordinal la-

bels for visualization and interpretation of discrete and contin-

uous single-cell biological systems.

HSS-LDA captures cyclical biological processes within
multi-label data
Cellular division is an important and highly regulated biological

process that maintains tissue homeostasis with cellular turnover

and can become corrupted in malignancy. Through cellular divi-

sion, global chromatin structure undergoes significant changes

to facilitate DNA replication and separation into two cells. To bet-

ter understand the dynamics of chromatin structure regulators

through the cell cycle, we applied HSS-LDA to highlymultiplexed

chromatin content data from single cells (i.e., chromotype: a

collection of chromatin-modifying factors and histone modifica-

tions) across cell lines and cell-cycle states (Figures 3A and 3B).

Global chromatin content as defined by single-cell abundance of

chromatin-modifying factors and histone modifications capture

the distinct, endogenous epigenetic patterning of different cell

lines as well as the expression patterns of these markers across

the cell cycle (Figure 3A). This dataset is particularly unique

because it contains (1) two sets of labels (cell type and cell cycle),

and (2) a cyclical biological process (cell cycle), resulting in five

cell lines and five cell cycle phases (Figure 3B). Both the cell lines
al processes and can embed new, unseen cells onto the visualization

d stained using morphometric markers for CyTOF.

ns.

lection and UMAP demonstrating discrete class visualization using the same

ex vivo TCR stimulation, collected on days 0–5 of activation, and stained with

AP demonstrating a linear trajectory using the same input cells faceted across

implemented with published settings: n_neighbors = 15 and min_dist = 0.02.

stratification CD57low and CD57high cells. HSS-LDA is trained on CD57low cells

LD embedding.

e centroid point for each time point.

8, and MCT1.

s each time point. Wilcoxon signed-rank test performed between CD57low and

% 0.0001.
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and cell-cycle phases contain an imbalanced distribution of

cells. Ground truth cell-cycle phases were labeled by manual

gating of CyclinB1, IdU, phosphorylated H3, and pRB.17,18

The cell cycle is thought of as a circular process in which theM

phase parental cell divides to form two G0/G1 child cells. Here,

we wanted to explicitly visualize this cyclical trajectory to track

protein expression across the cell cycle independent of cell

line heterogeneity. We ran HSS-LDA and UMAP using the

same initial set of epigenetic markers and trained HSS-LDA us-

ing the cell-cycle labels. HSS-LDA successfully separated the

cell-cycle states and captured the circular trajectory of the cell

cycle, whereas UMAP did not separate cell-cycle labels as an

adequate representation of the cell-cycle stages (Figures 3C,

S2E, and S2F). The UMAP manifold was confounded by the

imbalanced distribution of the dataset and attempted to capture

information unique to both the cell lines and cell cycle. HSS-LDA

selected features that separate cell-cycle labels and generated

an interpretable linear combination of features that separates

these cell labels (Figures S2E and S2F). UMAP would require

manual intervention to identify the feature subset to adequately

visualize the cell cycle, and even then, the cell-cycle signal

may still be confounded by distinct cell line properties that may

require signal correction methods to deconvolve cell-cycle and

cell line properties. The mitotic cells were hidden in the UMAP,

and other cell-cycle phases were projected onto multiple areas

of the manifold. While parameter tuning could perhaps improve

the UMAP embedding, it cannot fully resolve these visualization

challenges. HSS-LDA takes advantage of prior knowledge of the

cell-cycle labels and feature selection captures the relevant cell-

cycle information independent of the cell lines, sufficiently visu-

alizing the cyclical trajectory using a linear transformation.

Here, we can visibly see marker transitions of puromycin and

CyclinB1 protein abundances along the cell-cycle trajectory (Fig-

ure S2E). By visualizing cellular relationships in a manner that

reflects the cyclical trajectory of the cell cycle, we can more intu-

itively study the markers that directly contribute to cell-cycle

dynamics but also independently study the patterns of other pro-

tein markers that are not used to construct the cell-cycle

embedding.

At the same time, within the same dataset, HSS-LDA could

reveal cell line differences, visualizing them independent of

cell-cycle phases. While projecting the same data using cell

line labels proves more difficult for both HSS-LDA and UMAP,

the HSS-LDA plot further improved when mitotic cells were

removed (Figures 3D, S2G, and S2H). However, this remains a

challenging biaxial visualization task for both HSS-LDA and
Figure 3. HSS-LDA reconstructs cyclical biological trajectories and can

alization tasks
(A) Conceptual diagram of cell-cycle and chromotyping markers of various cell li

(B) Bar plot summary of cell counts for each cell line in various cell-cycle phases

(C) Comparison of HSS-LDA using Euclidean distance for feature selection and

(D) Comparison of HSS-LDA using Euclidean distance for feature selection and

(E) Conceptual diagram demonstrating prior supervised dimensionality reduction

(F) HSS-LDA-initialized UMAP plots of the cell-cycle and cell line labels. UMAP pa

7; for cell lines: n_neighbors = 15, spread = 1.

(G) Conceptual diagram demonstrating prior supervised dimensionality reductio

HSS-LDA is computed separately on cell-cycle and cell line labels, and the HSS

(H) HSS-LDA-initialized UMAP plots demonstrating dual-class visualization of bot

selected qualitatively: n_neighbors = 10, spread = 4.
UMAP, which is one of the current gold standard dimension-

ality-reduction methods for visualization. For both cell cycle

and cell line, low-abundance classes (e.g., mitotic cells) were

better visualized with HSS-LDA as compared to UMAP

(Figures 3C and 3D), because they occupy a proportionally larger

area on the manifold in UMAP, as previously shown with the

Morphometry dataset. Thus, HSS-LDA can be used to visualize

cyclical biological trajectories and discrete cellular identities with

heterogeneous data distributions, enabling the identification of

features uniquely associated with either cell-cycle or cell line

classes.

HSS-LDA as UMAP input integrates variance from
multiple class labels into a single visualization
While we used HSS-LDA as a visualization tool with the first two

LDs, HSS-LDA produces multiple LDs. The number of LDs pro-

duced in the model is calculated as the [# of classes � 1]. Sub-

sequent HSS-LDs contain additional information that separate

classes of interest (Figure S1A). To capture data patterns result-

ing from more than one source of known variance, we hypothe-

sized that HSS-LDs generated from multiple class labels could

be used as input to unsupervised dimensionality-reduction

methods. We performed supervised dimensionality reduction

by HSS-LDA for either cell-cycle or cell line labels and input

the HSS-LDs as features into UMAP to generate an HSS-LD-

UMAP embedding that sufficiently separates classes (Figures

3E and 3F).

Given that HSS-LD-UMAP embeddings can separate classes

within each single label, we tested whether we could exploit a

combination approach to dimensionality reduction to visualize

both cell line and cell-cycle class labels in a single biaxial plot.

We combined the HSS-LDs from the two separate HSS-LDA

analysis for cell line and cell cycle into a single table and input

this as a feature set into UMAP to generate a combinatorial

HSS-LD-UMAP embedding (Figure 3G). The resulting biaxial

plot preserves both cell line and cell-cycle relationships in a bio-

logically meaningful manner (Figure 3H). Cell lines cluster sepa-

rately (Figure 3H, right panel) while still preserving the cell-cycle

trajectory from the G0–G2 state within each cell line (Figure 3H,

left panel).

Cell line differences are more distinct than cell-cycle differ-

ences, with major patterns being driven by basal epigenetic

differences between cell lines. As expected, unlike all other

cell-cycle states, the global chromatin content of cells in the

mitotic phase is highly conserved across cell lines. As shown,

dual-label visualizations can be useful to demonstrate distinct
be input as features into UMAP to solve challenging dual-class visu-

nes for CyTOF analysis.

.

UMAP visualizing the cell cycle.

UMAP both including and excluding mitotic cells to visualize cell lines.

using HSS-LDA to initialize UMAP.

rameters were selected qualitatively; for cell cycle: n_neighbors = 25, spread =

n using HSS-LDA to initialize UMAP for dual-class labeled data visualization.

-LDs are merged as the feature set input to initialize UMAP.

h cell line and cell-cycle systems in a single biaxial plot. UMAP parameters were

Patterns 3, 100536, August 12, 2022 7



Figure 4. LDA is computationally efficient and scalable and adequately separates class labels

(A) Conceptual diagram for comparing various dimensionality-reduction algorithms. PCA, LDA, UMAP, and PHATE algorithms are applied to 3 CyTOF datasets,

and runtimes are assessed to determine efficiency and scalability of the algorithm.

(legend continued on next page)
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patterns in a biological process across different systems. Apart

from better representing multiple known sources of heterogene-

ity in a single embedding, prior supervised dimensionality reduc-

tion by LDA also significantly reduces the number of features

input into UMAP from a full panel of markers to a smaller set of

HSS-LDs, reducing UMAP runtime on large single-cell datasets.

This is similar to one of many advantages when performing PCA

to reduce the feature set before UMAP in high-dimensional ge-

nomics datasets. Thus, HSS-LDA for supervised dimensionality

reduction can be used in advance of unsupervised methods

such as UMAP to help solve challenging dual-label and multi-

class visualization tasks in a single embedding.

Benchmarking LDA efficiency and class separation
against common dimensionality-reduction algorithms
To further assess theutility of LDAandHSS-LDA,weextendedour

comparison to other popular dimensionality-reduction methods,

including PCA, UMAP, and PHATE across the three mass cytom-

etry datasets (Figure 4A).10–12 PCA is an ideal comparison

because it is conceptually similar to LDA in that theybothare linear

transformation techniques.While PCA finds directions ofmaximal

variance, LDA finds the feature subspace that maximizes class

separability. UMAP is a non-linear, dimensionality-reduction tech-

nique that is arguably the most popular single-cell visualization

tool, and computationally shares many similarities with its related

predecessor tSNE.19 UMAP is a hybrid dimensionality-reduction

approach, as UMAP is initialized using a spectral embedding of

the normalized Laplacian eigenmap (LE), which is important for

its retention of global structure. PHATE,more recently introduced,

is an information-geometric distance approach to capture local

and global non-linear structure for dimensionality reduction.

PHATE is also a hybrid approach, as it uses multidimensional

scaling (MDS) in the final embedding.

We compared LDA to these diverse algorithms to emphasize

use cases in which one algorithm may be more suitable than

another. To fairly compare runtimes, we used the same feature

set and input cells for each algorithm. As anticipated, LDA and

PCA were significantly faster algorithms than UMAP and

PHATE. We emphasize that a log2 scale was required to

adequately visualize the runtime discrepancy between the

algorithms as cell counts increased (Figure 4B). LDA is non-sto-

chastic, reproducible, and robust with even low cell counts.

Visualizing all four algorithms across the varying cell counts

demonstrated that cells will generally occupy the same pheno-

typic coordinates in the LD embedding when using LDA

(Figures S4A–S4C). The scalability of LDA makes it amenable

for feature selection using our hybrid subset selection approach.

HSS-LDA runtimes converge with other dimensionality-reduc-

tion methods that do not provide feature selection when reach-

ing a range of cells that can accurately identify a minimum

feature set (Figures S5A–S5C). Using the three mass cytometry
(B) The average runtime of 3 analyses across 3 datasets for each algorithm are

gorithm settings are used.

(C) Summary of silhouette score and PCE score to assess separation of class labe

by HSS-LDA.

(D–L) Summary plots of each algorithm applied to the morphometry, T cell meta

visualizations of each algorithm using 10,000 cells. (Center: E, H, and K) Average s

Average PCE score in a 100 3 100 pixel grid across different cell counts for eac
datasets, we identified a heuristic of approximately 50,000–

200,000 cells to be used as a subset before running HSS-LDA

to identify an optimized feature set, although there will be vari-

ability with every dataset (Figure S5D). Once the HSS-LDs are

computed, the model can non-stochastically project the same

data to reproduce the exact same axes or project unseen data

within seconds, as was done in the T cell metabolic regulome da-

taset training the LDA model on the CD57low cells and projecting

the CD57high cells onto the same LD axes for rapid dimension-

ality reduction (Figures 3G–3K).

One of the goals of HSS-LDA is to provide biologically inter-

pretable 2D axes that facilitate exploration and visualization of

features and cellular relationships underlying the separation of

labeled classes. The interpretability of LDA is therefore predi-

cated on the ability of the algorithm to separate labeled single-

cell data. To quantitatively assess class label separation, we

varied cell count inputs into each algorithm and applied two sep-

aration metrics: (1) silhouette score and (2) pixel class entropy

(PCE) score (Figure 4C). Silhouette score is a measure of how

similar cells are to their own cluster compared to other clusters

by accounting for both intra-cluster and inter-cluster Euclidean

distance of each class. PCE score pixelates the biaxial plot

into a grid and computes an average PCE score measured by

the entropy of all class labels in each pixel of the grid; the

approach is further described in the methods. To fairly assess

the four algorithms, we used the features (not LDs) selected by

HSS as input into PCA, UMAP, PHATE, and LDA. In this way,

each algorithm sees the identical input matrix of observations

and features.

A 50,000-cell subset of the threemass cytometry datasets and

their respective labels (Figures 4D, 4G, and 4J, left) were

embedded using these methods. We found that LDA adequately

separated class labels across the three datasets and often per-

formed better compared to other dimensionality-reduction algo-

rithms. Silhouette score summaries related that LDA performed

second best to UMAP in separating cell types in the Morphom-

etry dataset, although as demonstrated in Figure 2, UMAP failed

to handle data imbalances and yielded a less useful visualization

due to underrepresentation of rare cell types. LDA performed the

best separating intra-cluster and inter-cluster distance across

time points in the T cell metabolic regulome, and cell-cycle

phases in the Chromotyping datasets compared to the other al-

gorithms (Figures 4E, 4H, and 4K, center).

When comparing PCE scores in Morphometry, UMAP and

PHATE performed better than LDA, particularly at the highest

cell inputs (Figures 4F, 4I, and 4L, right). However, in the less dis-

cretized, more continuous T cell activation and cell-cycle data-

sets, PCE scores for LDA were superior. We concluded that

LDA is suitable for visualizing diverse biological systems, is

robust to data imbalances, and may be a preferred dimension-

ality-reduction algorithm depending on the visualization needs
shown across different dataset sizes on a log2-transformed scale. Default al-

ls of interest for each algorithm. Both metrics can be used for feature selection

bolism, and chromotyping datasets. (Left: D, G, and J) Representative biaxial

ilhouette score across different cell counts for each algorithm. (Right: F, I, and L)

h algorithm.
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Figure 5. LDA utility extends to single-cell sequencing data to reconstruct linear trajectories aswell as organize single-cell chromatin acces-

sibility data using semi-supervised dimensionality reduction

(A–C) Dimensionality reduction using a single-cell dataset of enterocytes of the intestinal villi from Moor at al.20 (A) Conceptual diagram for (B) and (C) showing

enterocyte differentiation from the crypt and across the intestinal villi with prior intestinal zones identified using spatial transcriptomics. (B and C) Comparison of

LDA and UMAP demonstrating the linear trajectory of enterocyte differentiation paired with scaled expression of key genes.

(D–F) Dimensionality reduction using single-cell ATAC chromatin accessibility data of T cells from Satpathy et al.21 (D) Cell-type labels color key. (E) LDA

embedding supervised with prior known cell-type labels. (F) UMAP embedding of the same feature set input in (E).

(G) UMAP embedding generated from all 8 LDs generated in (E) input into UMAP.

(H) UMAP embedding initialized by the first 2 LDs (from E) for semi-supervised dimensionality reduction.
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when a priori knowledge of a class label is known, particularly in

ordered and continuous datasets.

LDA captures the trajectory of enterocyte
differentiation by single-cell transcriptomics
Given the particular performanceof LDAandHSS-LDA in summa-

rizingorderedprogressions in single-cellmasscytometrydata,we

askedwhether it could haveutility for a similar processmappedby

single-cell RNA sequencing (scRNA-seq) as well. We applied su-

pervised dimensionality reduction by LDA to a spatially recon-
10 Patterns 3, 100536, August 12, 2022
structed scRNA-seq dataset of enterocytes of the intestinal villi

(Figure 5A). Moor et al. used spatial transcriptomics to identify

gene sets that corresponded to the differentiation patterns of en-

terocytes across the intestinal villi, then used these validated gene

sets to generate a spatially reconstructed scRNA-seq dataset of

enterocytes with zone labels that correspond to their location

and differentiation state.20 To test whether LDA could reconstruct

the linear trajectory of enterocyte differentiation, we took the prior

zone labels and the first 50 principal components as the input

feature set into LDA. LDA improved the linear trajectory



ll
OPEN ACCESSArticle
visualization of cells in a biologically relevant manner when

compared to UMAP (Figures 5B and 5C). We found that expres-

sion of landmark geneswith distinct spatial patterns across the in-

testinal villi were reflected in the arrangement of cells in LDA

(Figures 5B and 5C).20 Adenoside deaminase (ADA) at the villus

tip and SLC2A2 mid-villus demonstrated biologically relevant

expression patterns that were less coherent in the UMAP, but

were preserved with LDA. While prior processing of sparse

scRNA-seq data typically involves PCA before further dimension-

ality reduction and analysis, LDA directly on�2,100 zone-specific

genes and�13,800 genes produced results similar to LDA on the

first 50 principal components (Figures S5E and S5F). These find-

ings demonstrate the utility of LDA for visualization of scRNA-

seq data.

LDA organizes T cell heterogeneity seen by single-cell
chromatin accessibility analysis
To extend the diversity of single-cell sequencing data types that

LDA could be applied to, we also investigated its utility on a

single-cell assay for transposase-accessible chromatin with

sequencing (scATAC-seq) dataset of CD4 and CD8 T popula-

tions.21 Here, T cell populations include naive, memory, helper,

effector, and exhausted subsets as sorted and annotated by the

original authors. We processed ATAC peaks using the same

methods as the original authors. We performed LDA supervised

with cell-type labels, and UMAP using the same input matrix.

Both LDA and UMAP separated cell-type labels in a biologically

meaningful manner (Figures 5D–5F). More quiescent cell states,

such as CD4 and CD8 naive T cells, clustered together while

effector cell types were more distant in phenotypic space. To

test whether a coherent, supervised, non-linear embedding could

be generated using scATAC-seq data, we used all eight LDs

created by LDA to separate cell types as input to UMAP (Fig-

ure 5G). As with the Chromotyping dataset (Figures 3E–3H), LD-

UMAP facilitated clearer separation of labeled populations than

unsupervisedUMAP (Figure 5F). Kobakand Lindermanpreviously

demonstrated the importance of non-random initialization with

UMAP and tSNE to preserve global structure.19 To test whether

LDA could be combined with UMAP for a more subtle, semi-su-

pervised embedding,we initializedUMAPwith LD1 and LD2 coor-

dinates (Figure 5H). The LD-initialized UMAP better preserved the

global relationships of both the progression to CD8 exhausted

states and the interrelation between the different naive cell frac-

tions compared to the spectral-initialized UMAP (Figure 5F).

Furthermore, we see separation of CD8 memory cells into three

states in LD-initialized UMAP, which underscores the utility of

LDA inmore thanseparating knownclass labels. Thus, supervised

dimensionality reduction by LDA can be used as a standalone al-

gorithm or as input to unsupervised methods such as UMAP for

latent space representations of scATAC-seq data.

LDA facilitates embedding of integrated multi-
omics data
Recently, weighted nearest neighbor (WNN) analysis was intro-

duced to integrate multimodal single-cell data for unsupervised

dimensionality reduction by UMAP.22 Given the utility of LDA

for visualization of mass cytometry, scRNA-seq, and scATAC-

seq data, we asked whether LDA could also be used to integrate

and visualize multi-omic datasets. We curated a published hu-
man PBMC dataset of 154,491 cells with cellular indexing of

transcriptomes and epitopes by sequencing (CITE-seq) data,

which quantifies both RNA transcript abundance and the

abundance of antibody-derived tags (ADTs) specific to pre-

determined surface protein targets.5,22 Using the cell-type labels

provided by the original authors, we performed LDA using RNA

data (left), ADT data (center), and the integrated data (right) (Fig-

ure S6A). As expected, both RNA and ADT expression patterns

of defining lineage markers were appropriately expressed and

absent in the relevant cell types (Figure S6B). While UMAP pro-

vided a satisfactory visualization using either the RNA (left) or

ADT data (right) (Figure S6C), separating cell types by LDA and

inputting LDs into UMAP provided enhanced separation of gran-

ular immune cell subsets using RNAdata (left), ADT data (center),

and the integrated data (right) (Figure S6D). In addition, data inte-

gration by LDA was computationally efficient—we were not able

to compare the integrated LD-UMAP manifold to WNN-UMAP

without considerable subsampling of the data due to the sub-

stantial memory requirements of WNN on a dataset of this

size. We therefore conclude that LDA can be used for the inte-

gration and visualization of multi-omic datasets.

Reconstructing scRNA-seq-based cell-cycle
pseudotime of activated human T cells using LDA
Given the utility of LDA to capture trajectories in continuous data-

sets (Figures 2D–2K and 5A–5C) and act as an input for other

embeddingmethods (Figures 3E–3H), we testedwhether it could

help visualize a continuous, circular biological process in which

the classes were based on a score derived for single-cell

sequencing information. We curated an ex vivo TCR stimulation

dataset that we call T cell proliferation tracing.23 This dataset

contains primary human T cells labeled with carboxyfluorescein

succinimidyl ester (CFSE), stimulated for 3 days ex vivo, and pro-

spectively isolated based on cell division state (i.e., 0 divisions, 1

division, 2 divisions) for scRNA-seq analysis.

To summarize the entire cell-cycle process using LDA, we

computed the cell-cycle phase scores for G1.S, S, G2, G2.M,

and M.G1 using previously published methods (Figure 6A).24–26

Cell-cycle scores were calculated using a curated list of genes

with known increased enrichment in each phase. A cell was given

a score for each phase of the cell cycle, and the phase with the

largest score was the assigned cell cycle state of the cell

(Figures 6B and 6C). However, these cell-cycle phases are not

entirely discrete processes fromone another, whichwas reflected

by the correlation seen between adjacent phases, driven by cells

transitioning between phases (Figure 6D). At the same time, non-

adjacent phases, which had no cells transitioning between them,

were anti-correlated. We applied LDA to a matrix of cell-cycle

scores and provided the list of cell-cycle labels, resulting in a

cyclical LDA visualization that accurately separated the cell-cycle

phases according to their expected position (Figure 6E).

To assess whether the model was overfitting to the cell-cycle

scores, we performed cross-validation by splitting the dataset

into 10 non-overlapping test sets, training the LDA model on the

cell-cycle scores, and calculating cell-cycle accuracy. We deter-

mined that cell-cycle label predictions were 88% accurate (3,180

of 3,602 cells) (Figure S7A). Of the 422 cells predicted in an inac-

curate cell-cycle phase, 419 cells (99.3% of the 422) were pre-

dicted to be in an adjacent cell-cycle phase (Figures S7A and
Patterns 3, 100536, August 12, 2022 11



Figure 6. LDA can reconstruct cyclical trajectories using scRNA-seq data

(A) Conceptual diagram of cell-cycle score computation using prior methods on ex vivo CD8 T cell TCR stimulation sc-RNA-seq data.

(B) Bar plot summary counts of assigned cell-cycle phase identities. The phase with the largest cell-cycle score is assigned to each cell.

(C) Density plot summary of cell-cycle phases showing enrichment of cell-cycle scores in each respective assigned phase.

(D) Pearson correlation of cell-cycle scores computed across all cells.

(E) Cyclical LDA visualization on cell-cycle scores.

(F) Graphical representation of angular pseudotime calculation.

(G) Generalized linear models of cell-cycle scores across the angular pseudotime estimated using the LD biaxial.

(H) Heatmap of estimated transcript expression summarized as a generalized additivemodel for key cell-cyclemarkers across the cell-cycle angular pseudotime.

(I) Conceptual diagram for (J) demonstrating experimental protocol using CFSE-sorted T cells on day 3 of TCR stimulation to extract cell division IDs before 10x

Genomics scRNA-seq.

(J) Estimated transcript expression of CyclinB1 and relevant TCR signaling genes identified using derivative analysis plotted across the cell cycle angular pseu-

dotime deconvolved across cell divisions using CFSE-sorted division IDs.
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S7B). Given the nature of the continuous cell-cycle trajectory be-

ing discretized for prediction on cell-cycle scores, we speculated

that cells predicted in an adjacent cell-cycle label may not be

incorrect, but instead, likely transitioning. If these cells are

removed or counted as correct due to this ambiguity, then the

model achieves an accuracy of 99.9%. Classification perfor-

mance demonstrated that the continuous nature of the cell cycle

is captured by LDA, as misclassified cells denote points of transi-

tion between cell-cycle phases.

To dissect the circular topology of the cell-cycle LD embed-

ding, we tested the hypothesis that the circularity of the model

is dependent on the correlations of the input features. We intro-

duced an equal weight of noise into the cell-cycle scores to

reduce the strength of the correlations (Figures S7C and S7D).

Equal reduction in the strength of the correlations did not

significantly affect the circular embedding, indicating that weak

correlations can sufficiently drive a circular trajectory in LDA if

the correlative relationships between adjacent class labels are

preserved. While balanced disruption of cell-cycle scores to pro-

duceweak correlations sufficiently retained a circular embedding,

the angular pseudotime estimates fell apart when a significant

amount of noise was inserted into the data (Figure S7E). However,

introducing noise into three of the cell-cycle scores disrupted the

circular, donut shape of the cell-cycle model (Figures S7F–S7H).

The imbalanced disruption of cell-cycle scores indicated that the

correlative relationships of the input features and their neighbor

classes are important for generating models of circular trajec-

tories in a linear transformation technique.

To identify patterns in gene expression associated with the

continuous process of the cell cycle, we computed the angular

pseudotime from a computationally derived start point (see

methods), and projected the cyclical trajectory into a linear tem-

poral space (Figure 6F). To verify that the angular pseudotime

represented cell-cycle patterns, we plotted the cell-cycle scores

for each phase along the angular pseudotime and found that

they increased and decreased according to their expected

transitions (Figure 6G). We then observed the expression of

key cell-cycle markers over angular pseudotime. We found

that the pseudotime expression of CCNB1, CDK1, TPX2, and

other cell-cycle genes tracked with prior experimentally proven

cell-cycle transitions (Figure 6H). For example, CCNB1 tran-

scription increased during S phase and peaked near the G2/M

transition.27 TPX2, amicrotubule-associated protein responsible

for microtubule nucleation that is integral for mitosis, also

reached peak expression entering mitosis.28

To further leverage prior knowledge of experimental condi-

tions with LDA, we used the division ID labels of these CFSE+

sorted cells to deconvolve the cell-cycle angular pseudotime

across the first two divisions (Figure 6I). We added 0, 360, or

720 to the angular pseudotime value of each cell corresponding

to the cell’s respective 0, 1, or 2 division ID, resulting in a contin-

uous axis of cell-cycle pseudotime that accounts for the number

of divisions a cell has undergone. We observed the gene expres-

sion patterning of activated T cells across these divisions, high-

lighting the expression of relevant TCR signaling genes such as

NFKB and NFATC, as well as cell-cycle genes (Figure 6J). Inter-

estingly, NFATC1 expression increased before the first division

and began to fluctuate in a cell-cycle-dependent manner.

NFKB1A expression decreased before the first division, briefly
increased in G1/S of the first division, then began to decrease

again. Consistent with our aggregate analysis of cell-cycle

gene expression patterns, CCNB1 expression was low in non-

proliferating cells and increased with TCR stimulation, eventually

following the same strict cell-cycle-dependent pattern in both di-

vision 1 and division 2 as cells were proliferating. This serves as

an illustration that LDA visualization can be used to derive biolog-

ically relevant information beyond initial class labels. This

method is robust to noise in cell-cycle scores, and computation

of cell-cycle LD axes and angular pseudotime is computationally

efficient. Traditional analysis of scRNA-seq data removes cell-

cycle effects, blinding analysis to cell-cycle effects. However,

the cell cycle is implicated in mediating important biological

functions such as cellular differentiation, plasticity, and inflam-

matory response.23,29,30 Deconvolving the continuous trajectory

of the cell cycle in scRNA-seq data empowers researchers to

explore highly resolved cell-cycle-related biological trends. In

summary, we found that LDA can visualize cyclical trajectories

in scRNA-seq data and that experimentally derived metadata

can be leveraged to further deconvolve single-cell patterns

across cell cycle and cell division.

DISCUSSION

Here, we applied supervised dimensionality reduction by LDA to

visualize and explore a range of single-cell datasets generated

by mass cytometry, RNA-seq, ATAC-seq, and CITE-seq. We im-

plemented HSS to identify combinations of features that optimally

separate a priori classes, providing biologically interpretable axes

suitable for visualization as well as other downstream analyses.

We benchmarked the performance of LDA against UMAP, PCA,

andPHATEand found it often, but not always, outperformedother

algorithms across datasets and cell counts.

While most dimensionality-reduction algorithms are unsuper-

vised, HSS-LDA is a supervised method that identifies and

highlights differences between designated cell groups. This su-

pervised approach is inappropriate in situations in which labels

are unknown, or in which an unbiased view of the data is prefer-

able. LDA, by definition, maximizes class separability and mini-

mizes variance within each projected class, and by doing so

will come at the expense of local data structure. However, as

many single-cell datasets contain one or more known biological

labels, HSS-LDA has wide applicability. Even within a single da-

taset, the same cells can be visualized across multiple HSS-LDA

plots, each highlighting the cellular heterogeneity relevant to a

distinct biological label. More generally, supervised computa-

tional techniques, including but not limited to LDA, can benefit

from information related to experimental design and sample

associated metadata. Experiments could be devised such that

this metadata could specifically be leveraged by supervised

methods during analysis to derive new biological insights.

Other researchers have previously demonstrated the utility of

feature selection within a supervised classification framework to

study sparse signals in genomic datasets, and HSS is one of

many feature selection approaches amenable to discriminant

analysis.16,31,32 Like other feature selection approaches, rele-

vant colinear features may not all be selected by HSS as the

separability of the model may not be improved by keeping mul-

tiple colinear features. An additional correlation analysis may be
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helpful to identify if this issue arises. In addition, HSS enriches for

features useful for separating multiple classes and therefore may

disregard features only useful for separating a single class. Fea-

tures selected by HSS are differentially expressed by one or

more labeled classes, and follow-up analysis should be per-

formed to understand the nature and statistical significance of

these differences. We find that HSS complements LDA as an

interpretable feature selection method rendering improved visu-

alizations, but in situations in which HSS is not feasible (>100 di-

mensions) or desirable, LDA and sda still provide useful plots.

As a linear method, LDA is deterministic, reproducing the same

plot from the same cells every time. New, unlabeled data can be

visualized on existing LD axes using computationally inexpensive

matrixmath. LDAdoesnot capture non-linear relationships,which

may limit its performance on somedatasets. Our findings, howev-

er, reinforce the notion that simple, linear models often perform

well, even in the presence of non-linear data. While non-linear

methods are indispensable in computational biology, linear

methods can perform comparably to more complex machine

learning approaches, as others have noted.33 Furthermore, as

LD axes are linear combinations of expression or accessibility

data, LDA delivers the added benefit of yielding biologically inter-

pretable single-cell coordinates. The linear nature of LDA also fa-

cilitates simple out-of-sample extension, in which LD axes are

trainedononedataset and thennewdataareprojectedonto those

axeswith computationally efficientmatrixmath. Here, we demon-

strated that utility on theMorphometry dataset, in which diseased

samples were visualized on LD axes trained on healthy samples,

and on the T cellmetabolic regulomedataset, inwhich the stunted

metabolic states of CD57high T cells were visualized on LD axes

trainedonCD57low T cells. To our knowledge, noother supervised

dimensionality-reduction methods provide this functionality.

PCA, the most commonly used linear dimensionality-reduction

method, was unsuitable for the visualization of some single-cell

data. The perceived shortcomings of linear dimensionality reduc-

tion for visualization may, however, primarily reflect only the spe-

cific shortcomingsof PCA. Indeed, PCA suffers from the crowding

problem, in which cell coordinates often overlap in two-dimen-

sional space. While LDA can also manifest some degree of

crowding, the problem is largely avoided as axes are specifically

generated to separate cell groups of interest from one another.

UMAP’s solution to crowding is to require aminimumdistancebe-

tween the coordinates of any two cells, which is effective in most

situations, but was problematic in our imbalanced datasets.While

PCA is not always appropriate for 2D visualization, the algorithm

remains a pillar of high-dimensional data analysis. PCA is widely

applied in the preprocessing of single-cell data, and principal

components often serve as inputs to non-linear dimensionality-

reduction methods like UMAP.34 Like-wise, we found that

inputting HSS-LDs into UMAP improved performance over either

algorithm alone in the challenging task of visualizing a multi-label,

single-cell dataset. LD axes may therefore have added value in

processing and analysis of single-cell data, outside of only 2D

visualization. This is opposed to non-linear dimensionality reduc-

tion that is not typically used beyond single-cell data embedding.

We recommend HSS-LDA to be used on any single-cell data-

sets in which a priori labels are known and expected to segregate

cells into somewhat homogeneous groups. This includes label-

ing cell types, cell states, stimulation time points, and spatially
14 Patterns 3, 100536, August 12, 2022
distinct cell subsets. LDA is computationally inexpensive and re-

quires no tuning parameters, so it can be deployed with minimal

time investment. This is particularly important for researchers

with limited access to high-performance computing resources.

LDA can also be applied to visualize biological units other than

single cells to tease out differences in summary statistics be-

tween samples.35,36 HSS-LDAmay not perform well in situations

in which a large degree of heterogeneity exists within a given

class. For example, labeling PBMCs according to the time point

of origin would likely fail to produce a visualization that segre-

gates time points, as each PBMC sample would be composed

of many cell types. Instead, comparing individual cell types

(e.g., monocytes) between time points would be more fruitful.

In addition, while no hard limit exists for the maximum number

of distinct cell populations that can be visualized by a single

HSS-LDA plot, performance will suffer with an increasing num-

ber of populations. This maximum threshold will vary by dataset,

but at a minimum, three populations are required for a 2D visual-

ization, as LDA generates [# of classes �1] LDs.

We emphasize that HSS-LDA should not replace other dimen-

sionality-reduction methods. We encourage researchers to also

apply PCA, UMAP, PHATE, and other algorithms to their datasets

to benefit from the unique strengths of each algorithm. Given the

diversity of technology used and biology explored by single-cell

methods, no dimensionality-reduction algorithm is suitable for

every situation. Furthermore, information is always lost in the

reduction of high-dimensional data to two dimensions. Visualiza-

tion is only one aspect of single-cell analysis and should always

be supplementedwith robust, quantitative, high-dimensional ana-

lyses. Supervised dimensionality reduction by HSS-LDA uniquely

facilitates interpretable visualization, feature selection, and other

downstream analysis utility. We envision HSS-LDA as one of

many tools that enable computational biologists to visualize and

explore single-cell data.
EXPERIMENTAL PROCEDURES
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this paper are available under GEO: GSE119139. Original code for HSS-LDA

is available with installation instructions in R at https://github.com/

mamouzgar/hsslda, archived under https://doi.org/10.5281/zenodo.

6555102. Parameters associated with HSS-LDA are described in the figure
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legends. Software and parameters used for running all other algorithms are

available in Table S1. Any additional information required to reanalyze the

data reported in this article is available from the lead contact upon request.

Methods

Dataset transformation and preprocessing

Weusedonlypreviously publisheddatasetsandcell annotationsprovidedby the

authors. The CyTOF datasets we used are described in the results and paired

with graphical representations. For the Morphometry dataset, we used all cells

from a single, healthy donor. For the T cell metabolic regulome dataset, we

usedhealthyCD8naive T cells from the samedonor and sampledan equal num-

ber of cells for each time point. For the Chromotyping dataset, we used all cells

across all cell lines. The same cells are used as inputs into each algorithmwhen

making any algorithm comparison. CyTOF datasets were transformed using an

arcsinh scale of 5 and percentile normalized using a quantile value of 0.999.

The scRNA-seq datasets we used are described in the results and paired

with graphical representations. scRNA-seq count tables for both the Entero-

cyte Differentiation and T cell Proliferation Tracing datasets were extracted

from their respective publications. Raw count matrices and corresponding

metadata were input in Seurat for downstream preprocessing using the

NormalizeData, ScaleData, and RunPCA functions. Data were z scaled before

PCA transformation, and PC feature matrices were input into LDA or UMAP.

The scATAC-seq matrix was similarly processed in Seurat using the Signac

extension. Latent semantic indexing (LSI) reduction was performed before

input into LDA or UMAP. CITE-seq data was processed in Seurat using their

published multimodal vignette.

HSS

The HSS-LDA algorithm uses a stepwise feature selection approach, calcu-

lating a separation score for each feature subset, and selecting a final set of

features that best separates classes for visualization. The calculated separa-

tion score for assessing class separation implements commonly used metrics

such as Euclidean distance or silhouette score, as well as pixel-based metrics

we have introduced such as pixel density or PCE scores. Users can also define

their own separation metric function for use with HSS. We describe the major

steps of HSS-LDA below:

1. Initialize the feature set: Perform LDA for all pairwise combinations of

features and evaluate the separation score. Select the pair of features

with the best score as the initial feature set.

2. Perform forward stepwise selection: Add each feature to the current

feature subset, perform LDA, and evaluate the separation score. Add

the feature that results in the best separation score.

3. Perform reverse stepwise selection: Subtract each feature in the current

feature set, perform LDA, and evaluate the score. Remove the feature

from the feature set that most improves the score. If no feature removal

improves the score, then proceed without removing any features.

4. Repeat steps 2–3 until the feature set contains all of the features.

5. Compile the best scores across feature set sizes: Compile scores for all

of the feature sets evaluated in steps 1–4. For each feature set size (2, 3,

. k-1, k features), identify the feature set with the best score.

6. Compute elbow point and select final model: Calculate the elbow point

of scores against feature size in the list compiled in step 5 to select the

final feature set. The elbow point is defined as the data point that is the

farthest distance from the straight line connecting the first and last data

point on a biaxial dot plot of number of markers (x axis) versus score (y

axis). Perform LDA using that feature set to generate the final model.

The hsslda R package includes a vignette entilted ‘‘hsslda-intro’’ to guide

users on how to use HSS-LDA for dimensionality reduction, feature selection,

visualization, and exploratory analysis.

Dimensionality-reduction algorithms

We used six dimensionality-reduction algorithms: LDA, sda, PCA, UMAP, and

PHATE plus our HSS-LDA approach. The software versions, accession links,

and parameters used are listed in Table S1.

Runtime analysis

Runtimes were measured using base R Sys.time() function immediately before

and after each algorithm function call to fairly evaluate all of the algorithm run-

times using the exact same input matrices.
Data subsetting for quantitative benchmarking

All of the algorithms were evaluated using the same input cells for each data-

set. For subsampling, cells are randomly sampled without replacement, and

each subsample was drawn three times for replicate analysis of runtimes.

However, a minimum of 20 cells are sampled across each class in a label to

preserve the presence of rare populations in datasets with severe class imbal-

ances (e.g., blast cells in Morphometry or mitotic cells in Chromotyping).

Metrics for evaluating separability of cell populations and

performing feature selection

Euclidean distance is the distance between the means of each class label and

was computed using the stats:dist() R function. It calculates the pairwise

Euclidean distance of all class means and selects the minimum as the score,

only rewarding manifolds that separate all labels. Silhouette score was used to

determine class label separability using the silhouette coefficient equation and

was computed using the cluster:silhouette() R function.37 The closer the

silhouette score is to 1, the better the cluster separability. The closer the silhou-

ette score is to �1, the worse the cluster separability.

PCE score is a measure of class label distribution in a biaxial grid. Biaxial

plots were pixelated into a 100 3 100 pixel grid, the entropy of classes in

each pixel was evaluated, and the PCE score was the average entropy value

of each pixel. Here, we defined PCE as 1 � [(entropy)/log2(# of unique class

labels)]. The closer the PCE score was to 1, the greater the class separation.

Pixel density uses the same pixel grid approach as PCE, and the percentage

of each class label in each pixel was evaluated. The lower the average pixel

density score, the better the class label separation. PCE score and pixel den-

sity were encoded in the hsslda github page.

Calculating cell-cycle pseudotime start point and angular

pseudotime

The pseudotime start point of the cell cycle is found by selecting the cell with

the largest average G1.S and M.G1 cell-cycle score. The angular pseudotime

is calculated by assigning a pseudotime value between 1 and 360 to each cell

based on its angular location in the cell-cycle model of the LDA. The angular

pseudotime of all cells are then adjusted based on the location of the cell at

the pseudotime start point.

UMAP initialization with HSS-LDA

Initialization of UMAP with HSS-linear discriminants can be accomplished in R

by inputting the first two HSS-LDs or LDs as a matrix into the ‘‘init’’ variable of

the uwot:umap() function.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100536.
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31. Lê Cao, K.A., Boitard, S., and Besse, P. (2011). Sparse PLS discriminant

analysis: biologically relevant feature selection and graphical displays for

multiclass problems. BMC Bioinf. 12, 253. https://doi.org/10.1186/1471-

2105-12-253. https://bmcbioinformatics.biomedcentral.com/articles/10.

1186/1471-2105-12-253.
32. Witten, D.M., and Tibshirani, R. (2010). A framework for feature selection in

clustering. J. Am. Stat. Assoc. 105, 713–726. http://www.tandfonline.

com/doi/abs/10.1198/jasa.2010.tm09415.

33. Christodoulou, E., Ma, J., Collins, G.S., Steyerberg, E.W., Verbakel, J.Y.,

and Van Calster, B. (2019). A systematic review shows no performance

benefit of machine learning over logistic regression for clinical prediction

models. J. Clin. Epidemiol. 110, 12–22. https://doi.org/10.1016/j.jclinepi.

2019.02.004. https://linkinghub.elsevier.com/retrieve/pii/S089543561831

0813.

34. Luecken, M.D., and Theis, F.J. (2019). Current best practices in single-cell

RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15. https://onlinelibrary.wiley.

com/doi/10.15252/msb.20188746.

35. Jiang, S.,Chan,C.N., Rovira-Clave, X.,Chen,H., Bai, Y., Zhu, B.,McCaffrey,

E., Greenwald, N.F., Liu, C., Barlow, G.L., and Weirather, J.L. (2021). Virus-

dependent immuneconditioning of tissuemicroenvironments. Immunology.

http://biorxiv.org/lookup/doi/10.1101/2021.05.21.444548.

36. Moore, A.R., Gonzalez, N.V., Plummer, K.A., Mitchel, O.R., Kaur, H., Rivera,

M., Collica, B., Palmer, T., and Bendall, S.C. (2021). Gestationally-depen-

dent immune organization at the maternal-fetal interface. Immunology.

http://biorxiv.org/lookup/doi/10.1101/2021.06.25.449807.

37. Rousseeuw. (1987). Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis. Journal of Computational and Applied

Mathematics. https://doi.org/10.1016/0377-0427(87)90125-7.
Patterns 3, 100536, August 12, 2022 17

https://www.molbiolcell.org/doi/10.1091/mbc.02-02-0030
https://www.tandfonline.com/doi/full/10.1080/15384101.2018.1558638
https://www.tandfonline.com/doi/full/10.1080/15384101.2018.1558638
https://journals.asm.org/doi/10.1128/MCB.25.23.10516-10527.2005
https://journals.asm.org/doi/10.1128/MCB.25.23.10516-10527.2005
https://pnas.org/doi/full/10.1073/pnas.1408638111
http://biorxiv.org/lookup/doi/10.1101/2021.06.24.449850
http://biorxiv.org/lookup/doi/10.1101/2021.06.24.449850
https://doi.org/10.1186/1471-2105-12-253
https://doi.org/10.1186/1471-2105-12-253
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-253
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-253
http://www.tandfonline.com/doi/abs/10.1198/jasa.2010.tm09415
http://www.tandfonline.com/doi/abs/10.1198/jasa.2010.tm09415
https://doi.org/10.1016/j.jclinepi.2019.02.004
https://doi.org/10.1016/j.jclinepi.2019.02.004
https://linkinghub.elsevier.com/retrieve/pii/S0895435618310813
https://linkinghub.elsevier.com/retrieve/pii/S0895435618310813
https://onlinelibrary.wiley.com/doi/10.15252/msb.20188746
https://onlinelibrary.wiley.com/doi/10.15252/msb.20188746
http://biorxiv.org/lookup/doi/10.1101/2021.05.21.444548
http://biorxiv.org/lookup/doi/10.1101/2021.06.25.449807
https://doi.org/10.1016/0377-0427(87)90125-7

	Supervised dimensionality reduction for exploration of single-cell data by HSS-LDA
	Introduction
	Results
	HSS optimizes supervised dimensionality reduction for single-cell visualization
	HSS-LDA reconstructs both discrete and continuous biological processes
	HSS-LDA captures cyclical biological processes within multi-label data
	HSS-LDA as UMAP input integrates variance from multiple class labels into a single visualization
	Benchmarking LDA efficiency and class separation against common dimensionality-reduction algorithms
	LDA captures the trajectory of enterocyte differentiation by single-cell transcriptomics
	LDA organizes T cell heterogeneity seen by single-cell chromatin accessibility analysis
	LDA facilitates embedding of integrated multi-omics data
	Reconstructing scRNA-seq-based cell-cycle pseudotime of activated human T cells using LDA

	Discussion
	Experimental procedures
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Methods
	Dataset transformation and preprocessing
	HSS
	Dimensionality-reduction algorithms
	Runtime analysis
	Data subsetting for quantitative benchmarking
	Metrics for evaluating separability of cell populations and performing feature selection
	Calculating cell-cycle pseudotime start point and angular pseudotime
	UMAP initialization with HSS-LDA


	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References


