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Abstract: A comprehensive understanding of plant metabolism could provide a direct mechanism
for improving nitrogen use efficiency (NUE) in crops. One of the major barriers to achieving
this outcome is our poor understanding of the complex metabolic networks, physiological factors,
and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of
computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and
provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how
metabolomics, computational models of metabolism, and flux balance analysis have been harnessed
to advance our understanding of plant nitrogen metabolism. We introduce a model describing
the complex flow of nitrogen through crops in a real-world agricultural setting and describe how
experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake,
can be used to refine these models. In summary, the metabolomics/computational approach offers
an exciting mechanism for understanding NUE that may ultimately lead to more effective crop
management and engineered plants with higher yields.
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1. Introduction

Nitrogen (N) is a significant contributor to plant biomass and an essential component of most
biomolecules. Nitrogen limitation frequently reduces crop growth and yield, and contributes to
a variety of phenotypic changes including: expanded root architecture, reduced shoot biomass
production, chlorosis, leaf discoloration, and impaired reproduction [1]. To ensure sufficient N for
crop growth, farmers supplement fields with fertilizers containing nitrate (NO3

−), ammonium (NH4
+),

or urea (CO(NH2)2). Most crops take up approximately 40% of applied N [2], which results in
environmental pollution in the form of aerosolized nitrous oxides and leaching of soluble nitrates
into waterways [3–5]. Improving the nitrogen use efficiency (NUE) of crops might allow existing
agricultural technologies to decrease the yield gap and therefore increase the necessary caloric intake
of billions of people worldwide, and could diminish the impact of agriculture on the environment.

Efforts are currently underway to improve NUE through a variety of strategies. These include
a critical evaluation of the method, timing, and management of fertilizer use as well as strategies
for crop rotation and legislative changes to promote best management practices [2,6]. For example,
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Denmark now requires liquid fertilizers to be injected directly into the soil, which can reduce nitrogen
volatilization by 41% [7]. In addition to these legislative actions, scientific investigations are ongoing to
improve NUE though crop genetics. These efforts have included both traditional breeding programs
and modern recombinant DNA technology (reviewed in [1,8–10]). One of these molecular approaches
has resulted in crops achieving a higher NUE via the overexpression of alanine aminotransferase [8].

The success of modern molecular genetics has stimulated interest in adapting other state-of-the-art
scientific strategies to this traditional agricultural problem. One advanced scientific approach with
relevance to NUE is metabolomics. Many aspects of cellular metabolism have a direct impact on the
uptake of nitrogen and partitioning of this element in tissues [11,12]. Given the significant resources
required to develop transgenic crops [13,14], it would be prudent to implement a technology that
can directly evaluate the relationships between genetic change and nitrogen utilization. Decades of
research have established detailed metabolic profiles of many crops [15], profiling the transcriptional
response of N metabolism-related genes to diverse stimuli [16–19], and mapping of quantitative
crop phenotypes to loci associated with metabolic genes [20–22]. Despite this wealth of information,
the fundamental metabolic limitations of NUE remain unclear.

One major challenge in understanding NUE is the staggering scale of the metabolic networks of
plants. There are thought to be more than 10,000 metabolites present in plants [23,24]. In addition,
the metabolic activity of organisms is established through the combined action of numerous
genes, chemical equilibria, and multiple layers of regulation. Consequently, unravelling the
complex interactions between NUE and metabolism requires analytical approaches that can capture
a comprehensive picture of steady-state metabolite concentrations and metabolic pathway fluxes.

Although extensive data is available on the metabolism of crop species [1,25], traditional analytical
limitations have restricted metabolic investigations to a handful of metabolites per study.
However, recent advances in analytical technology have dramatically increased the potential scope
of metabolism research and have made comprehensive analyses of plant networks a feasible
objective [26–30]. These metabolomics studies allow comprehensive data to be captured on the
abundance of metabolites, activities of metabolic pathways, and physiological partitioning of nutrients.
Herein, we describe recent advances in NUE research and discuss how metabolomics techniques could
be harnessed to improve our understanding of NUE in crops.

2. Discussion

2.1. Role of Metabolism in NUE

Plant nitrogen uptake, assimilation and metabolism have been studied for over a century in
regards to growth and yield of agriculturally important plants [8,31]. Perturbations in this essential
physiological process have significant impact on the phenotypes of plants and elicit major changes in
their metabolic networks. Nitrogen metabolism has been extensively examined in the context of N
starvation ([11,26,32–34]; summarized in Table 1). Metabolic changes in plants are affected by length
of the starvation period [23,24], tissue type [23], whether or not the plant is a cultivated variety [26,35],
and developmental stage [11]. Not surprisingly, N starvation generally results in diminished levels
of nitrogen containing metabolites (Table 1); this is most evident in normally abundant amino acids
such as glutamate and glutamine. Depletion of these amino acids is generally correlated with elevated
levels of organic acids from central carbon metabolism (Table 1). The metabolic composition is
closely correlated, and tightly regulated, with plant biomass so that the metabolic composition can be
a predictor (biomarker) of biomass [36]. Certain metabolites; carbon compounds from photosynthesis,
starch and sucrose metabolism plus oxidative pentose phosphate pathway, tricarboxylic acid (TCA)
cycle and glycolysis metabolites and N-containing metabolites such as glutamine, have been seen to be
at low levels in plants undergoing high growth. This suggests that these metabolites are providing
the major building blocks for biomass macromolecules such as proteins and that growth drives
metabolism [36]. The majority of the plant’s nitrogen stores are held as protein biomass or as inorganic
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nitrogen in the vacuoles. Consequently, the most effective NUE engineering strategies will likely
target the flow of C and N through the metabolic network rather than focusing on concentrations of
individual metabolites. Another theory regarding metabolites and growth suggests that the levels of
some metabolites act as signaling molecules and regulate plant growth either positively or negatively.
There are many metabolites of unknown structure that may be derived from primary metabolites
to act as signaling molecules that should be studied further to understand this metabolite–growth
interaction [36].

2.2. Effect of Transgene Expression on Nitrogen Metabolism

A common strategy for attempting to improve NUE has been to genetically modify plants [8–10].
Efforts have focused on (1) transgenes targeting N uptake and transport, such as ammonium
transporters [37], proton gradient-forming ATPases [38], or peptide/nitrate transporters [39];
(2) transgenes directly involved in primary N metabolism such as cytosolic glutamine synthetase
(GS1;1 and GS1;2) [40–42], plastidic glutamine synthetase (GS2) [43], glutamate synthase (GOGAT) [44],
glutamate dehydrogenase (GDH, [45] or primary and secondary N metabolism such as transaminases
like asparagine synthetase (AS1) [46] and alanine aminotransferase (AlaAT) [12]; (3) transgenes
involved in N recycling such as autophagy-related factor 8c (ATG8c, [47]); (4) regulatory factors such
as the transcription factor Dof1 [48,49], microRNA826 [50], or microRNA444 [51]; (5) or N-responsive
transgenes of unknown function such as the early nodulin 93-like gene [52]. Although there have
not been any detailed metabolomics studies involving plants with genetically engineered NUE
phenotypes, several studies have examined specific metabolite levels, some of these studies are
listed in Table 2 [12,41,46,48,49,52–54]). The studies in Table 2 demonstrated that over-expression of
transgenes involved in nitrogen metabolism altered the levels of primary nitrogen compounds in
certain tissues such as roots and shoots. However, in many of these studies, alteration of N metabolite
levels either did not result in a subsequent NUE phenotype, or the potential NUE phenotype was not
investigated. For example, GS1;1 and GS1;2 overexpression in rice (separately) increased core C and N
metabolites in roots and shoots of plants grown at low N, and the plants exhibited a low growth and
low yield phenotype [41]. Therefore, overexpressing these glutamine synthetase genes unbalanced
the C:N metabolic status in rice [41]. However, GS1 overexpression in wheat resulted in plants with
increased total N in the grain and approximately 20% increase in grain yield [42]. Other transgenes,
such as ENOD93 [52] and alaAT [12], showed increased levels of primary nitrogenous compounds and
an NUE phenotype.

Previously, we suggested that manipulating regulatory pathways could provide a mechanism
for improving NUE [55]. This hypothesis has been validated by He et al., who demonstrated
that constitutive overexpression of miRNA826 and miR5090 repressed expression of glucosinolate
synthesis-related genes while N starvation-responsive genes were upregulated [50]. Transgenic Arabidopsis
expressing these miRNAs showed enhanced tolerance to low N, increased biomass, increased lateral
root production, increased chlorophyll, and decreased anthocyanin content relative to the wildtype
(WT) [50]. Likewise, overexpression of the Zea mays transcription factor Dof1 in rice caused increased
phosphoenolpyruvate carboxylase (PEPc) expression as well as altered expression of TCA-related genes.
Moreover, these expression changes were correlated with changes in TCA cycle intermediates, such as
malate, citrate, and isocitrate [49]. Enhanced growth under limiting N, increased photosynthesis rate,
and decreased shoot-to-root ratio was also observed [49]. Along these lines, overexpression of PEPc
in Vicia narbonensis seedlings resulted in increased C and N content [56]. Increasing photosynthetic
production by bioengineering crops is not only important for increased carbon sequestration [57]
and biofuel production [58], but may also provide enhanced NUE as a result. Transgenic lines with
increased photosynthetic capacity should therefore be evaluated in terms of nitrogen use efficiency as
well, and vice-versa.
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Table 1. Effect of nitrogen starvation on the metabolome of photosynthesizers.

Species Synechocystis sp.
PC 6803

Chlamydomos
reinhardtii

Chlamydomonas
reinhardtii Arabidopsis thaliana Zea mays Zea mays

N depletion condition: length of
time and concentration shift 4 h; 5 to 0 mM NH4

+ 24 h; 7 to 0 mM NH4
+ 1, 2, 6 days;

7.48 to 0 mM NH4
+

0, 2, 10 days;
6 to 0 mM NO3

−)
Inbred lines A188, B73;
0.15 or 15 mM NO3

−
Inbred line B73 0.1 or

10 mM NO3
−

Technique CE-MS, LC-MS/MS GC-TOF-MS GC-MS GC-MS, anion HPLC GC-MS GC-MS
Reference [32] [33] [34] [35] [26] [11]
Metabolite 1–2–6d Shoot Root A188 B73 Veg. Mat.

Amino Acids (percentages, %)

Alanine 200 6 44–87–64 66–27 86–84 11–15 28–40 18 18
Arginine 48 129–97–65 14–51 97–82 26

Asparagine 55 18 64–20 163–24 11–85 32–78 1
Aspartate 21 63 21–17–14 44–27 48–32 28–52 45–163 4
Cysteine 135 58–57 72–83

Glutamate 88 18 21–72–57 68–54 82–29 27–50 57–62 12
Glutamine 43 10 58–50–56 25–96 3

Glycine 262 35 76–161–86 56–22 178–706 8–38 21–131 3
Histidine 136 55
Isoleucine 576 250 38–42–29 116–67 103–90 48–40 61–49 14
Leucine 688 59 25–21–14 139–70 97–78 56–38 84–34 40
Lysine 124 42 28–62–58 84–37 106–72 77–84 198–91 26 54

Methionine 241 18 146–201–215 32
Phenylalanine 433 44 16–25–11 129–66 73–44 49–42 64–40 19

Proline 198 34 71–49–95 72–23 73–38 40–57 70–65 8
Serine 472 14 21–61–42 134–75 86–57 11–31 25–86 3

Threonine 349 246 38–187–95 81–46 97–46 25–28 47–74 6 26
Tryptophan 83 495 8–24–6 88–53 74–52 62

Tyrosine 1284 111 24–51–26 171–92 103–90 40–54 71–61 21 40
Valine 235 33 40–57–50 91–66 103–90 44–47 58–61 10

Organic Acids (percentages, %)

Aconitate 115 55–30 102–65 45 45
Benzoate 73 43–114–102 92–85 64–90
Citrate 59 56 133–1478–1134 59–25 156–45 886

Erythonate 134–242 113–120 50 48
Fumarate 1015 16 33–125–95 442–397 94–67 41–78 51–68 52 135
Glycerate 141 58 40–48–46 172–67 1209–5301

2-oxoglutarate 360 46 95–45–114 105–86 152–97 80–95 108–45
Lactate 39–63–54 109–130 22–52
Malate 876 26 34–87–82 113–97 993–461 34–20 23–23 61
Maleate 28–56–148 157–182 84–85 900

Oxaloacetate 94 1–36–1 160–83 125–192
Pyruvate 334 25 21–27–100 81–75 71–106 75–50 81–34 11
Shikimate 168 40 103–77 160–53 170–216 131–312 26
Succinate 398 81 97–216–167 178–346 114–67
Threonate 39 96–131–111 99–132 267–238



Plants 2016, 5, 39 5 of 16

Table 1. Cont.

Species Synechocystis sp.
PC 6803

Chlamydomos
reinhardtii

Chlamydomonas
reinhardtii Arabidopsis thaliana Zea mays Zea mays

Alcohols and Sugars (percentages, %)

Glycerol 77 1.6–0.9–0.5 100–93 64–70
Inositol 13 30–52–84 97–74 177–258 67
Fructose 312–202–97 462–218 687–277 44–34 29–31 11

Galactose 17–7–7 343–487 208–225 30 15
Glucose 27–10–3 405–545 413–515 30–21 29–24 6
Maltose 62 95–93 79–86 121

Mannose 223–184 132–362 16 24
Raffinose 183 973–7981 198–313 275–268 270–159 333
Sucrose 89–89 99–110 71
Xylose 67–195–231 119–149 271–357

Phosphorylated Compounds (percentages, %)

6-phosphogluconic acid 136 6 120–177–171
Fructose-6P: Fru-6P 148 64 20–44–73 65–55 76–65 72–296 137–526 21

Fructose-1,6-bisP 82 67
Glucose-1-P 119 61
Glucose-6-P 148 89 53–99–44 70–57 88–84 77–356 131–559 14
Glycerate-3P 139 161 52–230–83 11 150

myo-inositol-P 108–83–71 148–77 66–70
Phosphoenol-pyruvate 104 19

Ribulose-5P 127 99 69–174 100–333

Nitrogenous Compounds (percentages, %)

γ-aminobutyric acid 536 167–114–43 204–138 217–96 29–25 38–39 8
Adenine 100 9 24–52–56
Citrulline 23 23 11–73 23–138

Hydroxylamine 139 114–81–72 59–8 19–34
Ornithine 21 6 127–87–59 10–72 48–94
Putrescine 9 11–13–8 12 9

Uracil 10 13–17–18
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Table 2. Effect of transgene expression on metabolite levels in transgenic plants.

Genetic Construct Conditions Technique Core Metabolomic Results (Compared to WT) References

N metabolism

Oryza sativa GS1;1 and GS1;2 overexpressed in
Oryza sativa cv. Zhonghua 11 under the control
of the CaMV 35S promoter

Metabolic analysis done on tillering stage roots
and shoots of plants growth with Low N and
Moderate N

GC-TOF-MS

Low N: GS1;1 and GS1; 2 increased sugars, organic acids,
free amino acids in shoots and decreased in roots.
Moderate N: same results for both lines in shoots as for
low N, in roots GS1;1 increased sugars, organic acids and
free amino acids GS1;2 roots had decreased metabolites.

[41]

Pisum sativum AS1 overexpressed in
Nicotiana tabacum under the control of the
CaMV 35S promoter

16 h light/8 h dark, 21 day old plants grown in
sand, fertilized with Hoagland solution with 10
mM NO3

−
HPLC

10–100 fold increased Asn.
Decreased Gln, Asp.
No change in Glu.

[46]

Hordeum vulgare AlaAT overexpressed in
Oryza sativa under the control of the
root-specific OsANT1 promoter

14 h light/10 h dark, 45 day old plants grown
hydroponically in 0.5, 2.0,
and 5.0 mM NH4

+
HPLC Increased Gln, Glu, Asn, Asp, and Arg in roots and shoots. [12]

N recycling/protein degradation/C:N balance

Mus musculus ODC overexpressed in
Populus nigra under the control of a 2X
CaMV 35S promoter

Cell cultures grown in MS media HPLC
Increased Ala, Thr, Val, Ile, and GABA.
Decreased Gln, Glu, Orn, Arg, His, Ser, Gly, Cys, Phe, Trp,
Asp, Lys, Leu, Met.

[53]

Arabidopsis FUM2 overexpressed in Arabidopsis
under the control of a 2X CaMV 35S promoter

8 h light/16 h dark, plants grown for
42 days with 1.25 mg (low) or 31.5 mg (high)
inorganic nitrogen

GC-MS Increased starch, FUM2 knockouts reduced fumarate
levels, varied amino acid levels according to light cycle. [54]

Regulatory transgenes

Zea mays Dof1 expressed in Arabidopsis under
the control of the CaMV 35S promoter;
also expressed in potato

Constant light, plants grown on modified MS
medium; low N = 1 mM NH4NO3/1 mM KNO3;
high N = 10 mM NH4NO3/10 mM KNO3

Hitachi amino acid analyzer;
enzymatic assay

Increased total [amino acid], NH4
+ Decreased

glucose, malate
No change in sucrose, citrate, or 2-OG
Similar to transgenic potato

[48]

Zea mays Dof1 expressed in Oryza sativa under
the control of the CaMV 35S promoter

14 h day/10 h night, hydroponic growth at
360 (high) or 90 µM (low) NH4

+ CE-MS/MS Increased concentration of some amino acids under high
and low [N] [49]

N-responsive transgenes

Oryza sativa ENOD93 expressed in Oryza sativa
under the control of the 35S C4PDK promoter

16 h day/8 h night for 4 weeks then
10 h day/14 h night for 1 week for flowering,
soil growth at 1 mM (low), 5 mM (median) or
10 mM (high) nitrate

Biochemical assays

Increased total amino acids in OsENOD93-ox line roots in
all N levels but more so under N stress. No increase in
amino acid levels in shoots. Higher biomass in
OsENOD93-ox.

[52]

Co-expressed N metabolism and Regulatory transgenes

Arabidopsis Dof1, GS1, GS2 expressed in
tobacco under the control of the leaf specific
rbcS promoter from tomato

Growth in perlite and low N nutrient solution
for 60 and 90 days RP-HPLC and biochemical assays

Transgenic tobacco co-expressing Dof1, GS1,
GS2 had increased amino acids, glucose, sucrose and
decreased nitrate, malic acid, citric acid and showed
growth advantages

[43]
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Several studies have suggested a link between photosynthate production (the saccharide products
of carbon fixation) and NUE. Photosynthates are stored as a variety of polysaccharides including:
starch, cellulose, hemicellulose, pectin, and lignin [59]. These polysaccharides are synthesized from
nucleotide diphosphate-sugar (NDP-sugar) moieties such as UDP-α-D-glucose, which is a major
component of cellulose, synthesized from fructose-6-phosphate, itself a product of photosynthesis [59].
Under N-limiting conditions, both Arabidopsis and rice show that genes encoding UDP-glucose
4-epimerases are differentially expressed [60,61], while the addition of N results in decreased expression
of genes involved in cellulose biosynthesis [62]. Moreover, Guevara et al. recently showed that
overexpression of the rice UDP-glucose 4-epimerase OsUGE1 led to increased sucrose and decreased
cellulose production under nitrogen limiting conditions [63]. Similarly, overexpression of OsUGE1
in Arabidopsis resulted in drought, freezing, and salinity tolerance, which was attributed to elevated
raffinose content [64]. This observation is consistent with a variety of studies that have reported
similar phenotypes under N-limiting conditions (Table 1). Another study by Li et al. [65] demonstrated
that transgenic Arabidopsis plants that overexpressed Larix gmelinii UDP-glucose pyrophosphorylase
showed more rapid vegetative growth compared to wild-type plants, and had greater soluble sugar
and cellulose levels [65]. An inverse relationship between the distribution of photosynthate into cell
wall materials (such as lignins), and the nitrogen supply [66] suggests that there is an increase in
carbon skeleton demand during nitrogen assimilation. This suggests that promoting carbon skeleton
production for N assimilation through genetic manipulation may be an attractive means to enhance
NUE. This diverse list of genes and gene products associated with the C:N balance in plants and hence
biomass and yield shows the genetic complexity involved with improving NUE in plants. It is highly
likely that a stacking transgenic approach, where two or more C:N metabolism-associated genes are
coordinately over- or differently-expressed, would provide the correct metabolic balance for an NUE
phenotype [8,9]. For example, when Wang et al. [43] co-expressed Dof1, GS1 and GS2 in tobacco,
the transgenic plants had increased amino acids and sugars, decreased nitrate, malic acid and citric
acid, and they exhibited a growth advantage over wild-type tobacco under low N conditions.

A wide variety of molecular genetic studies have demonstrated a significant association between
carbohydrate metabolism and NUE. Moreover, these studies indicate that a more comprehensive
understanding of plant metabolism could provide insight into directed approaches for engineering
improved NUE. One of the major barriers to achieving this outcome is the difficulty in predicting
the identity of genes that will have a positive impact on NUE metabolism. Metabolomics offers
a promising solution for understanding the metabolic effects of genetic modification and possibly
guiding NUE crop engineering.

2.3. Metabolomics Technology

The goal of metabolomics is to understand metabolic networks on a comprehensive scale by
identifying and quantifying all of the metabolites present in biological extracts. This systems-level
objective requires elements of traditional biology, analytical chemistry, computer science, and statistics.
Although the relative weighting of these disciplines varies from study to study, most metabolomics
investigations can be framed as follows: (1) a biologically relevant phenotype is identified;
(2) metabolites are extracted from the relevant tissue(s); (3) observable metabolites are identified
and quantified using a mixture of bioinformatics and bioanalytical approaches; and (4) metabolic
phenomena associated with the biological phenotype are identified by statistical or computational
analyses. The details of how to implement this strategy in plant-based metabolomics studies have
been extensively reviewed elsewhere [67]. Herein, we will discuss the challenges and opportunities of
metabolomics in NUE-related research.

One important consideration in adapting the emerging metabolomics technology to NUE is
the significant role that analytical tools play in shaping experimental design and the impact these
tools have on the nature and volume of data that are ultimately generated. Most metabolomics
studies are conducted using nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry
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(MS), as evidenced by PubMed title/abstract searches using the key words “metabolomics” or
“metabolomics” and ”NMR” and “MS”.

The primary advantages of NMR are that its signals are directly proportional to concentration,
and that it can detect virtually any molecule that is present above its sensitivity limit. These attributes
are valuable in NUE studies because they allow one to account for all the carbon and nitrogen flowing
into and out of systems, to investigate networks with no prior information about the organism’s
metabolic architecture, and to unambiguously assign novel molecules. Moreover, NMR can detect
13C and 15N-containing molecules. Consequently, labeling studies employing these stable isotopes
allows for the measurement of carbon and nitrogen utilization in plants [68]. Figure 1 shows
a multidimensional 1H-13C NMR spectrum of Medicago sativa seedlings that illustrates a typical
complement of metabolites observed in an untargeted NMR-based assay. Detailed descriptions on the
method of collection and interpretation of these NMR data have been published elsewhere [69–71].
Additionally, in vivo NMR can be used to analyze metabolic pathway activity and metabolite
compartmentalization in living plants [72–74]
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Figure 1. Multi-dimensional 1H-13C NMR spectrum of aqueous extracts from Medicago sativa seedlings
illustrating a typical complement of metabolites observed in untargeted NMR.

The primary advantage of mass spectrometry is its high sensitivity. Whereas NMR is restricted to
analyses of the 20 to 50 most abundant compounds, MS can detect hundreds or even thousands of
molecules per sample. This is invaluable for understanding metabolic networks on a comprehensive
scale and can detect potent low-abundant compounds, such as hormones [75]. MS’s ability
to investigate metabolic activity makes it a powerful tool for linking metabolism to genes.
Recently, a variety of genes have been identified by coupling modern metabolomics methods to
quantitative trait locus mapping (mQTL) [76]. This hybrid metabolomics/genomics approach
offers a powerful mechanism for decoding the polygenic contributions to NUE phenotypes.
Moreover, MS is inherently well-adapted to measuring isotope incorporation into metabolic
intermediates. Consequently, MS is frequently used for quantitative analysis of pathway flux,
elucidating metabolic network architecture, and determining metabolic partitioning through the
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network. While MS can provide data on overall isotope incorporation of (low-abundance) metabolites,
NMR can be used to further refine this information (for the more abundant metabolites) by providing
the molecular positions of the labels. This information can be used to unambiguously assign the
pathways that were used to synthesize the compounds in questions [77–79]. The use of MS to trace
isotope labelling is illustrated in Figure 2, which shows the accumulation of 15N-labelled amino acids
in barley leaves after exposure to 15N-labelled KNO3. The rates at which 15N accumulates is dependent
on the metabolic pathways used to synthesize the compounds and are thus a direct measure of pathway
activity. This data can be used to trace the connectivity of complex metabolic networks.
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Figure 2. 15N enrichment levels of two amino acids in barley leaves provided with 15N-labelled KNO3,
as determined by gas chromatography-mass spectrometry (GC-MS). Light periods are marked in white
and dark periods in gray. Adapted with permission from [78].

2.4. Metabolic Flux Analysis

Metabolic data can be divided into two major categories: steady-state and flux. Steady-state data
reflect metabolite concentrations, whereas fluxes indicate the rates at which metabolites are used and
consumed. Nitrogen use efficiency is inherently related to flux rather than steady-state metabolism.
The combination of NMR and MS offers a powerful opportunity to understand nitrogen metabolism
from a flux perspective and to identify the most effective mechanisms for improving the nitrogen used
by plants.

Significant research has been devoted to understanding metabolic flux in biological systems
through computational analysis. Flux balance analysis (FBA) is one of the most powerful and
convenient of these approaches [80]. In contrast to traditional enzyme kinetics, FBA does not require
detailed information about enzyme properties, concentrations of intermediates, or protein levels.
Consequently, FBA provides insight into network dynamics without relying on these difficult-to-obtain
data. When coupled with FBA, metabolomics offers a powerful mechanism for constructing and
refining models of complex systems.

FBA analyses are performed by constructing a computational model of the metabolic network.
This model includes a stoichiometry matrix, which describes all of the reactants and products involved
in each reaction, and a flux vector representing all of the metabolic activity in the network. The goal
of FBA is to find an optimal set of fluxes to achieve a particular objective [81] (see Figure 3 for
an example). In the context of NUE, this may include maximizing biomass production with minimal
N usage. Flux balance problems are generally solved by introducing constraints into the system,
the most common of which is the steady-state assumption [79,80]. In addition, the system can be
further constrained by establishing boundary fluxes, or the rates at which molecules enter and leave



Plants 2016, 5, 39 10 of 16

the system. Metabolomics is particularly useful in this context because it allows one to directly
quantify boundary fluxes and to establish empirical constraints on metabolic partitioning within the
network [82].
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FBA has been used extensively to analyze nitrogen uptake in single cell systems such as E. coli [83].
However, analyses of whole plants are significantly more complex due to the significant differences
in metabolism between organs, development stage, and complex environmental interactions.
However, several groups have taken up this challenge, and FBA has now been used to elucidate
the complex metabolic networks of plants and their symbionts [84–87]. A recent FBA study took
a first step toward unraveling this complexity by incorporating two distinct types of plant cells
(mesophyll and bundle sheath) and their interactions [88]. This approach has since been used to
analyze nitrogen availability in the maize leaf [89]. Moreover, FBA has recently been performed
using a whole-plant dynamic model of barley [25]. This model incorporated detailed flux maps of
leaf, stem and seeds as well as simplified models of roots and phloem, and used further constraints
predicted by functional plant models (FPM) [90].

In summary, recent studies have shown that plant metabolism can be understood through
computational models. In general, these models have been reliant on computational predictions of
metabolic constraints. Consequently, metabolomics offers a direct mechanism for advancing these
state-of-the-art computational approaches. We anticipate that empirical measures of boundary fluxes
and metabolic architecture defined by isotope-based studies will dramatically improve the quality and
scope of these analyses.

2.5. Modeling Fluxes in NUE

Despite the recent developments in FBA of whole-plant metabolism, NUE has yet to become the
focus of such efforts. Herein, we present a theoretical framework for a whole plant model of NUE and
discuss the role that metabolomics could play in constructing this model.

Nitrogen use efficiency can be compartmentalized into nitrogen uptake efficiency (NUpE) and
nitrogen utilization efficiency (NUtE). NUpE is the plant’s ability to take up fixed N from the soil and
is both genetically and environmentally regulated. Plants can only use fixed, biologically reactive,
nitrogen in N metabolism. Fixed N is available to plants as peptides and amino acids from decomposing
organic matter and as NO3

− and NH4
+ from soil microbes and synthetic and organic fertilizers.

NUtE can be further defined as N assimilation and N remobilization. N assimilation is the plant’s ability
to reduce nitrate to ammonia and use it as a substrate in the primary N metabolism reactions catalyzed
by nitrate and nitrite reductases, glutamine synthetase and glutamate synthase. These reactions
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assimilate N into glutamine and glutamate, which are then used as N sources to produce other amino
acids via amino transferases. These N compounds are translocated to the shoots and eventually
remobilized and stored as N sinks in order to be a fixed N source for the embryo in the seed [8,91].

The N inputs, the N flow though the plant, the N loss outputs and the N sinks can be measured
as N boundary fluxes (V1 to V9 in Figure 4) using NMR techniques, and specific N metabolites can be
traced through the system using MS techniques (Figure 2). Figure 4 shows the defined N fluxes for
a field-grown cereal crop. The potential sources of N input are defined as V1, V5 and V6 (blue arrows),
the potential sources of N loss (outputs) are V2, V3, V4, V7, and V10 (red arrows) and the N sinks
are V8 and V9 (green arrows). N volatilization (V2) may be measured by means of headspace gas
chromatography to further refine the model of boundary fluxes in the system. Together, these N flux
data can provide valuable insight on the fate of N in the system, and identify flux changes when
comparing wild-type and transgenic plants.
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3. Conclusions

Recent advances in mass spectrometry and nuclear magnetic resonance spectroscopy
have revealed the potential of using metabolomics to unravel metabolic networks in plants.
Metabolomics studies on nitrogen deprivation have shown that the metabolic profiles of plants
change dramatically in response to nitrogen availability. Moreover, genetically-engineered plants with
modified NUE show elevated levels of nitrogen-containing molecules. These preliminary findings
indicate that metabolomics could offer a powerful approach for understanding plant N physiology
and assist in strategies aimed at engineering NUE in crops. New methods that integrate metabolomics
and computational approaches, such as quantitative trait locus mapping and flux balance analysis,
offer a powerful new strategy for investigating the role that individual genes play in phenotypes.
While there are still no FBA studies reported that analyze NUE on a whole plant scale, recent analyses
of other plant phenotypes by FBA have demonstrated the feasibility of this approach. By using this
integrative approach, we believe that NUE can be understood at an unprecedented level of detail.
These insights are of global importance because they may result in more effective management of
crops, better nutrient fertilization practices, and may ultimately lead to a new generation of engineered
plants that make better use of the available nitrogen.
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