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a b s t r a c t

Measurements of cardiac conduction velocity provide valuable functional and structural insight into the
initiation and perpetuation of cardiac arrhythmias, in both a clinical and laboratory context. The
interpretation of activation wavefronts and their propagation can identify mechanistic properties of a
broad range of electrophysiological pathologies. However, the sparsity, distribution and uncertainty of
recorded data make accurate conduction velocity calculation difficult. A wide range of mathematical
approaches have been proposed for addressing this challenge, often targeted towards specific data
modalities, species or recording environments. Many of these algorithms require identification of
activation times from electrogram recordings which themselves may have complex morphology or low
signal-to-noise ratio. This paper surveys algorithms designed for identifying local activation times and
computing conduction direction and speed. Their suitability for use in different recording contexts and
applications is assessed.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cardiac conduction velocity (CV) describes the speed and direc-
tion of propagation of the action potential wavefront through
myocardium. It can provide important quantitative electrophysiolo-
gical information about the underlying tissue microarchitecture and
is widely used in both laboratory [1,2] and clinical electrophysiolo-
gical studies [3,4] to infer properties of the myocardial substrate and
to identify potential mechanisms for arrhythmogenesis [5–7]. Con-
duction velocity measurements provide an important quantity in
identifying potential reentrant circuits and regions of tissue which,
for example, might act as an anchor point for rotors [8]. Areas of
tissue with slower conduction velocity are widely thought to be in a
more diseased state, where either fibrosis or altered cell-to-cell
coupling has reduced connectivity [9–22], or changes in the ionic
currents such as the sodium current leads to slower action potential
upstroke [23]. Slow conduction is associated with increased risk of
wavefront reentry which may initiate an arrhythmia [24,25].

Besides the characteristics of the underlying tissue microarchi-
tecture, other factors affecting propagation speeds include curvature

of the wavefront [25–28], particularly around the infarct border zone
[29–31]. A convex wavefront will propagate slower than a planar
wavefront due to the depolarised region of tissue needing to excite a
comparatively larger mass of cells. This phenomenon is known as
source–sink mismatch (see, for example, [26,32]). In contrast, a
concave wavefront advances with greater velocity due to a larger
body of depolarised myocardium providing charge to a smaller
region of non-excited tissue [31,33,34]. Structural branching of tissue
is also known to impact conduction speed [35,36]. Velocity measure-
ments can also be used to estimate anisotropic ratio [26] and they are
found to be linearly related to the cardiac space constant [37].

The data modalities most frequently encountered in the context
of conduction velocity estimation are the extracellular electrogram
[9,12,13,38,39] and optical recordings of myocardium [40–42] or
cell cultures using voltage-sensitive fluorescent dyes, in which
changes in the optical signal are proportional to those in the
transmembrane voltage. Calculation of the CV of an activation
wavefront requires knowledge of both the speed and the direction
of activation – the angle between the normal to the wavefront and
the axis joining the measuring points. Propagation speeds are
empirically determined based on relative distances and differences
in times of local tissue activation, in the direction perpendicular to
the wavefront. Directional information cannot be inferred from two
recordings alone. Computing CV therefore requires at least three
noncollinear measurement points, but frequently a larger number
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are used to minimise the impact of uncertainty in the acquired data.
This is made particularly challenging when the underlying myo-
cardium contains significant spatial heterogeneity of CV.

Distances between measurement sites are usually known,
within a reasonable tolerance. For example, laboratory electrode
arrays have a predefined precision arrangement, optical mapping
has a calculable pixel diameter and the spacings between electro-
des on a non-deformed multi-pole catheter are also known. In
contrast, the annotation of local activation times (LATs), on often
complex and noisy fractionated electrogram signals or optical
mapping recordings, can sometimes be difficult to define. This
has led to the use of other approaches to analyse these signals [43],
including phase mapping [44,45], and frequency domain analysis
[46,47]. However, overcoming the challenge is essential for accu-
rate CV estimation.

In the laboratory environment, data are frequently collected
using regularly spaced micro-electrode arrays [6,38] or optical
mapping, both of which can provide high-density recordings over
areas ranging from a few cells to entire hearts. In a clinical
environment, the data modality is typically that of the unipolar
or bipolar extracellular electrogram [48] and noise and far-field
effects often complicate analyses. Spatial resolution is typically
coarse, in comparison to some of the characteristic scales of the
underlying tissue excitation. Electrogram data are often recorded
independently or in combination with spatial location using an
electroanatomic mapping system [49–51].

Activation maps may be constructed using concurrent record-
ings (e.g. using electrode-array catheters [52]) or, for stable
rhythms, through sequential mapping. Multiple spatially distrib-
uted recordings obtained using a single- or multi-electrode cathe-
ters are recorded sequentially and the activity is synchronised
based on the activation at a fixed reference point [53–55]. Non-
contact catheters may also be used [25,52,53,56–58]. Approaches
have been devised using specialised catheters specifically to
estimate wavefront direction and speed in laboratory settings.
For example, a catheter consisting of three electrodes arranged in
an equilateral triangle around a fourth reference electrode allows
the estimation of the direction of propagation and conduction
speed based on the differences in measured activation times [59].
Although the approach was successfully tested in vivo in animal
studies, it is not used clinically. It should be noted from the outset
that conduction velocity in intact myocardium is a three-
dimensional phenomenon. This is discussed further in Section 4.2.

The current generation of clinical electroanatomic mapping sys-
tems does not support the real-time construction of conduction
velocity maps, necessitating off-line custom analysis [60]. Calculations
of conduction speeds during procedures are therefore often manual
and approximate [61], owing to time considerations. The inclusion of
accurate automated localised conduction velocity estimation within
electroanatomic mapping systems would enable clinicians access to
this valuable metric during catheter ablation cases. Post-procedural
investigations allow more precise computations, although approaches
frequently remain manual and slow [61–63].

Finally, the potential of activation times and conduction velocity
as metrics to elicit structural properties of myocardium is also of
importance in developing increasingly accurate personalised com-
puter models of electrophysiology or, alternatively, for their valida-
tion [64]. These models might be used as clinical diagnostic tools or
to assist in the development and testing of proposed treatment [65].
Conduction velocity measurements can corroborate structural infor-
mation discerned from non-invasive magnetic resonance imaging,
as well as being directly integrated into the model [66].

There is a large body of literature on activation time and conduc-
tion velocity estimation andmapping. Earlier reviews within the scope
of this literature have focused specifically on the analysis of high-
resolution mapping data [67], directionality methods [68] and, more

recently, optical mapping techniques [40]. The most appropriate
technique to calculate CV depends on the type of recording (action
potential or electrogram), spatial distribution of recording points
(resolution and area of coverage), as well as the number of underlying
wavefronts and their curvature. This paper therefore reviews currently
available LAT and CV algorithms, assesses the applicability of each
technique for various recording modalities, and recommends the most
suitable technique for various datasets.

2. Local activation time

The two most common clinical data modalities obtained from
direct electrical observation of cardiac tissue are the unipolar and
bipolar extracellular electrograms, measured by electrodes placed
near or in direct contact with cardiac tissue [69]. Electrograms
record the potential difference between two points and represent
a summation of surrounding cellular electrical activity, the action
potential, within proximity of the electrode locations. In a labora-
tory setting, processing and analysis of cardiac optical mapping
data, obtained using potentiometric dyes can be used to visualise
the action potential in ex vivo situations [40,41]. Analysis of
cardiac conduction typically requires the identification of a tissue
activation time in all of these signals. The time of maximum
change in cellular transmembrane voltage is a widely accepted
definition of the time of activation in the action potential (see
Fig. 1). This maximal change in voltage has been quantitatively
correlated with the peak conductance of the sodium channel [70],
which initiates the depolarisation process in cardiac cells.

2.1. Unipolar vs. bipolar

Unipolar electrograms record the difference in electrical poten-
tial between an exploratory electrode in the heart and a fixed
reference electrode a significant distance away. In contrast, bipolar
electrograms are recorded between two electrodes of relatively
close proximity within the heart. Bipolar electrograms contain
only local electrical activity since they are recorded using differ-
ential amplifiers, leading to the rejection of far-field signals [48].

The maximum downslope of the unipolar electrogram is now
considered the most accurate marker of local tissue activation [69]. A
relationship has been demonstrated between extracellular recordings

Fig. 1. Diagram showing the location of commonly used activation times in the
literature for the action potential (AP), extracellular unipolar (UNI) and bipolar (BI)
electrograms. (A) Maximum dV=dt, (B) maximum negative dV=dt, (C) maximum
absolute voltage jV j , (D) maximum absolute slope jdV=dt j and (E) minimum voltage.
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and the action potential, with the time of maximum dVm=dt in the
action potential corresponding to the time of maximum �dVe=dt in
the extracellular waveform [71], as shown in Fig. 1. There is, in fact, a
quantitative relationship between both of these and the time of
maximum sodium conductance, which all provide a marker for the
same point in the depolarisation process [72].

The presence of far-field information in unipolar electrograms
makes accurate identification of activation times in clinical electro-
grams challenging, leading to the routine use of bipolar electro-
grams during clinical practice [48]. However, bipolar electrograms
are sensitive to inter-electrode spacing, wavefront orientation with
respect to the inter-electrode axis [73], and the exact spatial
location of the measurement is not clear. The ability to determine
activation times from unipolar and bipolar electrograms has been
compared in the clinic, laboratory [74] and through computer
simulation [75].

In contrast to unipolar electrograms, the choice of marker of
activation in the bipolar signal varies among the literature [69], with
some of the common choices illustrated in Fig. 1. All three activation-
time definitions are likely to produce accurate activation times with
high-quality bipolar signals. However, choosing the minimum or
maximum of a bipolar complex will most likely be more robust in
fractionated signals, or low amplitude signals where the incident
wavefront is almost parallel to the bipolar axis. Since the exact
location of the measurement is unclear, unipolar activation times are
preferred when a precise or absolute local activation time is required
for comparison with other quantities [69].

To overcome the challenges of local activation time annotation,
a number of other algorithms have been proposed. These are
detailed in the remainder of this section.

2.2. Morphological approaches

For signals with high complexity, a morphological approach can
be used. It is potentially less ambiguous than conventional bipolar
electrogram markers since it is not dependent upon a single data
point in the signal. In this method, as illustrated in Fig. 2, the point
in the electrogram complex is chosen which equally divides into
two the area under the modulus of the signal [76]. This method was
found to be more accurate than the traditional maximum peak and
maximum slope, based on expert manual estimation. The term
centre of mass has also been used to describe this approach and has
been found to coincide with the maximum slope in the unipolar
electrogram [77]. While the above method identifies the fiducial
point using the positive zero-crossing of a non-causal filtered signal
(Fig. 2b), another approach is to simply fit the unfiltered signal to a
cubic spline and find the point which equally partitions the
enclosed area [78]. Morphological approaches have also been found
to outperform the traditional bipolar markers when compared
directly against unipolar activation times [74,79].

2.3. Non-linear energy

The non-linear energy operator (NLEO) is a measure of the
energy of a signal and is proportional to the square of the product
of signal amplitude and frequency [80]. For a single-component
time-series of samples xj, this quantity can be expressed as

Ej ¼ x2j �xjþ1xj�1:

The NLEO can be used to identify active and inactive regions of
the signal and subsequently calculate the proportions of each for
use as a measure of electrogram fractionation [81]. Alternatively,
the NLEO provides a technique for identifying activation times ,
and may better represent the true activation of tissue at the point
between the bipolar electrodes than the conventional measures
[82,83].

2.4. Time-delay cross-correlation

The traditional maximum gradient and signal peak markers for
activation in electrogram signals may be difficult to identify or be
unreliable if the sample rate of the data is too low or the
morphology of the deflection is fractionated, such as for electro-
grams obtained from diseased tissue. For spatially local electrodes,
activation time-delays between nearby recordings may be reliably
measured, instead of through differences between absolute tim-
ings, by using a cross-correlation of the filtered signal [84]. This
approach leads to a smaller standard deviation than that of
maximum negative slope and therefore leads to more precise
and reproducible time delay measurements [84]. The technique
should only be considered robust when the signal morphologies
are sufficiently similar since it makes the assumption that electro-
grams on different electrodes are related by a temporal shift. The
method has been successfully used for experimental recordings
with interelectrode spacings of just 0.69 mm in which activation
times differed by o1 ms [85].

Time delays have also been used for constructing global activa-
tion maps by measuring the activation delays between neighbour-
ing electrodes and then choosing absolute times for all electrodes
which best fit the delays [86]. To find the activation times
T¼ T1;…; TN½ �> at the N electrodes, a matrix problem is solved
in the least-squares sense,

T¼ DD>� ��1
DtþTN ;

where t is the vector of time differences τij, and D captures the
relationship between them, Ti�Tj ¼ τij. TN is set to mini T i, such
that the activation time of the earliest electrode is zero, making
the problem well-defined. The method has also been extended to
compute directional activation maps, see Section 3.11, and a similar
approach has also been applied to optical signals [87].

2.5. Wavelet decomposition

Wavelet decomposition approaches to identifying electrogram
activation times have been explored for ventricular electrograms
[88]. Through careful selection of the prototype wavelet, this
method identifies maximum modulus lines, defined as maxima
and minima across the different scales of the transform, and
through the relationship between the wavelet transform and the
derivative of the signal, enables identification of the onset of
activation.

The wavelet transform has also been used with optical map-
ping data [89] to remove motion artifact from optical action
potential recordings. The decomposition of the signal and recon-
struction from different scales allows the separation of noise, the
early phase of the action potential and the motion.

Fig. 2. Diagram of morphological approaches. (A) Activation time defined as the
point in the complex which equally divides the area under the modulus of the
signal. (B) Using an averaging filter on the absolute value of the electrogram to
identify the barycentre as the positive zero-crossing point as indicated.
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2.6. Deconvolution

Convolution is a process frequently used to filter signals. The
generation of an electrogram recording itself can be framed as a
convolution of transmembrane potentials. The process of decon-
volution can therefore be used to extract localised tissue activation
[90]. The convolution operator is derived from the volume con-
ductor equation, while a constrained minimisation algorithm is
used to identify parameters of the forward model and minimise
the difference between it and the observed electrogram. Although
this approach assumes that the tissue is activated by a constant-
velocity uniform wavefront, comparison with standard metrics
and expert opinions, using simulated electrograms from which
exact activation time is known, showed that the deconvolution
approach is accurate, even for varying degrees of fractionation.

2.7. Template matching and libraries

Template matching is an automated process of comparing
segments of an electrogram signal, or specific electrogram com-
plexes, to a library of deflection morphologies. The library of
reference complexes may be generated mathematically [91,92], or
directly from actual electrogram recordings [93]. The approach is
primarily targeted at identifying activation times during fibrillatory
activity where multi-deflection complexes, whose morphologies
vary over time, are present. Input signals are compared with the
library recordings through a correlation function, in which maxima
are sought and indicate a strong similarity of the template to the
signal segment. These approaches have been applied with some
success for signals recorded during atrial fibrillation, but can
struggle to correctly annotate multi-component signals. In addition
to the correlation function, the use of an error estimator may
improve the robustness of the activation detection [93].

2.8. Multi-signal spatial methods

The use of spatial voltage gradients and the surface Laplacian
between multiple electrodes have both been shown to produce an
improved measure of activation time than standard time-
derivative approaches, particularly for fractionated electrograms
[94]. For spatial gradients, the maximum gradient is used as the
activation time, while for the surface Laplacian the zero crossing
closest to the maximum derivative is used.

2.9. Wavefront-tracking methods

Although not strictly a method for identifying local activation
time, this approach is used to identify and track distinct activation
wavefronts in data gathered from electrode arrays [95,96]. An
electrode is considered active when the first derivative in time
(dV=dt) is below a threshold ta. Wavefronts are constructed by
locating active electrodes and flood-filling those surrounding
pixels in the immediate neighbourhood which are also active.
Subsequent samples in time are examined similarly, using pre-
viously established wavefronts as seeds, but also seeking any new
wavefronts. Poor signals are replaced by an average of surrounding
signals, rather than extending the neighbourhood to minimise the
risk of artificially combining wavefronts. The collision and frag-
mentation of wavefronts can be detected and directed graphs can
be generated to represent this. The approach has also been applied
to optical mapping data, where optical action potential phase is
used to identify wavefronts [97].

3. Conduction velocity estimation

Conduction velocity is empirically defined as the distance
travelled by a wavefront in a unit of time. At small scales with
predominantly one-dimensional uniform propagation, a measure-
ment of distance between two recording points and the time delay
between them is often sufficient to provide an accurate estimate
[13]. In a two-dimensional setting, one typically requires informa-
tion at a minimum of three noncollinear electrodes within a plane
to establish a velocity vector. Speed can be estimated if knowledge
of wavefront direction is known a priori. However, a more careful
consideration of how conduction velocity is estimated is required
in some circumstances. This is particularly true when working at
larger scales, with heterogeneous tissue and fractionated electro-
grams, especially in clinical environments where noise and uncer-
tainty in electrode locations are higher.

In this section we provide an overview of methodologies devel-
oped for assessing propagation speed and direction, for different
electrical and optical data modalities and recording environments.

3.1. Spatial resolution requirements

The resolution of the acquired data is important in determining
the reliability of algorithms to estimate conduction velocity. This is
particularly true for curved wavefronts or those with short
wavelength features, as a higher resolution of data points is
required to satisfy the spatial Nyquist criterion that the interelec-
trode distance must be less than half the smallest relevant spatial
wavelength [1]. High resolution data is therefore particularly
important when working with complex and heterogeneous activa-
tion wavefronts where the spatial scales of interest are small.

In selecting a suitable algorithm for computing wavefront
propagation speed and direction, a balance must therefore be
sought between the resolution of the computed vector field and
the accuracy of the estimation. Highly localised estimations of
velocity will be more susceptible to error due to the increased
relative uncertainty of position and activation time measurements,
while estimations on larger spatial scales will only provide an
average velocity and therefore exhibit poor correlation with
features of the underlying local substrate.

3.2. Triangulation

Triangulation techniques allow conduction velocity estimation
from a set of arbitrary points on a surface, without imposing
significant constraints on their spacing or distribution. The
approach is therefore well-suited to the clinical environment,
where collected data typically possess these properties, and
potentially allows large numbers of vectors to be computed for
the dataset to create a high-resolution vector field.

A catheter with a fixed equilateral triangle arrangement of unipolar
electrodes and a reference electrode in the centre is probably one of
the earliest examples of triangulation being used to compute conduc-
tion velocity in a clinical setting [4]. However, the method is
generalisable to non-equilateral triangles. Selection of triplets of
electrodes can be achieved manually, through selection by an operator,
or automatically through techniques such as Delaunay triangulation
[98] or edge completion [99]. Additional constraints are typically
imposed during the selection of triangles to improve the quality of
the estimated vectors and minimise the relative influence of measure-
ment errors [62].

Using rules of trigonometry, the coordinates of three points can be
used in association with their activation times to estimate the average
conduction speed and directionwithin the enclosed triangle, assuming
that thewavefront is approximated as locally planar. From the diagram
in Fig. 3, for each triangle a relationship is derived between the speed
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and angle of incidence of the wavefront, as

cosβ¼ cos ðθ�αÞ;
v¼ jaj cosα

ta
;

v¼ jbj cosβ
tb

;

where v is the conduction speed, θ is the angle at the vertex p of
earliest activation, computed as

θ¼ arccos
jaj 2þjbj 2�jcj 2

2jaJbj

� �
:

The angles α and β describe the angle of incidence with respect to the
two edges of the triangle meeting at p. Solving for α gives the
direction of activation,

tanα¼ tb jaj �ta jbj cosθ
ta jbj sinθ

;

and subsequently the speed v can be found.
The approach has been used in a number of clinical studies

[50,62,100,101], with global activation maps sequentially acquired
during a stable rhythm. Constraints were imposed on distance
(3rdr20 mm), as well as the difference in activation times
(43 ms), between vertices to reduce the impact of measurement
errors. The method has also recently been automated [102] to
generate high-density maps of conduction velocity from clinically
acquired data. An example of this is illustrated in Fig. 4.

3.3. Finite difference techniques

Finite difference methods are commonly used in the numerical
solution of partial differential equations. Derivatives are approxi-
mated at a given grid-point, through differences between neigh-
bouring grid-points, using a stencil as illustrated in Fig. 5. This
approach can be used for computing local conduction velocity
estimates at each point in the grid [42]. However, the technique
requires that the data be located on a regularly spaced grid of
points. It is therefore best suited for multi-electrode arrays or
optical mapping data where the recording points are arranged in
this manner.

The horizontal and vertical components of the gradient of
activation are computed using standard first-order finite-differ-
ence stencils as

Gx ¼ 1
2

tiþ1;j�ti;j
d

þti;j�ti�1;j

d

� �
i

¼ tiþ1;j�ti�1;j

2d
i;

and similarly

Gy ¼
ti;jþ1�ti;j�1

2d
j:

The conduction speed juj and the unit vector in the direction of
activation, n̂, are then given by

uj j ¼ 1
GAj j

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x þG2

y

q ;

Fig. 3. Diagram illustrating conduction velocity estimation through triangulation. θ
is computed directly using the cosine rule from the known lengths a, b and c. The
angle of incidence of the wavefront is calculated with respect to the sides a and b
by angles α and β, respectively. These are determined through the time differences,
distances and angle θ.

Fig. 4. Example of conduction velocity maps calculated using triangulation of
electroanatomic mapping data obtained during sinus rhythm. Data are interpolated
up to a maximum distance of 5 mm. (A) Map of conduction speed. Regions of rapid
conduction are shown in blue, while regions of slow conduction are shown in
white. Circles denote locations of electrogram recordings. (B) Conduction velocity
vectors, overlaid on a map of local activation. Earliest activation is shown in red,
through to latest activation shown in blue. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)

Fig. 5. The finite difference technique uses measurements of activation time on an
equally spaced grid with electrode separation d. Gradients of activation are
computed along the dotted lines, in the horizontal and vertical directions, using
the times at the four highlighted electrodes to calculate the conduction velocity
vector for the centre point.
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n̂ ¼ i
Gxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
x þG2

y

q þ j
Gyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
x þG2

y

q ;

leading to a velocity of

u¼ uj jn̂ ¼ i
Gx

G2
x þG2

y

þ j
Gy

G2
x þG2

y

:

This technique has been applied in a number of optical
mapping studies [40,103]. An example is shown in Fig. 6. The
approach works well in situations where there is a high degree of
tissue heterogeneity in the local conduction velocities. However, it
fails when adjacent pixels have the same local activation time,
such as when a low frame rate is used with optical mapping
recordings [40].

3.4. Finite difference techniques with smoothing

Finite difference approaches to computing conduction velocity
are often susceptible to noise in the local activation time estima-
tion or adjacent grid points having identical activation times,
leading to spurious distortions of the conduction velocity field.
This can be seen in the bottom left and centre of Fig. 6B where the
arrows suggest unphysiological rapid localised variations in con-
duction direction. An approach to overcome this is through
applying a convolution technique to smooth the local activation.
An example of this is given in Fig. 7, where a two-dimensional
Gaussian smoothing operator is used to reduce localised noise in
activation times and produce a smoother conduction velocity
vector field.

3.5. Polynomial surface fitting

This class of techniques fits one or more polynomial surfaces
T xð Þ ¼ Tk xð Þ through subsets of the space-time coordinates xe; t� �

,
where xe is the electrode position, t is thewavefront activation time and
k is the order of the polynomial surface. The surface is fit to the data
using a standard least-squares algorithm. Although the method using
quadratic surfaces has been applied to regularly spaced unipolar
electrode arrays in the two-dimensional case [1], the arrangement of
points may be arbitrary. This has been demonstrated in a later study
using three-dimensional paced and sinus rhythm data [2], gathered
using a plunge electrode. In these studies, activation of a given
electrode was defined by dV=dto�0:5 V=s. At a given time, wave-
fronts were defined as being at locations where there had been no
activity in the preceding 40ms. The approach can also be applied to
compute the propagation velocity of tracked wavefronts (see Section
2.9) [97].

To compute a conduction velocity vector at an arbitrary point x
using quadratic polynomial surfaces, the data xe i; ti� �

within a fixed
neighbourhood of x is fit to the expression of the form

Tðx; yÞ ¼ ax2þby2þcxyþdxþeyþ f :

The velocity vector is then defined as

ve ¼
dx
dT
dy
dT

0BB@
1CCA¼

Tx

T2
x þT2

y

Ty

T2
x þT2

y

0BBBB@
1CCCCA:

If there are more data points than parameters in the expression for
the surface this acts to smooth the data and reduce the impact of
outliers. Note that although the above leads to the same

0

5

10

15

20

25

ms

Fig. 6. Example use of finite difference methods for computing localised conduction velocity from activation times derived from optical mapping data. (A) Photograph of
canine left atrial preparation showing pacing electrodes and the location of the pulmonary veins. (B) Activation times recorded using optical mapping when the preparation
is paced from the pacing point indicated. Conduction velocity vectors are computed using the finite difference method.

Fig. 7. Conduction velocity map, generated using a smoothed finite difference approach, from optical mapping data. The smoothing is a 2D Gaussian convolution operator.
Modified with permission from [40].
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expression as for the finite difference technique (Section 3.3), the
gradients in the case of polynomial surface-fitting techniques are
evaluated analytically on the surface and therefore a vector may be
computed at any arbitrary point for which there are sufficient data
points within a neighbourhood.

To fit a quadratic surface, six data points are required, although
twenty are typically needed for a good fit with two-dimensional
data [1], or if the points are linearly dependent [2]. The neighbour-
hood size should therefore be several times the spatial sampling
resolution. The least-squares fitting algorithm provides robustness
against outliers. The use of a smooth surface also reduces the
impact of noise through electrode position measurement or
activation time determination. The residual of the least-squares
algorithm provides a metric with which to assess the quality of the
fit to the data. The method has been demonstrated to work well
for simulated data, although some sinus rhythm and paced
wavefronts were found to be too complex to capture in three
dimensions with the available data [2].

The surface-fitting technique is frequently used with first-order
surfaces (e.g. [104]), which leads to a method similar to standard
finite difference approaches. A cubic polynomial surface variant
has also been considered, which has twenty unknowns, and while
it is found to provide a more accurate conduction velocity estima-
tion for complex activation wavefronts it requires significantly
more data points [105]. Quadratic and cubic surfaces were both
found to underestimate curvature of the wavefront and the linear
fit also led to incorrect speed estimations.

Other variants on the polynomial surface fitting method have
been investigated. Surface fitting to activation time delays using
small data sets has been considered [85]. Velocity vectors are
estimated using four to seven electrodes, which makes the method
potentially clinically applicable. The curvature of the heart surface
is also important when applying the method to optical mapping
data and, accounting for this, allows distances between data points
to be more accurately captured, providing improved CV estimates
[106]. Panoramic mapping techniques have also been developed to
address curvature of the heart [107], although the technology is
not widely available [40].

3.6. Cosine-fit techniques

In a clinical environment, measurement points are typically in a
fixed arrangement depending on the choice of catheter and one is
interested in the nature of the propagation of macroscopic
wavefronts across the catheter to assist in diagnosis. For a planar
wave passing over a circle of recording points with constant offset
γ and radius r, illustrated in Fig. 8A, the activation times satisfy the
following equation:

tðnÞ ¼ tc�A cos γðn�1Þ�ϕ0

	 

;

where tc is the centre activation time and ϕ0 is the angle of earliest
activation [82]. Initial values of the unknowns tc, A and ϕ0 are
estimated from the sequence of activation and a sequential
quadratic programming algorithm is used to fit the parameters
to the data. The conduction velocity is then estimated as r=A.

Initial validation of the method was provided through simu-
lated data [82]. The detected direction of propagation was found to
be moderately tolerant to Gaussian noise with standard deviation
up to 20%, applied to the activation times and errors in inter-
electrode angle γ of up to 31. The influence of curvature of the
incident wavefront was examined using two point stimuli 25 mm
and 50 mm away from the nearest recording electrode. In this case
the error in propagation direction increased by only 1.51. However,
the model is unable to correctly identify multiple concurrent
wavefronts, and estimated angles for incident spiral wavefronts
do not necessarily point directly towards the core.

This method has been applied to investigate human conduction
velocity restitution properties using a circular multipolar catheter
[108]. The method is robust to a small degree of curvature, so is
appropriate when the pacing is a sufficiently large distance from
the catheter. It has also been used to compare clinical circular
catheter data collected during both sinus rhythm and paced
rhythms to patient-specific simulated data [83].

Recently, the method has been extended to consider different
catheter configurations and wavefront shapes [109]. The technique
is generalised to support an arbitrary arrangement of points,
thereby adapting better to clinically acquired data, and both planar
and circular wavefronts. This enables prediction of the focal source
location based on estimated wavefront curvature and is illustrated
in Fig. 8B. A limitation of the approach is that the points are
projected onto a two-dimensional plane of best fit, which will
distort distances between electrodes and therefore introduce a
slight error into the estimate of the focal source.

3.7. Vector loops and ensembles

The direction of activation can be inferred from the relative
amplitude of two bipolar electrograms recorded from a custom
electrode array consisting of two orthogonal pairs of electrodes
[3]. The term vector loop originates from the use of an oscilloscope
to process the bipolar electrograms through the X and Y inputs,
resulting in a loop during activation. The direction of the signals
departure from the origin indicates the direction of activation with
respect to the bipole orientations.

Computing multiple activation vectors in this way at fixed
locations provides a measure of the regularity of activation
direction. In a later study, the vector loop method was used in
conjunction with a 112-electrode array to investigate the consis-
tency of propagation direction in AF [110]. Groups of four electro-
des were used as a pair of orthogonal bipoles. The approach has
also been extended to three dimensions in humans through a
specially designed catheter and is found to reliably predict ante-
rograde and retrograde conduction [111].

Fig. 8. (A) Planar wave activation across a circular catheter, estimated using a
cosine-fit technique. Activation times at the 8 electrodes are fit to the translated
cos θ function as shown in a least-squares sense. (B) Circular wave conduction
velocity and focal source, s, estimated from an arbitrary set of recording points at
positions xi, with x0 being the point of earliest activation. The distances of each
point from the focal source and x0 are denoted by di and ri, respectively.
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3.8. Radial basis function interpolation

Radial basis functions provide a technique for interpolating
LATs across the endocardial surface, which allows activation
patterns, including wavefront collision, to be detected. This class
of functions, ϕðxÞ ¼ϕðJxJ Þ, are dependent only on the distance
from a fixed point; an example is the Gaussian function
ϕðrÞ ¼ e� ϵrð Þ2 . For activation times ti corresponding to the N
electrodes at positions xi, an activation surface can be represented
as a sum of radial basis functions,

TðxÞ ¼
XN
i ¼ 1

αiϕi Jx�xi Jð Þþ
XM
j ¼ 1

βjψ jðxÞ;

where the radial functions ϕi in the first term are centred at the
measurement points xi, and the second term is the associated
polynomial [112]. The constraints TðxiÞ ¼ ti ensure that the surface
matches the recorded activation times at the electrode positions.
The linear system of N equations derived from the above expres-
sion is then solved to determine the coefficients αi. If the chosen
radial basis function is not positive definite, additional low-order
polynomials ψj and constraints may need to be added to ensure a
unique solution of the interpolation problem [113].

Given the known activation surface, gradients of activation and
subsequently conduction velocity can be calculated [112] in a
similar manner to that used in Section 3.5. Activation times
throughout a chamber can be determined from global activation
maps and therefore high-density conduction velocity vector fields
can be computed [114]. The ability to generate high-density vector
fields also enables a number of other quantities such as divergence
and curl to be investigated [112], which are briefly discussed in
Section 4.4.

Wavefront collision and ectopic foci can also be detected
through the use of radial basis function interpolation [115]. While
the technique could detect foci with either a spiral or PentaRay
catheter, it was not able to capture the source with the circular
catheter, since this arrangement lacks radial information.

3.9. Isopotential lines

Conduction velocity can be estimated by considering the
distance travelled by an isopotential line over a fixed time interval
[116]. In this approach, at each time instant an isopotential line is
constructed using a parametric spline fitted through those data
points at a fixed potential. This can identify both the wave front
and wave back, depending on the sign of dV=dt. The conduction
velocity at a given point on the line is then estimated by examining
the distance travelled in the direction normal to the isopotential
line over a fixed time window. The normal vector is easily
computed from the spline expression. This technique requires a
higher resolution of data than is clinically available and necessi-
tates absolute measurements of membrane potential, limiting its
applicability to optical mapping.

3.10. Arbitrary scalar fields

A generalisation of the isopotential lines method (Section 3.9)
is to use spatial gradients of any scalar quantity for which a
specific isovalue corresponds to the excitation wavefront [117].
Examples of such scalar fields include activation time, electrical
potential or electrical phase.

3.11. Time delays

Activation maps are potentially easier to compute in terms of
differences between neighbouring electrodes, where electrogram

morphology is expected to be very similar, rather than explicitly
calculating the activation time of each electrogram independently
(see Section 2.4). Extending this idea, time differences between
electrodes in a small neighbourhood of electrodes can be used to
estimate a plane-wave propagation velocity across the localised
region [86].

For any given pair of electrodes in the neighbourhood, the
wavefront velocity can be expressed as

v¼ ðxj�xiÞ � n
τij

;

where xi and xj are the locations of the electrodes, n is the unit
normal to the planar wavefront and τij is the time difference
between them.

Defining d¼ ð1=vÞn, a system of equations,

ðxj�xiÞ � d¼ τij;

can be derived which relate inter-electrode distances in the
direction of the wavefront with corresponding time delays, as
shown in Fig. 9. This can be written in matrix form as

A>d¼ t;

and solved in a least-squares sense, due to measurement error and
the premise that the activation wavefront is not truly planar.

The approach has been validated on simulated data where a
conduction velocity vector field was generated by using Delaunay
triangulation [98] on the points and applying the method to each
resulting triangle of electrodes. It is also worth noting the
similarity between this method and the polynomial surface fitting
with first-order surfaces (see Section 3.5). However, this method
differs by the use of differences in space and time between
electrodes to compute the velocity, rather than requiring explicit
knowledge of the activation time at each electrode.

3.12. Analytic expressions

Expressions can be derived for wavefront curvature, speed and
direction of propagation from a fixed stencil of 4 points surround-
ing a point of interest, provided that the spacing is significantly
less than the radius of curvature of the wavefront [118]. The
distances of an unknown focal source from each of the four points
are expressed in terms of the distance to the point of interest and,
given the activation times at each electrode, the equations are
solved to compute wavefront velocity and radius of curvature. If
one is only interested in conduction velocity, three points equis-
paced around a circle are sufficient.

The method makes the assumptions that propagation is smooth,
continuous and normal to the wavefront and that the radius of
curvature is large enough that it can be approximated locally as a
circle. It also has a limitation that the radius is undefined when the

Fig. 9. Estimation of planar wavefront velocity from differences in location and
activation time. Expressions relating inter-electrode distances normal to the wavefront,
ðxj�xiÞ � d, and their corresponding time delay can be used to estimate d, and
subsequently compute the wavefront speed, v.
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angle of incidence is 451 and two pairs of electrodes are activated
simultaneously. However, this can be overcome by adding a fifth
measurement at the point of interest. The equations were tested on
simulated data and verified against empirical estimates of conduc-
tion velocity.
3.13. Maximum likelihood estimation

Statistical approaches to measuring conduction velocity across
high-density grids of electrodes have been considered for measur-
ing fetal cardiac activity [119]. The wavelength of the signal is on
the order of the size of the electrode grid and so the incident wave
is assumed to be planar with incident angle θ and velocity v. In
brief, the signals at each electrode are assumed to share the same
morphology s(n) and therefore can be modelled as a time shift of
this signal, based on the row r and column c of the electrode,

xrcðnÞ ¼ sðn�ðr�1Þτr�ðc�1ÞτcÞþωrcðnÞ
where ωðnÞ is Gaussian white noise with variance σ2 and n is the
index of the sample. This is illustrated in Fig. 10. τr and τc describe
the time delay between the rows and columns respectively and
these are estimated by maximising the probability

pððτr ; τcÞjxrcðnÞ; sðnÞÞ:
Through the use of Bayesian inference, the maximum likelihood
estimation of ðτr ; τcÞ can be reduced to the minimisation of a cost
function. The maximum likelihood estimation method uses
weights in the cost function which depend on the signal-to-
noise ratio and this is found to significantly improve the accuracy
of the estimation. Subsequently, the conduction speed and angle of
incidence can be computed through the expressions

v¼ f sdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2r þτ2c

p ;

and

θ¼ cos �1 τrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2r þτ2c

p !
;

respectively, where fs is the sample rate and d the inter-electrode
distance.

4. Discussion

4.1. Comparisons of conduction velocity algorithms

We list in Table 1 the conduction velocity estimation techni-
ques reviewed in this paper and their applicability to different data
modalities and resolution constraints. For a clinical environment
the most suitable techniques are triangulation, cosine-fit

algorithms and radial basis functions. For localised single-
catheter analysis the cosine-fit technique is robust. Triangulation
has the greatest potential for use in rapid conduction velocity
mapping as it can be applied globally and is computationally less
expensive than using radial basis functions. However, for very
high-density maps, triangulation may be overly sensitive to
measurement error due to the small size of triangle used. Radial
basis functions my be more resilient in this case and allow a high-
density vector field to be generated, independent of the set of
recording points, which also supports the use of vector field
analysis.

Both finite difference and polynomial surface fitting techniques
are widely used in the literature with optical mapping recordings and
micro-electrode array data. Although finite difference approaches are
straightforward to implement, they are not as effective at handling
missing data as polynomial surface-fitting techniques [1]. For regions
of heterogeneous CV, which cannot be easily described by polyno-
mials, smoothed finite difference approaches are found to be superior
[40]. Paskaranandavadivel et al. [120] also compared regular finite
difference methods, smoothed finite difference methods and the
polynomial-fitting techniques in the context of gastric slow-wave
propagation, concluding that smoothed finite difference gave the
most accurate results. Techniques involving computing iso-scalar
lines are also suitable for use with high-resolution optical mapping
data, although their implementation is more complex than the
previous methods and may therefore make them less desirable.

4.2. Three-dimensionality

Propagation wavefronts are three-dimensional in intact myo-
cardium. Many of the techniques outlined in this review operate
on two-dimensional data collected from either the epicardial or
endocardial surface and are therefore inherently limited in their
ability to determine true wavefront speed. The conduction velocity
of wavefronts that are not travelling exactly tangential to the
recording surface will be over-estimated. This is especially true in
thicker structures, such as the ventricular walls, where transmural
propagation is common. However, it should be noted that this is a
limitation of the recording technology and many methods could
work with volumetric data equally well. One example is the
polynomial surface fitting technique which has been extended to
compute three-dimensional wavefronts using data recorded using
plunge electrodes in a volume of tissue [2].

4.3. Relationship with other quantities

The relationship between CV and other functional and struc-
tural factors has been investigated in many clinical studies, with
the motivation of understanding the electroanatomic substrate
underlying cardiac arrhythmias in order to guide ablation therapy.
CV has been found to correlate with bipolar electrogram ampli-
tude in atrial flutter reentry circuits [121], where a logarithmic
relationship was found. This could be used to directly predict local
CV from measured electrograms. A correlation was also found
during sinus rhythm, for patients who had a history of AF, between
the areas of lowest bipolar electrogram voltage (o0:5 mV) and
low CV, which often colocalised with fractionation and double
potentials [122]. However, changes in propagation velocity are not
always associated with changes in electrogram duration [123].
Electrogram fractionation may indicate conduction slowing [124]
and fractionation of sinus rhythm electrograms has been shown to
correlate with age, voltage and CV [125]. Peak negative voltage of
unipolar electrograms has been shown to correlate with conduc-
tion slowing in patients with atypical right atrial flutter [126].

The rate dependence of CV has been shown to be a more
important indicator of AF initiation than electrogram fractionation,

Fig. 10. Planar wavefront velocity estimation from an equally spaced grid of
electrodes using a maximum likelihood approach. The most likely row and column
time delays, τr and τc, are estimated fromwhich the velocity can be computed using
trigonometry.
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where conduction was seen to slow immediately prior to AF [127].
Although CV restitution is not routinely measured in clinical cases,
CV restitution has been characterised in humans using cosine-fit
techniques (see Section 3.6) with a circular catheter [82].

Late-gadolinium enhanced magnetic resonance imaging (LGE-
MRI) has been used to identify areas of fibrosis and delineate scar
tissue in patients with AF [128,129]. The correlation between LGE-
MRI image intensity and CV is an area of active research [130,131].

4.4. Secondary analysis of velocity vector fields

Local normalised CV vector fields can be further analysed by
applying vector calculus operations to elicit a more qualitative
interpretation of the data. The divergence of the two-dimensional
CV vector field,

∇ � v¼ ∂vx
∂x

þ∂vy
∂y

;

can be used to distinguish between focal sources and areas of
collision. Normalisation ensures only the direction of the vectors
influences the divergence. At a source, all of the conduction
velocity vectors point outwards resulting in a positive divergence;
at a sink or area of collision, the divergence will be negative. The
curl of a two-dimensional CV vector field,

∇� v¼ ∂vy
∂x

�∂vx
∂y

� �
;

computes twice the local angular velocity, with positive curl
indicating counterclockwise rotation and negative curl indicating
clockwise rotation.

The divergence and curl operators have been applied to CV vector
fields from simulated [132,112], canine epicardial electrograms [133]

and human atrial LAT maps [133]. These operators require a regular
grid of CV vectors, which can be obtained from irregularly arranged
data in several ways. Radial basis function interpolation (Section 3.8)
can be applied to the activation times, followed by finite difference
methods [115] (Section 3.3) or polynomial surface fitting methods
[112] (Section 3.5) to calculate the CV vectors. Fitzgerald et al. [133]
calculated the divergence of human atrial LAT data from the electro-
anatomic system Carto by fitting the electrogram positions to an
ellipsoid, projecting onto a 2D plane, spatially interpolating the LATs
and finally using a linear polynomial fit to the data [85]. In order to
accurately locate ectopic foci, spatial resolution can be improved by
Delaunay triangulation and cubic interpolation [133]. In addition, the
use of the Radon transform has been suggested to allowmore accurate
localisation of areas of high divergence [115].

Ectopic foci have been successfully identified using divergence
maxima, providing the CV vectors surround the foci [112,115,133].
Uniform spacing is not required and this technique has been applied to
simulated data and high-density circular, spiral and five-spline map-
ping catheters [112,115]. Localisation is accurate for a five-spline
catheter when up to eight of the fifteen recording points were missing
as a random distribution although the removal of two entire splines of
data may change the ability of the vector field analysis to identify
complex activation patterns. Divergence is low in areas of wavefront
collision, where collision was confirmed by the presence of double
potentials for human clinical data [133]. However, using the same
dataset, curl did not indicate any central obstacles in reentrant circuits.

4.5. Open questions

Activation time mapping and conduction velocity mapping are
important metrics for understanding the structural and functional

Table 1
List of conduction velocity techniques and their advantages and disadvantages. Suitability of the methods to different data modalities and any restrictions on the type of data
are also noted.

Method Advantages Disadvantages Suitability and requirements

Triangulation [4,62,100–102] Local score, examine regional
heterogeneities, any arrangement of
points, uses actual LATs

Sensitive to error in LAT, difficult to
automate

Clinical, 3ZdZ20 mm, LAT differences 43 ms

Finite difference [42,40] Local score, examine regional
heterogeneities, easy to implement,
uses actual LATs

Sensitive to noise / missing data,
Fails if times are identical, Requires
regular grid

Optical mapping, Multielectrode arrays, 4 points, sufficient
temporal resolution to avoid adjacent equal activation
times

Polynomial surface
[1,2,85,106,40]

Any arrangement of points, robust to
noise, allows missing data points,
residual to assess quality of fit

May require more points than
available, requires choice of ΔX;ΔT

Optical mapping, Multielectrode arrays, 3D: linear (4
points), quadratic (10 points), cubic (20 points), more
points needed for complicated rhythms

Cosine-fit [82,108,83,109] Measure of curvature and distance to
focal source, any arrangement of points,
robust to noise, residual to assess
quality of fit

Single macroscopic wavefront only,
one vector per catheter

Clinical, no colliding wavefronts

Vector loops [3,110,111] Does not require LAT assignment Requires specific catheter Clinical, 2 orthogonal pairs of bipoles
Radial basis [112,114] Multiple wavefronts, use to find LATs

anywhere on surface, no assumption on
arrangement and spacing, high res.
velocity field (div, curl)

Computationally demanding Clinical, any arrangement

Isopotential lines [116] Accurate wavefront curvature
estimation, robust to spatial noise

Requires measurements of
membrane potential, requires high
resolution, LATs do not always
coincide with isopotential lines

Optical mapping, high resolution

Arbitrary scalar fields [117] Extends CV calculation from
isopotential lines to use other variables

Requires measurement of another
scalar field

Scalar field (e.g. activation time, electrical potential,
phase)

Time delays [86] Uses neighbouring location
information, can deal with incorrect
LATs, local score, Any arrangement of
points

Assumption of plane wave locally Clinical

Analytic expressions [118] Velocity and curvature from 4/5 points,
low density data, simple to apply

Points must lie on a square, radius
of curvature must be large, requires
accurate LATs

Optical mapping, multielectrode arrays, points on a square

Maximum likelihood [119] Statistical approach, tolerant of LAT
measurement errors

Requires grid of recording points Multielectrode arrays, equally spaced grid of points
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electrophysiology in both the laboratory and clinical environment.
However, challenges still remain:

� Identifying local activations in complex fractionated signals
consisting of many low-amplitude deflections. A greater under-
standing of the electrogram and its decomposition in terms of
local cellular activity is needed.

� Conduction velocity mapping during atrial fibrillation would
improve the identification of focal sources and those regions of
the chamber perpetuating arrhythmogenic activity.

� Real-time generation of complete-chamber conduction velocity
mapping during simple rhythms is needed to augment existing
clinical diagnosis of arrhythmias.

� Estimating the level of uncertainty in computing the conduction
velocity of propagating wavefronts in three-dimensional tissue
using two-dimensional surface measurements and algorithms.
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