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Background: Mutations in the STRC (MIM 606440) gene, inducing DFNB16, are

considered a major cause of mild–moderate autosomal recessive non-syndromic hearing

loss (ARNSHL). We conducted a systematic review and meta-analysis to determine the

global prevalence and characteristics of STRC variations, important information required

for genetic counseling.

Methods: PubMed, Google Scholar, Medline, Embase, and Web of Science were

searched for relevant articles published before January 2021.

Results: The pooled prevalence of DFNB16 in GJB2-negative patients with hearing

loss was 4.08% (95% CI: 0.0289–0.0573), and the proportion of STRC variants in the

mild–moderate hearing loss group was 14.36%. Monoallelic mutations of STRC were

4.84% (95% CI: 0.0343–0.0680) in patients with deafness (non-GJB2) and 1.36% (95%

CI: 0.0025–0.0696) in people with normal hearing. The DFNB16 prevalence in genetically

confirmed patients (non-GJB2) was 11.10% (95% CI: 0.0716–0.1682). Overall pooled

prevalence of deafness–infertility syndrome (DIS) was 36.75% (95% CI: 0.2122–0.5563)

in DFNB16. The prevalence of biallelic deletions in STRC gene mutations was 70.85%

(95% CI: 0.5824–0.8213).

Conclusion: Variants in the STRC gene significantly contribute to mild–moderate

hearing impairment. Moreover, biallelic deletions are a main feature of STRC mutations.

Copy number variations associated with infertility should be seriously considered when

investigating DFNB16.

Keywords: STRC gene, mutation, deafness, prevalence, meta-analysis

INTRODUCTION

According to the World Health Organization, one in five people worldwide lives with hearing
loss (HL)−5.5% of the population of the world (World Health Organization, 2021). Hearing
problems can have a devastating impact on the mental health of the people and the ability to
communicate, study, and even earn a living. Approximately half the cases of deafness have a genetic
etiology (Sheffield and Smith, 2019). Although variations in gap junction protein beta 2 (GJB2)
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gene are the most common factor for prelingual, recessive
deafness (50%), stereocilin (STRC) gene, known as DFNB16, is
supposed to be another major contributor to bilateral mild-to-
moderate hearing impairment (HI) (Francey et al., 2012; Yokota
et al., 2019). Moreover, STRC mutations are considered the
second most frequent cause associated with autosomal recessive
non-syndromic hearing loss (ARNSHL) (Sloan-Heggen et al.,
2016; Plevova et al., 2017; Back et al., 2019; Cada et al., 2019).

The STRC gene is located on chromosome 15q15.3 and named
after its encoded protein—stereocilin—an extracellular structural
protein expressed in the outer hair cells (OHCs) of the inner ear.
Stereocilin was detected in six sensory areas in the inner ears
of mice: the organ of Corti, the utricular maculae, the saccular
maculae, and the three cristae ampullares of the vestibule (Verpy
et al., 2001). Stereocilin was associated with OHCs in two cell-
surface specializations interconnecting with the hair bundle in
Corti contained with inner hair cells, OHCs, supporting cells,
ciliated ends of the hair cells, and the tectorial membrane. The
two specializations are the horizontal top connectors of adjacent
stereocilia, which have a zipper-like structure, and the attachment
links that anchor the tallest stereocilia into the overlying tectorial
membrane (Verpy et al., 2008, 2011). In stereocilin null (Strc _/_)
mice, both these links were absent, and progressive HL appeared
from P15 (Verpy et al., 2008, 2011).

STRC has a tandem structure, and the linkage region
includes three other genes: CATSPER2 (MIM 607249), PPIP5K1
(MIM 610979), and CKMT1B (MIM 123290) (Zhang et al.,
2007). Causative alterations in the STRC gene include copy
number variations (CNVs), single nucleotide variants (SNVs),
or small insertions/deletions (indels). Recently, CNVs have
been recognized as having an important role in STRC
variations (Yokota et al., 2019). The STRC deletions are
frequently accompanied by the deletion of the CATSPER2 gene
accounting for sperm motility. This genotype, characterized
by deletions including both CATSPER2 and STRC, is known
as deafness–infertility syndrome (DIS) in both males and
females (Hildebrand et al., 2009). STRC is part of a tandem
duplication, and the second copy is a pseudogene (pSTRC). The
highly homologous (>99%) distal pseudogene makes molecular
analysis to detect STRC mutations by next-generation (NGS)
and exome sequencing (ES) challenging (Vona et al., 2015;
Shi et al., 2019). Reliable screening is especially significant
and affordable in recent years due to the development of
analytical approaches, such as MPLA, long-range/nested PCR,
and droplet digital PCR (Back et al., 2019; Shi et al.,
2019).

Many studies have routinely described genetic testing of
patients with DFNB16. Compared with other deafness-associated
gene variants, STRC has its own unique qualities and may lead
to non-syndromic or syndromic deafness. However, to date,
there is no publication systematically describing the prevalence
and features of DFNB. Against this background, this meta-
analysis provides a global and current pooled prevalence of STRC
mutations based on available gene detection. Results generated
from this paper will widen available options and contribute to
genetic counseling for medical workers and individuals affected
by HI.

METHODS

This search was performed following the guidelines of Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) (Moher et al., 2009) (Supplementary Table 1).

Search Strategy
The literature search was conducted by electronic databases
(PubMed, Google Scholar, Medline, Embase, and Web of
Science) for the English language articles published prior to
January 2021.We entered search terms (“STRC” OR “stereocilin”
OR “DFNB16”) into each database. Two authors (SH and
DZ) separately undertook literature searches and checked the
reference lists of all selected articles. When disagreements
occurred after the screening, further discussion took place to
reach a consensus.

Eligibility Criteria
We included researches that met the following criteria: (1)
original research, (2) study population with HI and sample sizes
with no<10 probands, (3) STRC gene detection, and (4) available
full-text papers written in English. We excluded (1) duplicate
publications, reviews, studies with overlapping data, mechanisms
and/or animals, abstract-only articles, and texts without raw data;
(2) fewer than 10 probands reported; and (3) studies published in
languages other than English.

Study Selection and Data Extraction
Two authors (SH and DZ) independently accomplished the
literature selection based on predetermined criteria. The other
researchers (YG and ZF) reviewed whether the results were
consistent. If disagreements occurred, further discussion took
place until a consensus was reached. A standard data extraction
diagram is presented in Figure 1.

After relevant publications were selected, the data were
collected by two reviewers (SH and DZ) from included papers as
follows: first author, year of publication, region, study population,
gene detection method, DFNB16, genetically confirmed cases
(non-GJB2), total HI patients (non-GJB2), DIS, carriers in
total HI patients (non-GJB2), carriers in the normal-hearing
population, and types of mutations in STRC (biallelic CNVs,
CNVs + SNVs, or small indels, biallelic SNVs, or small
indels). Discrepancies were discussed and resolved by the senior
author (GG).

Quality Assessment
The risk of bias in each observational study was calculated using
a tool developed by Hoy et al. (2012), with total scores ranging
from 0 to 10. Bias was judged to be of low risk (9–10 points),
moderate risk (6–8 points), or high risk (<6 points).

Statistical Analysis
The meta-analysis was conducted using R (version 4.0.4, The
R Foundation, Vienna, Austria). To bring the proportion data
closer to a normal distribution, the logit transformation was used
to solve the estimates <0.2 or >0.8, while the double-arcsine
method was chosen when extreme proportions (0 or 1) exist
(Lipsey and Wilson, 2000). The Shapiro–Wilk normality test was
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FIGURE 1 | Standard data extraction diagram.

applied to calculate the normal distribution of the transformed
sample data. Assessments and 95% confidence intervals (CIs)
of the prevalence of all collected articles were estimated by
the random-effects model. Forest plots were used to show
percentages of each study, the summary rate, and heterogeneity
among publications. Between-study heterogeneity was evaluated
by the I2 statistic. Meta-regression was calculated to investigate
the potential source of high heterogeneity. The sensitivity analysis
was completed by removing low-quality papers (score ≤5) and
determining whether the results were stable. Funnel plots and
Egger’s bias test were used to assess the publication bias.

RESULTS

A total of 294 publications were extracted from the databases.
After duplicates were excluded, titles and abstracts of the
remaining articles were screened, and full-text versions of 73

relevant studies were further reviewed. Finally, 37 papers were
included in the meta-analysis and were used in the subsets shown
in Figure 1. All detailed information extracted from eligible
articles is presented in Table 1, Supplementary Table 2. The
prevalence of DFNB16 in HI patients (non-GJB2) was 4.08%
(95% CI: 0.0289–0.0573), the prevalence of STRC carriers in the
HI participants (non-GJB2) was 4.84% (95% CI: 0.0343–0.0680),
and those with normal hearing accounted for 1.36% (95%
CI: 0.0025–0.0696). The prevalence of DFNB16 in genetically
confirmed cases (non-GJB2) was 11.10% (95% CI: 0.0716–
0.1682), the prevalence of DIS in DFNB16 patients was 36.75%
(95% CI: 0.2122–0.5563), and the prevalence of biallelic deletions
in DFNB16 patients was 70.85% (95% CI: 0.5824–0.8213).

Quality Assessment
The details of quality assessment scores for each article are
available in Supplementary Table 3. None of the included
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TABLE 1 | Proportions extracted for meta-analysis.

References Region Study

population

Gene

detection

method#

Frequency

of DFNB16*

Carrier-

frequency in

non-GJB2 HI

Carrier-

frequency in

people with

normal

hearing

Frequency

of DFNB16

in confirmed

cases**

Frequency

of DIS in

DFNB16

Types of mutations in STRC

CNVs CNVs+ NVs

or indels

SNVs or

indels

Sheppard et al. (2018) USA HL NGS+CNV 2.50% 2.50% 7.14%

Lebeko et al. (2016) Cameroon ARNSHL NGS+CNV 10.00%

Marková et al. (2018) Czech NSHL NGS+CNV 5.56% 4.51% 37.50% 50.00% 43.75 6.25

Plevova et al. (2017) Czech HL NGS+CNV 10.20% 35.71%

Chang and Choi (2014) Korea HL NGS 0.88% 1.56%

Safka Brozkova et al.

(2020)

Czech NSHL NGS+CNV 5.23% 2.61% 40.74% 50.00% 36.36% 13.64%

Kim et al. (2020) Korea HL NGS+CNV 36.71% 60.42% 44.83% 58.62% 34.48% 6.90%

Schrauwen et al. (2013) Europe ARNSHL NGS 8.33%

Kannan-Sundhari et al.

(2020)

Iran HL NGS 4.35%

Ito et al. (2019) Japan NSHL NGS+CNV 5.95% 2.38% 0.93%

Back et al. (2019) Germany ARNSHL NGS+CNV 10.98%

Mehta et al. (2016) USA NSHL NGS+CNV 2.41% 37.14%

Morgan et al. (2020) Italy NSHL NGS+CNV 7.53% 21.21%

García-García et al. (2020) Spain HL NGS+CNV 2.75% 0.92% 7.89%

Morgan et al. (2018) Italy NSHL NGS+CNV 1.94% 6.25%

Francey et al. (2012) USA NSHL NGS+CNV 2.58% 0.52% 52.94% 29.41% 17.65%

Gu et al. (2015) China NSHL NGS+CNV 1.59%

Yokota et al. (2019) Japan NSHL NGS+CNV 1.95% 5.28% 2.63% 7.05% 88.24% 100%

Downie et al. (2020) Australia HL NGS+CNV 4.76% 10.81%

Sommen et al. (2016) Western-

European

ARNSHL NGS+CNV 0.76% 8.40% 3.45%

Zazo Seco et al. (2017) Netherlands HL NGS+CNV 2.09% 6.90%

Vona et al. (2015) Germany NSHL NGS+CNV 6.38% 5.32%

Shearer et al. (2014) USA HL NGS+CNV 10.81% 83.78% 16.22%

Budde et al. (2020) Egypt NSHL NGS+CNV 1.75% 2.27%

Cabanillas et al. (2018) Spain HL NGS+CNV 4.00% 8.00% 9.52%

Moteki et al. (2016) Japan NSHL NGS+CNV 1.55% 5.77%

Sloan-Heggen et al.

(2016)

USA HL NGS+CNV 6.93% 20.58% 23.94% 77.46% 21.13% 1.41%

Mandelker et al. (2014) NA HL NGS+CNV 63.64% 36.36%

(Continued)
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TABLE 1 | Continued

References Region Study

population

Gene

detection

method#

Frequency

of DFNB16*

Carrier-

frequency in

non-GJB2 HI

Carrier-

frequency in

people with

normal

hearing

Frequency

of DFNB16

in confirmed

cases**

Frequency

of DIS in

DFNB16

Types of mutations in STRC

CNVs CNVs+ NVs

or indels

SNVs or

indels

Bademci et al. (2016) Multiple ARNSHL NGS+CNV 0.63% 1.11%

Baux et al. (2017) France NSHL NGS+CNV 5.70% 18.00%

Ji et al. (2014) China HL NGS+CNV 11.27%

Costales et al. (2020) Spain HL NGS 4.55% 10.00%

Sloan-Heggen et al.

(2015)

Iran HL NGS+CNV 0.33% 0.50%

Guan et al. (2018) USA NSHL NGS+CNV 8.00% 18.18%

Amr et al. (2018) NA HL NGS+CNV 35.48% 74.19% 22.58% 3.23%

Shearer et al. (2013) USA NSHL NGS+CNV 4.26% 1.06% 11.11%

Brownstein et al. (2020) Israel HL NGS 2.27% 3.77%

#NGS including: panel, targeted testing, ES, exome sequencing; CES, clinical exome sequencing; WES, whole exome sequencing; TGE, targeted genome enrichment; Sanger also included; CNV including: MLPA, QF-PCR,

long-range/nested PCR, microdroplet PCR, droplet digital PCR, array CGH, SNP microarray, CMA, chromosomal microarray analysis; QCF PCR, quantitative comparative fluorescent PCR; MPS, massively parallel sequencing.

*The frequency of STRC is achieved from GJB2-negative patients.

**Genetically confirmed cases except for GJB2-related.
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studies received low risk for items 2, 3, and 9, as the cluster
sampling method, random selection, census, or the length of the
shortest prevalence period were not provided in each survey.
Out of the remaining 7 possible points, 4 studies received 7
points, 13 studies obtained 6 points, and 20 studies received
5 points.

The Global Prevalence of DFNB16 in
GJB2-Negative Hearing Impaired Patients
The proportion of STRC mutations in GJB2-irrelevant HI
patients varied from 0.33 to 36.71% among 33 studies (Table 1),
with the highest rate observed in Korea (Kim et al., 2020).
The overall pooled prevalence was 4.08% (95% CI: 0.0289–
0.0573, I2 = 83%, p < 0.01) using a random-effects model
among 6,325 subjects (Figure 2). The I2 and p-value indicated
substantial heterogeneity.

Meta-regression was used to estimate the source of
heterogeneity. We investigated five categorical moderators:
region (Europe, Asia, America, or others), study population
(HL, NSHL, or ARNSHL), gene detection method (NGS
or NGS+CNV), degree of HI (mild–moderate or other
HI), and quality assessment grade (score ≤5 or score
>5). Significant estimates were not found for moderators
in region, study population, gene detection method, and
quality assessment (p = 0.9351, 0.8068, 0.6876, 0.8419).
The degree of HI was significantly associated with the
overall pooled prevalence (p = 0.0003). The R2 (amount
of heterogeneity accounted for) was 49.91%, meaning
that the degree of HI can explain about 49.91% of
heterogeneity in the DFNB16 prevalence among GJB2-negative
HI patients.

The prevalence of STRC mutations in GJB2-negative HI
patients was further analyzed by subgroup focusing on
world region (Supplementary Figure 1A) and the degree of
HI (Supplementary Figure 1B). For region, the highest rate
estimated was in Europe, which was 5.40% (95% CI: 0.0409–
0.0711), followed by the US at 3.94% (95% CI: 0.0222–0.0690),
other regions with 3.00% (95% CI: 0.0103–0.0841), and Asia
at 2.77% (95% CI: 0.0075–0.0965). The estimated prevalence of
mild–moderate HI was 14.36% (95%CI: 0.0365–0.4259), and that
of other HI was 3.67% (95% CI: 0.0281–0.0478).

To estimate the stability of outcomes, we conducted sensitivity
analyses by assessing the effects of removing low-quality
publications (Francey et al., 2012; Chang and Choi, 2014; Gu
et al., 2015; Vona et al., 2015; Bademci et al., 2016; Mehta et al.,
2016; Sommen et al., 2016; Baux et al., 2017; Zazo Seco et al.,
2017; Cabanillas et al., 2018; Guan et al., 2018; Marková et al.,
2018; Sheppard et al., 2018; Back et al., 2019; Budde et al., 2020;
Downie et al., 2020; Kim et al., 2020; Safka Brozkova et al., 2020).
The summary prevalence of DFNB16 in non-GJB2 HL patients
was 3.98% (95% CI: 0.0260–0.0606, I2 = 70%, p < 0.01), which
stabilized the findings in the range of that of crude analysis. The
I2 and p-value also indicated substantial heterogeneity. Results
from a funnel plot (Figure 3A) and Egger test (p = 0.0549,
Figure 3B) indicate an insignificant level of publication bias.

Prevalence of Carrier STRC Mutation in
Non-GJB2 Hearing Impaired Participants
and Individuals With Normal Hearing
Eleven studies presented monoallelic variants of the STRC
gene in non-GJB2 HI participants, with carriers varying from
0.92% in Spain to 11.27% in China (Table 1). The pooled
carrier prevalence in HI participants (non-GJB2) assessed by
the random-effects model was 4.84% (95% CI: 0.0343–0.0680,
I2 = 54%, Figure 4). Three studies showed the carrier of the
STRC mutation among normal-hearing individuals (Table 1).
The summary carrier prevalence in people with normal hearing
was 1.36% (95% CI: 0.0025–0.0696, I2 = 90%, Figure 5) using a
random-effects model.

Prevalence of DFNB16 Among Genetically
Confirmed Cases (Non-GJB2)
Twenty-eight studies described genetically confirmed patients
(Supplementary Table 2). Twenty-four were included in the
meta-analysis to estimate the prevalence of STRC mutations in
genetically diagnosed patients (non-GJB2) because the sample
sizes of those with genetic diagnoses in these publications
were no <10 cases (Table 1). The prevalence achieved using
the random-effects model was 11.10% (95% CI: 0.0716–0.1682,
I2 = 85%, p < 0.01) in 1,610 GJB2-negative genetically
confirmed cases (Figure 6). I2 and p-value indicated substantial
heterogeneity.Meta-regression was applied to evaluate the source
of heterogeneity, with five categorical moderators: region, study
population, gene detection method, degree of HI, and grade
of quality assessment. Significant values were not detected for
region, study population, gene detection method, and quality
assessment (p = 0.9596, 0.5827, 0.1221, 0.4449). The degree of
HI accounted for 28.00% of the variance between studies (p
= 0.0019, R2 = 28.00%). The subgroup by region is shown in
Supplementary Figure 2A, where the highest was in the US at
20.48% (95% CI: 0.1277–0.3118), followed by Europe at 14.54%
(95% CI: 0.0820–0.2448), Asia with 5.68% (95% CI: 0.0113–
0.2402), and other regions at 3.69% (95%CI: 0.0080–0.1535). The
estimated pooled prevalence in the mild–moderate HI group was
50.71% (95% CI: 0.2813–0.7300) and that of the other-HI group
was 9.44% (95% CI: 0.0620–0.1412) (Supplementary Figure 2B).
Sensitivity analyses were completed by assessing the effects of
deleting low-quality studies (Chang and Choi, 2014; Bademci
et al., 2016; Mehta et al., 2016; Sommen et al., 2016; Baux et al.,
2017; Zazo Seco et al., 2017; Cabanillas et al., 2018; Guan et al.,
2018; Sheppard et al., 2018; Budde et al., 2020; Downie et al.,
2020; Kim et al., 2020; Safka Brozkova et al., 2020). The summary
prevalence of DFNB16 in genetically confirmed (non-GJB2) HL
patients was 9.63% (95% CI: 0.0558–0.1614, I2 = 80%, p < 0.01)
in the sensitivity analysis and without apparent fluctuation. The
I2 and p-value showed substantial heterogeneity.

Prevalence of Deafness–Infertility
Syndrome in STRC-Associated Hearing
Impairment
Twelve studies provided information about homozygous deletion
in the CATSPER2 gene (Supplementary Table 2). Six articles,
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FIGURE 2 | The global prevalence of DFNB16 in GJB2-negative hearing impaired (HI) patients.

FIGURE 3 | (A) Funnel plot. (B) Egger test.
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FIGURE 4 | Prevalence of carrier STRC mutation in non-GJB2 HI participants.

FIGURE 5 | Prevalence of carrier STRC mutation in normal hearing people.

including ≥10 DFNB16 patients, were chosen for meta-analysis
(Table 1). The overall pooled DIS prevalence in DFNB16 was
36.75% (95% CI: 0.2122–0.5563, I2 = 80%) using a random-
effects model among 201 individuals (Figure 7).

Prevalence of Biallelic Deletions in DFNB16
The types of mutations in STRC were described in 36 studies
(Supplementary Table 2). Of these, we selected nine articles with
sample sizes not smaller than 10 DFNB16 cases for meta-analysis
(Table 1). Because data extracted from Yokota et al. (2019) had
proportions equal to 1, we analyzed the raw data with double
arcsine transformation in advance. The pooled prevalence of
biallelic deletions in DFNB16 was 70.85% (95% CI: 0.5824–
0.8213, I2 = 74%) with a random-effects model (Figure 8).

DISCUSSION

The classical two-step strategy for deafness genetic testing
consists of GJB2/6 locus analysis and gene panel based on NGS
technologies. Althoughmost panels have the STRC gene to detect
SNVs or small indels, it is challenging for the NGS dataset to
accurately detect CNVs in STRC, and even more challenging to

detect CATSPER2 (Yokota et al., 2019). Considering the high
prevalence of DFNB16 in genetically confirmed cases (11.10%),
especially in the mild–moderate HI subgroup (50.71%), and
biallelic CNVs in DFNB16 (70.85%), we consider that CNV
detection of STRC should be accompanied by panel testing in
case of misdiagnosis. Furthermore, males with DFNB16 should
be advised about CATSPER2 gene sequencing because the DIS
prevalence in DFNB16 was 36.75%. This is essential information
that should be considered during genetic counseling.

Different multistep strategies have been implemented for
genetic exploration of HL. Valuable data were generated and
screened in our study, and information should be extracted
according to the following three aspects to make outcomes more
reliable: First, as far as possible, consanguineous individuals
should be merged into families. For instance, Lebeko et al.
(2016) included 26 individuals from 10 GJB2-negative families,
and the DFNB16 proportion was based on 10 families rather
than patients. Although Mehta et al. (Mehta et al., 2016) did
not describe consanguinity precisely, we did not omit the study
from the analysis because it offered a large sample with the
number of families marginally less than individuals. Second,
apart from deletions and gene-pseudogene conversions, we also
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FIGURE 6 | Prevalence of DFNB16 among genetically confirmed cases (non-GJB2).

FIGURE 7 | Prevalence of deafness–infertility syndrome (DIS) in DFNB16.

identified heterozygous duplications as monoallelic mutations,
although there was no evidence of whether the duplications
were pathogenic or had any effect on phenotypes (Yokota
et al., 2019). At present, no patient has been diagnosed with
biallelic duplications. Variations in pseudogenes that mutated
into an inactive form and SNVs classified as non-pathogenic or
benign were excluded for pooling prevalence. Third, when we
estimated the prevalence of DFNB16 in genetically confirmed
cases (non-GJB2), DIS in DFNB16, and biallelic deletions in
STRC-associated HI patients, we removed studies with probands
<10, which accords with the sample size exclusion criteria
mentioned. From databases and references, only Cada et al.

(2019) and Markova et al. (2020) showed more than 10 DFNB16
sample sizes for clinical features of DFNB16. However, we
rejected these studies because it was unclear whether the data
presented were for all the original patients or only the cases
selected after qualified audiological examination was completed.
There were no other eligible articles to add.

When separating by HI degree, the prevalence of DFNB16
in non-GJB2 patients was significantly higher in the mild–
moderate group (14.36%) than the other-HI group (3.67%)
whose degree of HI was unclear or mixed. In the same way,
the prevalence of DFNB16 in genetically confirmed cases (non-
GJB2) was significantly higher in the mild–moderate group
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FIGURE 8 | Prevalence of biallelic deletions in DFNB16.

(50.71%) compared with the other-HI group (9.40%). Our
results emphasized that STRC is a primary contributor to mild–
moderate HI. This conclusion has also been documented in
previous research (Francey et al., 2012; Yokota et al., 2019; Kim
et al., 2020).

Our data show that diallelic CNVs (mainly deletions) are
an extreme factor in STRC gene mutations and are probably
accompanied by homozygous deletions in CATSPER2 gene
(36.75%) simultaneously. Given that STRC CNVs might be
ignored in studies using NGS HL panels, screening techniques
that contain CNV detection of STRC and CATSPER2 are
recommended for patients before NGS analyses, especially in
patients with bilateral mild-to-moderate HI (Plevova et al.,
2017). Males with DIS will be deaf and infertile, and
this is crucial information that should be realized during
genetic counseling (Yokota et al., 2019). Females who inherit
homozygous STRC-CATSPER2 deletions will only be deaf
(Hildebrand et al., 2009), but CATSPER2CNVs in women should
also be taken seriously, not only to identify the etiology in
probands but also to predict and prevent the disability in the
next generation.

There are some limitations to this meta-analysis. First, studies
of the prevalence of STRC-related patients were available from
only 16 countries, and data were not equally distributed. There
were insufficient publications to provide adequate information
for some continents. For example, in Africa, data were derived
exclusively from Cameroon and Egypt. There were only five
studies from developing countries, likely due to limited medical
recording systems and medical care linked to possible under-
recognition and late diagnosis of this disease. Second, the study
designs and population covered in the included studies varied
from hospital-based studies to national research. Investigation
of DFNB16 in different populations and settings is urgently
needed. Moreover, sample sizes of research studies need to

be expanded, and more funding will be required for large-
scale studies. Third, there is no uniform detection method for
STRC variations. Information about STRC CNVs, monoallelic
mutation, or CATSPERS2 deletions was ignored in some studies,
affecting our confidence in prevalence assessment. The screening
of CNVs could be impacted by different CNV detection methods,
such as NGS or SNP array, and the proportion of STRC
mutations may be found to be higher if effective strategies are
applied (Yokota et al., 2019).

In conclusion, we undertook the first meta-analysis to
demonstrate that DFNB16 plays a crucial role in mild-to-
moderate ARNSHL. The findings also emphasize the significance
of detecting copy number variations of the STRC gene.
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