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Marble Algorithm: a solution to 
estimating ecological niches from 
presence-only records
Huijie Qiao, Congtian Lin, Zhigang Jiang & Liqiang Ji

We describe an algorithm that helps to predict potential distributional areas for species using 
presence-only records. The Marble Algorithm is a density-based clustering program based on 
Hutchinson’s concept of ecological niches as multidimensional hypervolumes in environmental 
space. The algorithm characterizes this niche space using the density-based spatial clustering of 
applications with noise (DBSCAN) algorithm. When MA is provided with a set of occurrence points in 
environmental space, the algorithm determines two parameters that allow the points to be grouped 
into several clusters. These clusters are used as reference sets describing the ecological niche, which 
can then be mapped onto geographic space and used as the potential distribution of the species. We 
used both virtual species and ten empirical datasets to compare MA with other distribution-modeling 
tools, including Bioclimate Analysis and Prediction System, Environmental Niche Factor Analysis, the 
Genetic Algorithm for Rule-set Production, Maximum Entropy Modeling, Artificial Neural Networks, 
Climate Space Models, Classification Tree Analysis, Generalised Additive Models, Generalised Boosted 
Models, Generalised Linear Models, Multivariate Adaptive Regression Splines and Random Forests. 
Results indicate that MA predicts potential distributional areas with high accuracy, moderate 
robustness, and above-average transferability on all datasets, particularly when dealing with small 
numbers of occurrences.

Finding accurate ways to estimate species’ ecological niches is a pressing and important problem in 
ecology and biogeography1–3. Consequently, a wide variety of modeling techniques have been developed 
for this express purpose4–6. Most such models, often referred to as ecological niche models (ENM), use 
the correlation between environmental factors and the distribution of a species to predict the potential 
distributional area within a wider unknown space (be it geographic or environmental)6,7. Popular mod-
eling choices include Bioclimate Analysis and Prediction System (BIOCLIM)8, the Genetic Algorithm 
for Rule-set Production (GARP)7, Generalised Boosted Models (GBM)9, Generalised Linear Models 
(GLM)10, and Maximum Entropy Modeling (MaxEnt)11–13, among others. The mathematical equations 
underlying these modeling programs often vary. For example, the core algorithm underpinning GARP 
is one of machine learning, whereas MaxEnt uses the probability theory principle of maximum entropy. 
ENMs are widely used in predicting the loss of species arising from global climate change14–16, planning 
protected areas17, calculating public health problems caused by the spread of disease18,19, comparing the 
niche breath on species survival with fossil records20, and modeling the spread of invasive species21–23.

In this paper, we present a cluster-based ENM algorithm, the Marble Algorithm (MA), which repre-
sents an integrated spatial analysis program for estimating the ecological niche of a given species. MA 
utilizes the density-based clustering algorithm DBSCAN24, which searches for multi-clusters in environ-
mental space and maps these clusters onto geographic space. MA is developed as a plug-in of a web-based 
application, mMWeb (http://mmweb.animal.net.cn)25,26, which combines 20 currently-existing ENM 
algorithms. Users can employ MA via any browser supported by mMWeb.

Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 
Beijing 100101, China. Correspondence and requests for materials should be addressed to Z.J. (email: jiangzg@
ioz.ac.cn) or L.J. (email: ji@ioz.ac.cn)

received: 12 March 2015

Accepted: 20 August 2015

Published: 21 September 2015

OPEN

http://mmweb.animal.net.cn
mailto:jiangzg@ioz.ac.cn
mailto:jiangzg@ioz.ac.cn
mailto:ji@ioz.ac.cn


www.nature.com/scientificreports/

2Scientific RepoRts | 5:14232 | DOi: 10.1038/srep14232

We compared the performance of MA with 12 widely-used ENM algorithms, including BIOCLIM, 
Environmental Niche Factor Analysis (ENFA), GARP, MaxEnt, Artificial Neural Network (ANN)27, 
Climate Space Model (CSMBS)28, Classification Tree Analysis (CTA)29, Generalised Additive Models 
(GAM), GBM, GLM, Multivariate Adaptive Regression Splines (MARS)30, and Random Forests (RF)31,32, 
using both virtual species and empirical data sets. Four metrics were used to compare the resulting 
ENMs, including the true skill statistic (TSS), Cohen’s kappa, partial-area ROC (P-ROC), and transfera-
bility. Climate layers used in the experiments were downloaded from WorldClim (http://www.worldclim.
org/).

Results
Model performance on virtual species. MA had average performance in predicting both the FN 
and RN compared to other ENM algorithms (Fig. 1). When estimating the FN, eight (BIOCLIM, GAM, 
GARP, GBM, GLM, MAXENT, ENFA and ANN) and six (BIOCLIM, GAM, GBM, GLM, MAXENT and 
RF) of the 13 algorithms performed better than MA when assessed using the TSS and Cohen’s kappa 
metric, respectively (Fig.  1a). MA performance improved when estimating the RN. Seven (BIOCLIM, 
GAM, GARP, GBM, GLM, MAXENT and CSMBS) and four (BIOCLIM, GBM, MAXENT and RF) 
models performed better than MA when estimating the RN using the TSS and Cohen’s kappa metric, 
respectively (Fig. 1b).

Model accuracy. Eight models (GLM, GARP, MARS, GAM, MAXENT, GBM and RF), including MA, 
predicted the FN and RN with high accuracy based on the mean value of the P-ROC indicator using 
both the large and small occurrence datasets (Fig. 2). Three models (MAXENT, GBM and RF) performed 
better than MA using the large occurrence datasets, and seven models (GLM, MARS, GARP, MAXENT, 
GAM, GBM, and RF) performed better than MA using the small occurrence datasets. Since the mean 
P-ROC values for the top eight models, which includes MA, were all higher than 0.8 (i.e., excellent), it 

Figure 1. Average performance of the 13 ENM algorithms in predicting the FN (a) and RN (b), as 
measured via Cohen’s kappa and True Skill Statistic (TSS) (average ± 95% confidence error). The dash lines 
represent the TSS and Kappa value of MA.

Figure 2. The partial-area ROC values of the 13 models utilizing different training set sizes, which are 
shown by the boxplots. The red boxplots are partial-area ROC values for the large training sets, and the 
green boxplots represent the small training sets.

http://www.worldclim.org/
http://www.worldclim.org/
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was difficult to draw conclusions on the performance of the models based solely on the P-ROC values. 
That is to say, we could not ascertain whether one model was better than another on a case-by-case basis: 
only that a model was better than another based on overall average performance.

Therefore, in order to characterize the performance and accuracy of the models more precisely, we 
calculated the rate of excellent P-ROC values (i.e., > 0.8) divided by the ratio of the number of occur-
rence localities and the number of grid cells in the study area as a whole. Since the number of occur-
rence records was far less than the number of grids in the entire study area for most datasets, we used 
a Semi-log plot to bring out features in the data not easily observed if they were plotted linearly. The 
percentage of high P-ROC values for MA was higher than the mean value of all models when considering 
the large ratios of the number of occurrence localities and the number of grid cells (see Fig. 3).

Transferability indicator. On average, MA received relatively high interpolation and extrapolation 
P-ROC values using both the large and small occurrence datasets (Fig. 4). Based on these interpolation 
and extrapolation indicators, Maxent performed best when considering both the large and small occur-
rence datasets. Following Maxent, MA and GBM received the highest scores, although GBM was more 
stable than MA based on the boxplots. MA did not perform as well compared to other models when 
considering the transferability indicator for both the large and small occurrence datasets (Fig. 5).

Discussion
Accuracy and scope of applicability. Successful ENMs should have reasonable accuracy when pre-
dicting potential distributional areas. In this regard, results from both virtual and real species indicated 
MA produces results with higher-than-average accuracy in most test cases. Although some models pro-
duced results with higher accuracy than MA in some datasets, this may be a function of over-fitting in 
those algorithms. That is to say, the model produced a potential distribution that was very similar to the 
training set (i.e., the input occurrences). In the process of modeling, the performance may increase for 

Figure 3. Percentage of partial-area ROC (P-ROC) analyses above 0.8 for the different datasets. The 
x-axis represents the log of the rate of occurrences, which is used to represent the relative sample sizes. The 
y-axis is the percentage of P-ROC values that are > 0.8. The black dashed line is the average P-ROC value for 
all the algorithms, and the red dashed line is the average P-ROC value for MA. All algorithms with average 
P-ROC values higher than MA are shown with solid lines in different colors.

Figure 4. Mean accuracy of the 13 models for interpolative and extrapolative validation: (a) large 
datasets split by an 8*8 checkboard. (b) small datasets split by an 8*8 checkboard.
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training examples, but may decrease when considering unseen data. In most cases when niche modeling, 
a balance is desired between high accuracy on the training set and scalability. MA tends to predict large 
areas as suitable for a given species with relatively high accuracy, which illustrates the ability of MA to 
prevent overfitting even when training on datasets with few occurrences.

The ratio of number of occurrences and number of grid cells in the entire study area, which is some-
times referred to as a movement region33, seriously affects model validation and model comparisons. 
Consequently, obtaining sufficient data and choosing a suitable study area should be prime considera-
tions of any ENM analysis, no matter the algorithm employed.

Extrapolation capabilities and transferability. The extrapolative value and transferability index 
are new evaluation indicators, and ecological niche modeling algorithms should be tested using these 
new metrics. Based on the P-ROC results, MA performed second only to Maxent for extrapolation 
capability and had average performance for transferability when the study areas were relatively small. 
However, MA had below average performance for both extrapolation capability and transferability when 
the study areas were large.

Conclusions
We describe a new model based on the DBSCAN algorithm for predicting species’ potential distributional 
areas with only positive-presence examples. MA builds a model to estimate the potential distributional 
area for species based on occurrence localities and environmental factors that affect the distribution of 
species. Similar to GARP and MaxEnt, MA accounts for differences among populations of the same 
species and is designed to divide the occurrence samples into several groups and cluster them separately. 
MA can handle the correlation between environmental factors and eliminates a small amount of outliers 
(noise) before modeling. When modeling with a high-dimension sample set, and/or with large or small 
numbers of occurrences in a small study area, MA is a recommended model.

MA, however, still has shortcomings when compared to MaxEnt and RT. Results were suboptimal 
when working with a small data set on a large study area, for which the number of grid cells of the 
study area is 106 times the number of occurrence points. Moreover, only continuous data can be used 
to calculate distance in MA. Finally, MA produces a presence (0) or absence (1) map, which is not an 
output desired by many users (i.e., instead preferring a continuous map of suitability). We hope to solve 
these problems in future updates.

Methods
MA is based on the density-based clustering algorithm DBSCAN24. The algorithm assumes that the sam-
ple sets of X are concentrated in some dense space of the set S, which is named as a cluster. The algorithm 
searches for clusters of species’ occurrences in environmental space, which will produce a niche map 
resembling water insoluble marbles found in clay rocks. In MA, the definition of a cluster (the distribu-
tion of a population) is based on the notion of density reachability, and follows the original definitions 
of DBSCAN. The concept of “distance” in MA is not geographic, but rather ecological or environmental 
(i.e., ecological niche distance).

Details of the MA algorithm. Definitions. The algorithm’s main process is to find clusters accord-
ing to given rules:

Definition 1. Point (p) is a set of environmental variables associated with an occurrence in the sample 
set. Eps is the distance between two points. MinPts is the minimum number of points required to form 
a cluster.

Definition 2. Eps-neighborhood of p. For a given point p, the distance between p and any point q in a 
set NEps(P) in the vicinity of Eps. The set of NEps(P) denotes the Eps-neighborhood of p. The “distance” 
denotes the niche disparity of these two localities:

Figure 5. Model transferability of the 13 models. Transferability is calculated as the ratio of P-ROC value 
in extrapolative versus interpolative model validation for each group separately.
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ε( ) = ∈ ( , ) ≤ ( )N p q dist p q{ } 1Eps

Definition 3. Core, border and noise points. For a given point q, if there are at least a minimum number 
(MinPts) of points in the Eps-neighborhood of q, the point q is defined as a core point. If the number 
of points in the Eps-neighborhood of point p, which is one of the Eps-neighborhood of q, is less than 
MinPts, the point q is defined as a border point (Fig. 6a). If a point n is neither a core point nor a border 
point of any core point, it is defined as a noise point.

Definition 4. Directly density-reachable. For the given Eps and MinPts, a point p is directly 
density-reachable from a point q should it satisfy the following conditions (Fig. 6b):

∈ ( ) ( ) ≥ ( )p N q and N q MinPts 2Eps Eps

Definition 5. Density-reachable. If there is a chain of points p1,…, pn, p1 =  q, pn =  p, such that pi + 1 is 
directly density-reachable from pi, we call the point p density-reachable q (Fig. 6c).

Definition 6. Density-connected. If the points p and q are not density-reachable, but both are 
density-reachable from point o, we call p and q density-connected by o (Fig. 6d).

Definition 7. Cluster (population). Let D be a dataset of points. A cluster C wrt. Eps and MinPts is 
a non-empty subset of the set D satisfying the following conditions: (1) there is at least a core point; 
and (2) each point in C should at least be density-connected to a core point in C. A population of a 
given species is regarded as a cluster in MA. All the organisms in a population have some relationship 
(density-connected). A given dataset has one or more clusters (different populations).

Definition 8. Noise. Let C1,…, Ck be the clusters of the dataset D wrt. parameters Eps and MinPts. The 
noise is defined as the set of points in the dataset D not belonging to any cluster Ci, i = 1,…,k.

Algorithm implementation. Based on the above definitions, estimating the ecological niche becomes 
a process of searching for clusters in a given dataset. After identifying clusters, all points in the unpre-
dicted area will be added to the dataset in turn. If a point belongs to a cluster, it is considered within the 
potential distribution of the given species, or vice versa.

Figure 6. The basic concepts used in the Marble Algorithm, which derive from DBSCAN. 
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To find a cluster of given Eps and MinPts, MA starts with an arbitrary point p in an unclassified set 
D and retrieves all points density-reachable from p. (1) If p is a core point and p is not labeled, a new 
cluster Ci will be built. The point p and the points of density-reachable p will be labeled as the points in 
Ci. Subsequently, the algorithm will randomly select an untreated point in Ci and run the process above 
recursively. (2) If p is not a core point, it will be temporarily marked as noise unless it is selected as a 
core point later.

After labeling all the related points to cluster Ci, the algorithm picks another random unclassified 
point in D and repeat the steps above until each point in D has been labeled (Fig. 7).

Distance. For the purpose of proper visualization, we use the Euclidean distance in 2D space to describe 
the algorithm. We assume that D is the niche disparity of two occurrence localities in n-dimensional 
environmental space. Ei =  (e1, e2, …, en) are the ecological factors (biotic and abiotic factors) at location 
i. Therefore, the distance of i and i +  1 is:

= ( , ) ( )( , + ) +D Dist E E 3i i i i1 1

As we only observe portions of the ecological factors ′ ⊆E Ei i, a distance D’ is used to approximate D. 
It is denoted as: ′ → = ( ′ , ′ )( , + ) ( , + ) +D D Dist E Ei i i i i i1 1 1

Euclidean distance is the spatial distance between two points in the Cartesian coordinate system. 
Coordinate axes are measured in the same unit of length and are orthogonal to each other. The problem, 
however, is that each ecological factor may have a different dimension (such as Meter, Celsius, etc.) and 
may exhibit correlation with other factors. MA provides a solution to these problems, however, by nor-
malizing the factors and performing principal component analysis (PCA) instead of using the Euclidean 
distance directly:

PCA transforms a number of possibly-correlated variables into a number of uncorrelated variables 
called principal components. Before PCA, MA converts the values of each variant to a standard score. 
Equation (4) illustrates the conversion method, where x is a raw score to be standardized, μ  is the mean 
of the variant, and σ  is the standard deviation of the variant.

µ
δ

=
−

( )z
x

4

After normalization, MA calculates the principal components of the given variants and selects the first 
n principal components on the condition that the sum of the eigenvalues is no less than 0.95.

Since there is no correlation between two principal components, Euclidean distance is used to express 
niche disparity directly, and the dimensionality of the transformed data is thus reduced. Both PCA and 
normalization reduce the complexity the environmental space effectively, and make the algorithm clear 
and easy to understand.

Determining parameters. Eps and MinPts are two necessary parameters of MA. Eps determines 
the area of the cluster. MinPts is the minimum number of records in a cluster. Both parameters impact 
the results of the model. The potential distribution of a species is expected to be the smallest area that 
contains all occurrence localities.

We developed a simple but effective heuristic to determine the parameters Eps and MinPts of the 
“smallest” clusters in the dataset. First, let di be the minimum distance between point pi and all the other 
points. Then, build a set D such that ∈ ( = , ... , )d D i n1i . Afterwards, we obtain the maximum value 
dmax in D.

Figure 7. Flow chart for MA. 
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If we set Eps to dmax, and MinPts to 2, then all the points are included in a cluster. However, if the 
cluster is not the excepted smallest result, the algorithm will increase the value of MinPts and execute the 
clustering process until some of the points are labeled as noise points. The penultimate value of MinPts 
in the iterative process is the recommended value.

Figure. 8 illustrates the process of determining Eps and MinPts. In order to increase the model’s flex-
ibility, the parameter of MaxNoise is the maximum proportion of noise points in the samples, which is 
set by user based on his confidence in the occurrences used in MA. It means no noise in occurrences 
when MaxNoise is zero, and all the occurrences are noises when MaxNoise is 1.The concept of noise was 
interpreted in the next section.

Handling noise. Occurrence samples are rare, especially for endangered species. Therefore, a small 
number of noise points in a dataset with few occurrences can have a strong impact on the results. 
Consequently, an independent method is introduced into MA to hunt down and remove noise data 
before the main algorithm process. Assume there is one noise point pi in a dataset S, Di is the set of 
distances between pi and the other points, and si is the standard deviation of Di. Then, there should be 
the minimum value sn in S given that pn is the only noise point, since all values in Dn are large and there 
is only one large value beside Dn.

MA does not use the minimum value but a more robust method, termed the interquartile range, 
to find noise points based on S34. The standard deviations of the distances between noise points and 
none-noise occurrences are observations that fall below a given value, which is called the “outlier factor” 
in MA. The outlier factor can be 1.346 (at a 95% confidence interval) or 1.469 (at a 99% confidence 
interval), which is decided by the user as a parameter in MA.

Identified noise points may actually represent real occurrences in unique environmental conditions. 
Under these conditions, it would be irresponsible for the algorithm to cursorily remove these data points. 
As such, MA provides a switch to turn off this feature if the user guarantees the accuracy of his/her 
dataset.

Model comparison. Environmental variables. We used monthly temperature and rainfall layers 
downloaded from WorldClim35 to build the models. More specifically, we performed a principal compo-
nent analysis on a group of normalized 19 bioclimatic variables, and selected the first six principal com-
ponents that explained 95.7% of the overall variance. The grids of derived variables can be downloaded 
via http://mmweb.animal.net.cn/varlist.html.

Figure 8. Flow chart for the process of determining the parameters. 

http://mmweb.animal.net.cn/varlist.html
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Datasets. Virtual species. Simulated species’ distribution data with known properties (termed vir-
tual species) is commonly used to evaluate the performance of ENM without the confounding effects of 
data characteristics36–38. At present, at least four methods are available to generate virtual species39–42. In 
this paper, we created 14 virtual species following methods in a previous study40. The virtual species were 
generated via ellipsoids in a three-dimensional environmental space; these species were created with or 
without barriers to dispersal in a corresponding geographic space. Further details on the virtual species 
are presented elsewhere40.

Empirical datasets. In addition to the virtual species, we used ten empirical datasets to evaluate MA, 
including four mammal species (Lynx lynx Linnaeus, 1758 - Eurasian lynx, Procapra przewalskii Büchner, 
1891 - Przewalski’s gazelle, Oryctolagus cuniculus Linnaeus, 1758 - European rabbit and Cervus elaphus 
Linnaeus, 1758 - red deer), one amphibian family (Cryptobranchidae), one insect species (Apis mellifera 
Linnaeus, 1758 - western honey bee), one bird species (Syrmaticus reevesii J. E. Gray, 1829 - Reeves’s 
pheasant), two vascular plant genera (Mikania and Liriodendron), and one vascular plant species (Pinus 
sylvestris Linnaeus—Scots Pine).

The datasets were divided into two groups based on numbers of occurrence records. The small sam-
ple group included the Eurasian lynx, Cryptobranchidae, Mikania, Przewalski’s gazelle, and the Reeves, 
and all contained fewer than 1000 occurrences. These two groups were used to compare the accuracy of 
MA and the other ENM algorithms based on the different dataset sizes. For the small-sample group, we 
predicted the potential distribution directly, whereas for the large-sample group, we selected 80% of the 
samples randomly as the training set and used the remainder as a testing set. The training set was used 
to construct the model and to test its accuracy. After ten repetitions, we regarded the average accuracy 
as the final result.

In order to evaluate the interpolative and extrapolative model accuracy, datasets were subdivided 
using an 8 * 8 checkerboard (see Fig.  9 for an example). Given that the distribution of occurrences 
within each dataset was uneven, we split longitude and latitude into 8 parts based on the frequency of 
occurrences rather than on spatial distance. This process created a density-based checkerboard (Fig. 9), 
where grid area relates to the density of the samples inside. The method built relatively uniform sample 
subsets and broke up environmental trends over broad areas. Prior to model-building, each dataset was 
randomly split into two spatially-mixed datasets: a training dataset, including 70% of the samples, and 
an interpolation testing dataset, containing the remaining 30% of samples. In summary, the datasets 
were generated for different usages: (1) a training dataset (used to build the model), (2) the interpolation 
testing dataset (used to evaluate the interpolative model accuracy), and (3) the extrapolative validation 
dataset (used to evaluate the extrapolative model accuracy).

Figure 9. One of the study datasets (Eurasian lynx in Europe), which is divided into two spatially 
independent portions by a density-based checkerboard: “white background” or “grid background”. If the 
‘extrapolation’ dataset is located on the white background, the grid background contains both ‘interpolation’ 
and ‘calibration’ datasets, and vice versa. This figure and the following figures are generated based on 
Thematic Mapping (http://thematicmapping.org/) using ArcGIS 9.2 (ESRI, Redland, CA).

http://thematicmapping.org/
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Modelling techniques. We used 12 ENM methods to build the models using default parameters: ANN, 
BIOCLIM, CSMBS, CTA, ENFA, GAM, GARP, GBM, GLM, MARS, MaxEnt, and RF. BIOCLIM, CSMBS, 
ENFA and GARP were implemented within openModeller, an open source project, for the entire pro-
cess of conducting a fundamental niche modeling experiment43. MaxEnt (V3.3.3 k) was downloaded 
from http://www.cs.princeton.edu/~schapire/maxent/, while all other algorithms were implemented in 
BIOMOD44. To enable a standardized evaluation of all models, all predictions were made via mMWeb 
with the default or suggested parameters, including the method for selecting pseudo-absences. All results 
can be found on the platform (http://mmweb.animal.net.cn).

Evaluation indicators. To summarize the results, we took advantage of the “known-truth” nature of 
virtual species. In other words, the true geographic extent of the potential distribution was known (i.e., 
the fundamental niche, FN), as was the intersection of the potential distribution with the dispersal capa-
bilities of the species (i.e., the realized niche, RN). To assess correspondence between model outputs and 
the known true configurations, we calculated Cohen’s kappa and TSS with respect to both FN and RN.

For the empirical datasets, we evaluated the predictive performance of the models using P-ROC 
metrics. This approach provides a firmer foundation for evaluating predictions from ecological niche 
models, which was noted previously by Phillips and Peterson45,46. For each model, a threshold for conver-
sion of the continuous probability values for occurrence into binary predictions to distinguish ‘suitable’ 
(classified as 1) from ‘unsuitable’ (classified as a 0) areas was selected according to the lowest presence 
threshold. This threshold method identifies the minimum predicted area possible whilst maintaining 
zero omission error in the training data set46,47. The P-ROC values were interpreted in line with Swets48; 
that is, > 0.80: excellent, 0.80–0.70: good, 0.60–0.70: fair, 0.50–0.60: poor and < 0.50: fail.

To evaluate model transferability, the concept of the “transferability index” is introduced, which was 
discussed in Heikkinen et al.49. Based on the subsamples separated by the density-based 8*8 checker-
board, we calculated the interpolative and extrapolative P-ROC values, and subsequently obtained the 
transferability index for every training set. This index is equal to the ratio of the P-ROC value in the 
extrapolative versus the interpolative model validation and is performed for each dataset separately.
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