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Abstract

Background: Glioblastoma (GBM) has one of the worst 5-year survival rates of all
cancers. While genomic studies of the disease have been performed, alterations in
the non-coding regulatory regions of GBM have largely remained unexplored. We
apply whole-genome sequencing (WGS) to identify non-coding mutations, with
regulatory potential in GBM, under the hypothesis that regions of evolutionary
constraint are likely to be functional, and somatic mutations are likely more
damaging than in unconstrained regions.

Results: We validate our GBM cohort, finding similar copy number aberrations
and mutated genes based on coding mutations as previous studies. Performing
analysis on non-coding constraint mutations and their position relative to nearby
genes, we find a significant enrichment of non-coding constraint mutations in
the neighborhood of 78 genes that have previously been implicated in GBM.
Among them, SEMA3C and DYNC1I1 show the highest frequencies of alterations,
with multiple mutations overlapping transcription factor binding sites. We find
that a non-coding constraint mutation in the SEMA3C promoter reduces the
DNA binding capacity of the region. We also identify 1776 other genes enriched
for non-coding constraint mutations with likely regulatory potential, providing
additional candidate GBM genes. The mutations in the top four genes, DLX5,
DLX6, FOXA1, and ISL1, are distributed over promoters, UTRs, and multiple
transcription factor binding sites.

Conclusions: These results suggest that non-coding constraint mutations could
play an essential role in GBM, underscoring the need to connect non-coding
genomic variation to biological function and disease pathology.
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Background
Glioblastoma (GBM) is an extremely aggressive brain tumor, characterized by high inter-

and intra-patient heterogeneity [1, 2]. Despite maximal safe resection, followed by radiother-

apy and chemotherapy with temozolomide (TMZ), the average survival is only 15months

[3]. Two forms of GBM are defined based on genetic mutations observed in the isocitrate

dehydrogenase (IDH1 and IDH2) genes [4]. Primary GBM comprises 90% of the cases and

is isocitrate dehydrogenase IDH-wild-type, while secondary GBM develops from lower

grade glioma and carry mutations in IDH. Although these two types of GBM are histologi-

cally indistinguishable, they differ in genetic and clinical features [5]. Common genetic alter-

ations in GBM include loss of the chromosome arm 10q, alterations in TP53 and RB,

amplifications of EGFR and PDGFR, and aberrations in RTK/Ras/PI3K signaling pathways,

all of which are major known drivers of GBM pathology. Other frequent mutations include

alterations in NF1, PTEN, and MDM2 [6, 7]. GBMs are continually evolving and, within a

single patient, could display multiple subtypes, gene profiles, transcriptome patterns, and

methylation phenotypes, all features that could favor sub-clonal selection [8]. Based on ex-

tensive molecular classification of GBM by “The Cancer Genome Atlas” (TCGA), distinct

molecular subtypes for IDH-wild-type GBMs were identified [7, 8].

Whole-genome sequencing (WGS) of GBM tumors has highlighted the importance of

TERT promoter mutations in the development of the disease [9] and has been instrumental

in improved understanding of clonal and sub-clonal evolution for GBM recurrences [10].

Because the absolute majority of mutations in cancer reside in the non-coding part of the

genome [11], WGS also paves the way for further identification of mutations in regulatory

elements such as promoters and enhancers. Evolutionary constraint across species is one of

the chief indications of functional potential and has been studied across mammals [12] and

vertebrates [13]. In addition, multiple other resources exist to assign function, including

non-coding RNAs [14], enhancer predictions [15], ENCODE data of transcription factor

binding sites, histone methylation, and DNA methylation [16]. Many of these changes accu-

mulate in the genome all along the oncogenic process and are likely genetic or epigenetic

adaptations that are prone to be conserved for a functional outcome [11].

We have performed WGS of 38 matched tumor tissue and corresponding blood sam-

ples from GBM patients, to identify novel somatic variants in regulatory regions in and

around GBM genes. The catalog of exome mutations across our samples largely mirrors

what has previously been described, thus serving to validate the cohort. In addition, we re-

port here a range of non-coding constraint mutations (NCCM) that may have functional

impact on the disease. Our data provides evidence of enrichment of NCCMs for GBM-

associated genes, including SEMA3C and DYNC1I1, as well as in more than 1776 other

genes, many of which have not previously been linked to GBM. We therefore surmise that

a better understanding of the non-coding genome of GBM tumors will help in the eluci-

dation of functional genetic and epigenetic alterations and consequently may unlock

therapeutic opportunities for personalized treatment strategies.

Results
Patient cohort and whole-genome sequencing of matched tumor and normal pairs

The cohort designated SweGBM-1 comprised 39 IDH1wt GBM patients: 35 patients

who underwent their first surgery (treatment naïve) and four patients whose tumor had
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recurred. Molecular subtypes for 37 of the 39 tumors included 15 classical, 15 mesen-

chymal, and 7 proneural types. For two of the samples, the type could not be character-

ized unambiguously (Fig. 1a and Table 1). To discover somatic alterations in the

SweGBM-1 cohort, matched tumor/normal pairs (n = 39) were sequenced using

Illumina whole-genome sequencing. Alignment of the sequencing reads to the

Fig. 1 Oncoplot of the SweGBM-1 tumor cohort, and comparison of mutations in SMG/FMGs between
SweGBM-1 and TCGA. a Per sample metadata for age, sex, and molecular type are given in the top three
tracks. For the frequently mutated genes (FMGs), mutation incidence is shown as a percentage of the total
cohort. Each colored brick shows the somatic alterations seen per sample in the gene (see the inset for the
mutation type color code). Genes in magenta represent the significantly mutated genes (SMGs) as
discerned by MuTSigCV. The right bar graph shows the rate of mutations per gene, split by mutation type.
b For the three SMGs, non-silent mutations are observed in the same protein domains as in the
TCGA-GBM dataset
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Table 1 Summary of SweGBM-1 (n = 39) cohort with somatic point and indel mutations statistics

HGCC-ID Glioma
Grade*

Age Sex Survival days
(diagnosis to
death)

Subtype
classification
of the cell line

Tumor purity
(aberrant cell
fraction)

Depth of
coverage

MuTect2-
Strelka
concordant
SPM

MuTect2-
Strelka
concordant
SIM

3004 IV 70 M 134 CL 89 72 7788 330

3009 IV 60 M 174 CL 72 75 9037 359

3013 IV 78 F 122 PN 83 78 8477 308

3039 IV 38 M 994 CL 98 77 7167 266

3046 IV 73 M 186 CL 71 74 8587 336

3048 IV 77 M 279 CL 99 72 9266 431

3053 IV 64 M 277 MS 64 72 4201 157

3065 IV 77 M 127 MS 84 86 14,666 450

3071 IV 65 M 309 MS 82 70 9461 386

3078 IV 51 M 716 MS 68 79 3729 170

3082 IV 70 F 314 PN 95 89 10,122 385

3086 IV 72 M 444 CL 86 72 5850 373

3100 IV 73 M 284 CL 95 68 5028 74

3102 IV 64 F 543 MS 96 75 7456 285

3104 IV 59 M 585 CL 54 73 9661 347

3123 IV 64 M 1613 CL 94 79 12,224 364

3137 IV 74 M 1088 MS 46 78 5819 227

3151† IV 61 M 817 MS 73 67 230,968 1562

3164 IV 68 M 54 PN 91 81 8661 439

3172 IV 50 M 1352 CL 78 78 4312 164

3173 IV 73 F 229 MS 51 64 5345 211

3177 IV 74 F 179 n/a 99 78 10,585 522

3179† IV 63 M 474 CL 64 69 4696 325

3187 IV 70 M 193 PN 62 73 4481 194

3189 IV 83 M 218 CL 98 75 7710 444

3198 IV 60 M 729 PN 75 78 7968 308

3202 IV 66 M 137 MS 84 67 5361 324

3206 IV 61 M 767 PN 71 83 4025 246

3211 IV 72 F 206 CL 61 75 5151 265

3220 IV 73 F 492 MS 70 79 4447 268

3233† IV 53 M 809 MS 100 68 1590 189

3235 IV 56 M 141 MS 94 71 4570 203

3242 IV 50 M 449 MS 91 85 4336 246

3243† IV 43 M 1070 PN 41 81 828 296

3253 IV 69 M 92 CL 79 78 8079 358

3266 IV 54 M 571 n/a 85 76 4767 259

3274 IV 74 M 206 MS 68 69 6447 227

3279 IV 56 M 333 MS 41 78 6320 64

3291 IV 60 F 1527 CL 89 79 7782 327

*All of the samples in the SweGBM-1 cohort are IDHwt

†Recurrent tumors
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reference assembly hg19 [17] yielded depths of coverage of median 75× (range 64–89)

for the tumors and 38× (range 30–66) for the matched normal.

Somatic copy number alterations agree with the TCGA cohort

Using the algorithm ascatNgs [18] to identify somatic copy number alterations (SCNA)

present in the genome of the tumor sample relative to the matched normal, we ana-

lyzed the highly rearranged GBM landscape and found, on average, that 600 Mbp was

amplified and 770 Mbp deleted per sample. The most widespread amplifications were

seen in chromosome 7, covering the EGFR locus, in 99% of the samples. In chromo-

some 10, comprising the PTEN locus, deletions were observed in > 90% of all samples.

Overall, the SCNA patterns are highly similar to what was seen in the TCGA cohort

(Additional file 1: Figure S1 a, b [19, 20];).

Variant calling and functional annotation

With the refined alignment BAM files, somatic point mutations (SPM) and somatic indel

mutations (SIM) were called using MuTect2 [21] and Strelka [22]. To ensure that we had

a high-quality dataset with few false-positive calls, only variants concordant between the

two tools were used for the downstream analyses. A total of 256,000 SPMs and 11,127

SIMs were obtained across 38 samples (sample 3151 was hyper-mutated with 232,530 var-

iants and hence was excluded from the above summary). Oncotator [23] was subsequently

used for translational annotation of the somatic variants into coding and non-coding vari-

ant classes. Parsing the annotations for all the samples showed that > 98% of the variants

were distributed across the non-coding part of the genome (Additional file 1: Figure S2a).

Variant allele fraction (VAF, the fraction of reads overlapping a genomic coordinate that

supports the alternate allele), however, showed no skew in the distribution for the coding

and non-coding variant class categories (Additional file 1: Figure S2b).

Protein-modifying alterations recapitulate annotations in TCGA GBM genes

Among the coding variants, MuTSigCV [24] was used to delineate significantly mutated

genes (SMGs, genes that harbor more protein-modifying variants than expected by

chance and are more likely to play an active role in tumorigenesis). The algorithm

identified three genes, TP53, EGFR, and PTEN as SMGs. Applying a frequency-based ap-

proach, we identify nine more frequently mutated genes (FMGs), with non-silent variants

that were found in ≥ 4 (10%) of all samples (Fig. 1a). All 12 of the FMGs/SMGs overlap

with the top 20 genes seen to be mutated in the TCGA GBM dataset (Additional file 2:

Table S1 [25];). In addition, 21% of mutations in the 12 proteins, encoded by these genes,

are concordant with positions previously reported to have mutations in GBM (Fig. 1b,

Additional file 3: Table S2). Also, 39% of the altered positions seen in these genes, includ-

ing TP53, EGFR, and PTEN, have not been previously seen in the TCGA GBM dataset,

but have been observed in other cancers [26, 27] and/or are included in the Memorial

Sloan Kettering (MSK) cancer hotspot resource [28] (Additional file 3: Table S2).

TERT promoter mutations

Frequent alterations in the promoter of the telomerase reverse transcriptase (TERT)

gene have been described across several cancers [29, 30] including glioma [9, 31]. In
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the SweGBM-1 dataset, relative to the TERT gene start codon, > 75% of samples

are observed to have mutually exclusive mutations at − 124 bp, hg19 chr5:1,295,228

C > T (24/38 samples) and at − 146 bp (hg 19 chr5, 1,295,250 C > T (4/38 samples)

(Additional file 1: Figure S3). These two mutational hotspots are also seen across a

multitude of cancers [32]. In our study cohort, > 75% tumors have these mutations,

which is close to the 80% observed by Heidenreich et al. [31], but less than what

was seen by Korber et al. [9], wherein they note that all of their primary GBM tu-

mors have one or the other hotspot changes. Heidenreich and colleagues [31] have

also shown that for primary GBMs, there is an inverse correlation between muta-

tions in the therapeutic/diagnostic markers of isocitrate dehydrogenase 1 (IDH1)

and alterations in the above promoter coordinates of TERT. Since all of our tumor

samples are IDH1wt, observation of the above TERT promoter mutations in 76% of

the patients is consistent with previous results.

Enrichment of non-coding constraint mutations in the neighborhood of key GBM genes

The majority of somatic mutations across tumor samples are found in the non-coding

regions of the genome, consistent with the fact that > 98% of the genome is non-

coding. Most of these alterations are likely neutral passenger events and are not ex-

pected to impact the fitness of cancer cells. Nonetheless, a fraction of these non-coding

changes are associated with regulatory elements of specific genes, such as promoters,

UTRs, splice signals, lncRNAs and transcription factor binding sites, enhancers, and

DNA methylation regions that can be expected to have roles in tumorigenesis [33].

We, therefore, decided to investigate alterations in the regulatory sequences in the

vicinity of a set of genes that have roles in GBM by surveying for mutations occurring

in evolutionarily constraint sequences. Accordingly, we first selected 78 key genes,

known to have frequent protein-coding changes in GBM by combining the SweGBM-1

SMG/FMG and TCGA-GBM SMG gene sets (Additional file 4: Table S3).

Roughly 80% of genetic variants that influence gene regulation occur in cis-acting

eQTLs that reside within 1 Mbp from their target genes [34–36]. Here, to be conserva-

tive, we applied a more stringent threshold and chose to examine somatic changes in

intergenic regions (± 100 kbp) of the above key genes together with mutations in UTRs,

introns, and non-coding RNAs. We limited this search with the 33-vertebrate con-

straint [13], to target variants with potential functional impact. The data thus obtained

were denominated as non-coding constraint mutations (NCCMs). We used the tool

GERP++ [13] for the detection of NCCM in our data set (Fig. 2a). Variants with a

GERP RS value ≥ 2 were deemed to lie in constrained regions [13], and in our cohort,

~ 15% of variants (both coding and non-coding) satisfied this criterion. Figure 2b shows

the distribution of variants in conserved sites, by category, for coding and non-coding

regions.

We then evaluated the rate of NCCMs, normalized to the length of the queried gen-

omic region for each of the key genes versus all other protein-coding genes (OPCG).

An enrichment of NCCMs was observed in the neighborhoods of the key genes as

compared to the frequency of NCCMs seen in the OPCGs (Fig. 3a, t test, P value <

0.0001). We also confirmed that the rates of non-coding constraint sites (positions that

have the potential to become mutated) were uniform across the categories of key genes
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and OPCGs (Additional file 1: Figure S4, t test, P value = 0.09). This ensures that the

enrichment we discerned is not a function of having a higher frequency of constraint

sites in the flanking regions of our key genes. Of the 78 key genes, a total of 26 genes

had > 1.0 NCCM per 100 kbp (Fig. 3b). Eight genes had constrained mutational fre-

quencies that were > 2.0/100 kbp (Fig. 3c), and the four genes with the most NCMMs

per 100-kbp sequence were SEMA3C, DYNC1I1, LRFN5, and CNTNAP2.

Comprehensive annotation of the NCCMs, encompassing either reported or vali-

dated regulatory elements, or both, was carried out with data from the ENCODE

Analysis Hub [37] and the UCSC Genome Browser [16] (Additional file 5: Table S4).

A data-driven estimate of regulatory impact per site was achieved by intersecting mul-

tiple independently curated annotation tracks (H3K4Me, H3K27Ac, DNase Clusters,

Transcription Factor ChIP-seq). Given the independence between tracks, positions

that re-occur in more than one track carry increased likelihood of regulatory function,

giving a comprehensive overview of the regulatory DNA of the identified variants. For

the key genes with ≥ 2 NCCMs per 100-kbp sequence, we observed that 85% of the

NCCMs had alterations either in putative transcription factor binding sites (TFBS)

(curated as well as Txn Factor ChIP validated annotations), ORegAnno elements (cu-

rated regulatory annotations), and/or other functional annotations such as DNase I

hypersensitivity and/or DNA methylation in brain tissue.

Fig. 2 GERP score distribution for the SweGBM-1 cohort. a Scores range from − 12 to + 7; approximately
15% of all variants, with GERP RS≥ 2 are deemed to be “constrained” (marked in red). b Distribution of
variants in constrained sites by category for coding and non-coding mutations (see the inset for the
mutation type color code)
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For semaphorin 3C, SEMA3C, a gene overexpressed in glioma and employed by gli-

oma stem cells to promote tumorigenicity [38], we observe 14 NCCMs (in 11 patients;

one or more NCCM/patient) with an equal distribution of intergenic and intronic

NCCMs (7 each) (Fig. 4a, Additional file 6: Table S5). In addition, four of these

NCCMs, number 9, 10, 13, and 14, were present in regions predicted to bind transcrip-

tion factors (TF) and are thus potentially of high biological relevance. Since TFs

recognize and bind to specific genomic DNA, we decided to investigate if any of our

above regulatory mutations were likely to perturb the binding affinity using the tool

“TRanscription Factor Affinity Prediction” (sTRAP module) for detecting differences in

binding between two sequences [39]. NCCM9 lay in the promoter region of the

SEMA3C gene and overlapped with a FOXA1 binding site. The sTRAP analysis re-

vealed that the region surrounding NCCM9 is predicted to be rich in TF binding sites

and that there are differences in the binding affinity between the wild-type and the mu-

tated sequence for several TFs (e.g., ZNF354C, FOXA2, EN1, RUNX1), and with the

FOXA1 factor displaying a total lack of predicted binding in the mutated sequence

Fig. 3 Comparison of rates of NCCMs associated with key GBM genes versus all other protein-coding
genes. a Boxplot depicting the amount of non-coding constraint mutations per kbp for key GBM genes
versus all OPCGs shows a significantly higher rate of alteration (t test, P value < 0.0001). Median, the middle
data point is represented as a gray line in the middle of the boxplot and the upper whiskers represent the
maximum value within 1.5 * interquartile range of the upper quartile. b Rates of non-coding constraint
mutation for key GBM genes compared to all other protein-coding genes show the fraction of genes
occurring in different rates of alteration. c A total of 26 key GBM genes have ≥ 1 NCCM per 100 kbp. See
the insert for the type of mutation
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Fig. 4 UCSC genome browser view of SEMA3C and DYNC1I1, key GBM genes with the highest rates of non-
coding constraint mutations. For each gene, the NCCM track shows the mutations, color-coded by VAF scores
(green VAF 1–10%; fuchsia VAF 11–45%). a For SEMA3C, the 14 NCCMs seen both in introns and in the flanking
intergenic regions lie in regions of the genome that are well conserved across mammals and 13 of 14 are
associated with at least one additional regulatory annotation. b The sequence logo (MA0148.1) of the FOXA1
TFBS shows that the SEMA3C NCCM9 mutation affects a highly conserved nucleotide that could abate the
binding in the mutated site compared to the wild-type. c The affinity profiles, for the same mutated sequence,
shows a decreased affinity for the FOXA1 transcription factor, in the mutated compared with the wild-type
sequence. d Electrophoretic mobility shift assay of DNA protein binding for SEMA3C wt and SEMA3C NCCM9.
Purified nuclear protein from GBM cell line U3065MG was tested for DNA binding to either the predicted
SEMA3C wt region dsDNA (lanes 2–3) or the corresponding SEMA3C NCCM9 region dsDNA (lanes 5–6).
Unlabeled dsDNA for each region was used as competitor. The total lack of shift in lanes 5–6 confirms abolition
of DNA binding capacity as a consequence of the mutation. e In DYNC1I1, the majority of the 20 NCCMs are
seen in the intronic regions of the gene and in regions with mammalian conservation. In addition, regulatory
annotations associated with promoters and conserved TFBS are also seen
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(Fig. 4b and c, Additional file 7: Table S6). For comparison, we performed sTRAP ana-

lysis for both the wild-type and mutated sequence for position 6 in the FOXA1 binding

matrix. The position is not conserved in the matrix and did not display any differences

in the binding affinities. DNA-protein binding activity for NCCM9 was further con-

firmed by an electrophoretic mobility shift assay (EMSA) (Supplementary Table 5,

Fig. 4d). Biotin-labeled DNA probes containing the predicted DNA binding site, either

for the wild-type (wt) or for the mutant sequence (NCCM9), were used, with unlabeled

DNA probe as control to determine binding specificity. No binding was observed for

the mutant sequence, indicating that NCCM9 leads to loss of DNA binding in this

region. NCCM9 also had a VAF of 27%, indicating that it likely was an early event

in the evolution of the tumor. Nine other NCCMs in SEMA3C also have at least

one more functional annotation together with evolutionary constraint (Additional

file 6: Table S5).

The DYNC1I1 (dynein, cytoplasmic 1, intermediate chain 1) gene is known to be

downregulated in glioma, and its low expression is correlated with poorer patient sur-

vival [40]. We found 20 NCCMs for DYNC1I1 (17 intronic and three intergenic, across

16 patients, Fig. 4e, Additional file 8: Table S7). The activating epigenetic marker

H3K27me3 (tri-methylation on lysine 4 of histone) is often found in promoter regions

and is closely associated with transcriptionally active genes. Nine of the DYNC1I1 vari-

ants have annotations for an H3K4me3 mark, and three of the intronic NCCMs, num-

ber 4, 10, and 15, intersected DNase I hypersensitive sites (DHSs), indicative of regions

of accessible chromatin. Four NCCMs were found to lie in the transcription factor

binding site (TFBS) of the HAND1-E47 heterodimer (Additional file 5: Table S4), and

the 3′-UTR motif of this co-regulated gene cluster has been reported to bind to highly

conserved DNA regions in lung adenocarcinomas [41]. Most of the NCCMs’ positions

overlap with brain methylation signals (as discerned from the UCSF brain methylation

track [42]; Additional file 8: Table S7). DYNC1I1 NCCM15 is situated in a regulatory

region that has a possible enhancer role. The sTRAP analysis for the above three

NCCMs indicated significant differences between the wild-type and the mutated se-

quences in their binding affinity to several TFs including multiple members of the

GATA family (Additional file 7: Table S6).

LRFN5, a fibronectin type III domain-containing protein that mediates cell-cell adhe-

sion in a Ca2+ independent manner, had 14 NCCMs, all with VAF > 30% (across 13 pa-

tients, Additional file 5: Table S4). Eight of these mutations were found in introns, four

in intergenic and one alteration each overlapped the 5′-UTR and lincRNA regions.

NCCM5, a 5′-UTR mutation, is conserved across all 33 vertebrates and overlap with

the oncogenic lncRNA CTD-2298 J14.2 [43] and TFBS for MEF2A. Three NCCMs,

5, 6 and 13, are found in large conserved regions of the genome and have TFBS

predictions within 20 bp of the variant. sTRAP analysis also showed a significant

shift in the binding affinity between the mutated and wild-type sequences for sev-

eral TFs (Additional file 7: Table S6).

CNTNAP2 (Contactin-associated protein-like 2), a member of the neurexin family,

has been proposed as a tumor suppressor in glioma [44], and in our cohort, CNTNAP2

showed 74 NCCMs with 29 patients having one or more variants. The majority of these

NCCMs were found in introns, and several of the annotations relate to epigenetic regu-

lation in the brain and other tissues (Additional file 5: Table S4).
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Identification of additional genes with enrichment of NCCMs

To uncover novel genes with putative roles in GBM, we focused on the tail of the dis-

tribution of the OPCGs which showed that 1776 genes had ≥ 1.0 non-coding constraint

mutations per 100-kbp sequence (Fig. 3b) and that 43 showed ≥ 3.0 non-coding con-

straint mutations per 100-kbp sequence. Of the 43 genes that satisfied this criterion

(Fig. 5), a total of 15 have previously been reported to have altered expression patterns

in GBM, while 28 genes have hitherto no known roles in the disease. Eleven of the 43

genes have ≥ 4.0 NCCMs per 100-kbp sequence (Fig. 5), and mutations for the top four

genes DLX5, DLX6, FOXA1, and ISL1 are distributed over promoters, UTRs, and

multiple TFBS regions (Additional file 9: Table S8) and are expected to affect many

transcription factor-binding motifs. We also note that approximately one third of these

OPCGs with ≥ 4.0 NCCMs/100 kbp occur in clusters, one on chromosome 6 (OPN5,

PTCHD4, TFAP2D, TFAP2B and PKHD1), two clusters on chromosome 7 (DLX5,

DLX6) and (CAV1, CAV2, MET), and one cluster on chromosome 14 (SLC25A21,

MIPOL1, FOXA1, TTC6).

The homeobox gene DLX5, Distal-Less Homeobox 5, has been shown to affect

glioma cell motility via the PAX6/DLX5-WNT5A axis [45]. DLX6 is a paralog of DLX5,

and the two genes are located in a tail-to-tail configuration on chromosome 7. Also,

there is a long non-coding RNA, DLX6-AS1, the expression of which has been reported

to correlate with worse patient outcome in GBM [46]. Together, the queried territory

for DLX5/6 showed 15 NCCMs (across 10 patients), most of which are intergenic

(Fig. 6a, Additional file 10: Table S9). NCCMs 9 and 10 are located in highly conserved

regions and overlap TFBS annotations for SP1 and ZIC1. The NCCMs corresponding

to these positions show significant differences in their binding affinities when compared

with their corresponding wild-type sequences (Additional file 7: Table S6). The position

for NCCM7 is highly conserved and likely located in the promoter region of the long

non-coding RNA DLX6-AS1 (Additional file 10 Table S9).

The genes SLC25A21, MIPOL1, FOXA1, and TTC6 lie in close proximity on chromo-

some 14 (37.1–38.6 Mbp), and therefore, the identified 56 NCCMs (across 22 patients)

Fig. 5 Additional genes with NCCMs enrichment. A total of 43 genes outside the key GBM gene list had ≥
3 NCCMs per kbp (see the insert for the type of mutation)
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largely overlap between the four genes although SLC25A21 had 14 and TTC6 had 13

unique NCCMs, respectively (Fig. 6b, Additional file 2: Table S10). Some genes in this

locus have been implicated in glioma; the SLC25A21gene is downregulated in GBM

[47], and increased FOXA1 transcription has been reported to promote glioma prolifer-

ation [48]. MIPOL1, mirror-image polydactyly 1, is vital for CNS development and is

also known to have a tumor suppressor role in nasopharyngeal cancer [49]. The tetra-

tricopeptide repeat domain 6, TTC6, has been shown to play a role in breast cancer,

and in prostate cancer, there is evidence for a TTC6-MIPOL1 fusion [50]. The annota-

tions associated with the NCCMs that span the four genes reveal that most have good

Fig. 6 UCSC genome browser view of DLX5 and DLX6 and SLC25A21, MIPOL1, FOXA1, and TTC6 NCCMs
clusters. For each gene, the NCCM track shows mutations, color-coded by VAF scores (electric green VAF 1–
10%; fuchsia pink VAF 11–45%; blue VAF > 46%). a Variants associated with the DLX genes overlap strong
methylation patterns and are found in regions of mammalian conservation. b For SLC25A21, MIPOL1, FOXA1,
and TTC6, their associated NCCMs are found in regions with regulatory potential, including promoters
and TFBS
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conservation as well as multiple TFBS annotations (Additional file 11: Table S10). Here

again, sTRAP analysis for the mutated sequences versus the wild-type showed signifi-

cant differences in their binding affinity (Additional file 7: Table S6).

Identification of mutational signatures

Different mutational processes leave distinctive “stamps” of somatic alterations in cancer

cells; to discern these patterns, the tool “MUTation AnaLyIS toolKit” (Mutalisk [51]) was

utilized. Two signatures, COSMIC 1, the so-called aging signature, and COSMIC 5, are

seen as the dominant profiles across our samples (Additional file 1: Figure S5a) which is

also in accord with previously detected signatures in GBM [52]. While present in many

cancers, there is no clear known etiology for COSMIC 5. In addition to COSMIC1 and

COSMIC5, COSMIC 11 has been reported in patients treated with the alkylating agent

TMZ [52]. COSMIC11 was the overriding signature (86%), in our hyper-mutated recur-

rent tumor sample T-3151 (Additional file 1: Figure S5a). T-3151 is also the only sample

to show a robust signal (14%) for COSMIC 14, a signature that is known to generate a

very high number of somatic alterations [52]. Among the three other recurrent tumors in

the cohort (T-3179, T-3233, and T-3243), which were also treated with TMZ, none ex-

hibit COSMIC 14, and in T-3179, a minor contribution of COSMIC 11 was observed.

Interestingly, when the variants were split into coding and non-coding alterations,

the former showed predominance for the aging signature, whereas the non-coding

variants showed near equal distribution between the COSMIC 1 and COSMIC 5

signatures (Additional file 1: Figure S5b). Furthermore, when the mutations were

divided based on being either non-constraint or constraint, we observed a

significant difference in the signature distribution between the two categories

(Additional file 1: Figure S5c), with COSMIC 5 dominating in the constraint

changes. This dominance is also seen when the constraint dataset is parsed into

non-coding changes (Additional file 1: Figure S5d).

Discussion
Alterations in the non-coding regulatory regions of GBM largely remain unex-

plored. The principal goal for this study was to characterize, in a genome-wide

context, the non-coding mutations that arise in GBM tumors. Here, we provide

novel insights into the somatic changes affecting the regulatory landscape of GBM.

Despite a relatively small cohort, our 12 significantly mutated genes (SMGs) and

frequently mutated genes (FMGs) were all found among the top 20 most frequently

mutated protein-coding genes in the TCGA GBM cohort. Similarly, in comparison

with the same dataset, > 95% of the amplified and deleted genes are also found to

be altered in our cohort. Thus, being able to mirror the SCNA landscape and the

chief protein-coding mutations, as well as the mutational signatures previously

found in the large TCGA cohort, lend credence to our cohort and the findings de-

rived from it.

Mutations within the functional, non-coding regions of the genome can alter gene

expression, splicing, expression of non-coding transcripts, and the epigenetic state [33].

As of today, no studies have focused on the non-coding constraint regulatory elements

of the GBM genome, and thus, the impact of non-coding mutations remains largely
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uncharacterized. The main challenge has been to distinguish between passenger and

driver mutations in the non-coding regions, where 5–10% [53] of bases have been esti-

mated to be functional. Evolutionary conservation provides an empirical way of identi-

fying which specific positions are important for genome function [54]. We compared

78 “key GBM genes,” identified based on frequent coding mutations, with all other

protein-coding genes in the genome. Examining the sequence within and around each

gene (± 100 kbp), and using a cut-off of GERP > 2 as a definition of a constrained site,

we identified a highly significant enrichment of NCCMs in the neighborhood of the 78

key GBM genes with 26 genes being enriched for NCCMs (> 1 NCCMs/100 kbp). The

key genes with the highest frequency of NCCMs were SEMA3C, DYNC1I1, CNTNAP2,

and LRFN5.

While the NCCM frequencies in key GBM genes were skewed to the right, com-

pared to all other protein-coding genes, the latter category still contained genes

with high NCCM frequency. In total, 1776 genes had a frequency of > 1 NCCMs/

100 kbp, and we further studied the 43 genes with a frequency of > 3 NCCMs/

100 kbp. Overall, the distribution of NCCMs to their location category varied, with

some genes (typically large ones) showing mostly intronic NCCMs, while others

contained mostly intergenic variants. In an attempt to assign candidate functions

to the NCCMs, we used publicly available sources of genome annotations, in

addition to the evolutionary constraint, and found that most NCCMs had func-

tional annotations, suggesting that they may indeed be driver mutations. We also

noted that 91% of NCCMs in the top genes (26 key GBM genes and 43 from all

other protein-coding genes) had a VAF of ≥ 10%, again supporting their ability to

affect the tumor initiation and/or progression.

When assessing the potential biological importance of the analyzed variants,

SEMA3C stood out, jointly due to its large number of NCCMs and the existing

literature suggesting that overexpression of SEMA3C is linked to poor prognosis

in several cancer types including prostate cancer [55] and GBM [56]. In the topo-

logical associated domain (TAD; chr7:80.4–81.1 Mbp) that contains the SEMA3C

gene, we found 14 NCCMs. The SEMA3C gene has been shown to be regulated

by several TFs, including FOXA1, GATA2, and GATA6, as well as by the andro-

gen receptor. From our sTRAP analysis, NCCM9, in particular, clearly showed

that the mutation would disrupt FOXA1 binding. This was experimentally vali-

dated in an electrophoretic mobility shift assay where the DNA-protein binding

was reduced for the NCCM9 template. The DNA binding to the wild-type allele

could not be competed out by an excess of unlabeled probe with the same se-

quence. This is a known issue for some DNA binding factors [57] but can poten-

tially be overcome by using Multiplexed Competitor Electrophoretic Mobility

Shift Assay (MC-EMSA) where the DNA binding to one probe is competed with

a cocktail of probes with slightly different sequences [57]. Intriguingly, we also

note that 50% of females have a SEMA3C mutation while only 25% of males do,

possibly suggesting that the relative lack of the androgen receptor in females

means that to obtain the same effect, the mutations need to occur directly in the

SEMA3C gene to cause overexpression.

Additionally, multiple variants occur in binding sites for the GATA family of

transcription factors. Given that GATA factors are known to coordinate cell survival,
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cellular maturation, and proliferation arrest [58], this family of genes has been antici-

pated to have a role in human cancers [59]. Variants for SEMA3C, DYNC1I1, and

CDH18 lie in conserved TFBS of the GATA family. GATA2 has been directly impli-

cated in promotion of glioma through the EGFR/ERK/Elk-1 pathway [60], further

indicating its potential to forward tumor development in GBM.

The discovery of non-coding driver mutations in GBM is still an emerging field and

has the potential to become an integral part of clinical studies and precision medicine

in the future. Here, we suggest that evolutionary constraint, combined with other

genomic annotation information, could provide a useful approach to identify novel can-

didate GBM mutations. We hope that the findings from this study will provide a solid

foundation for functional validation of novel non-coding, evolutionarily constrained

candidate mutations in GBM.

Conclusions
The results presented herein suggest that non-coding constraint mutations could play

an essential role in GBM, underscoring the need to connect non-coding genomic vari-

ation to biological function and disease pathology.

Materials and methods
Patient cohort and ethical consent

The GBM patients for the study were included in the “Uppsala-Umeå Comprehensive

Cancer Consortium” (U-CAN) biobank (www.u-can.uu.se). U-CAN is a resource for

longitudinal sampling of tumor tissues, blood, and associated clinical data from cancer

patients, all of which are collected with their informed consent [61]. The study was

approved by the Ethical Review Board of Uppsala, Sweden (Dnr 2007/353 and ad-

denda 2013-10-28, 2016-12-29) (Uppsala Biobank no: 827-2014-087, U-CAN: 2014-

004), and all work involving human tissue samples were conducted in accordance

with the Declaration of Helsinki. Matched tumor-normal specimens for sequencing

were selected based on the histopathological annotation of the tumor tissues by a

neuropathologist. Samples assessed as having at least 40% tumor cells were selected

for WGS. The cohort was designated as SweGBM-1, and the individual samples

were labeled according to their Human Glioma Cell Culture identity (HGCC [62])

with “T” and “N” prefixes used to denote tumor tissue and normal blood sample

respectively. Based on specimen availability that satisfied the quality thresholds for

the histopathological criterion stated above, samples from 31 male and 8 female

patients, with age of diagnosis ranging from 38 to 83 years (median 65 years), were

selected for the study resulting in a cohort size of n = 39 (Fig. 1).

DNA preparation, library construction, and WGS

Tumor sections (3–18 sections, contingent on the extent of necrosis) of 10 μM

were used to prepare tumor DNA using the “AllPrep DNA/RNA/miRNA Univer-

sal Kit” (Cat. no 80224, Qiagen, Hilden, Germany) in line with the manufacturer’s

protocol. Blood DNA was using the Blood DNA kit (Cat. No 51104, Qiagen,

Hilden, Germany). Tumor and normal DNA was then submitted to NGI Uppsala

SNP/SEQ facility at SciLifeLab. All samples that passed the threshold values for
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library preparation were sequenced using the Illumina HiSeqX and True Seq

PCR-free methods. Minimum target depths of coverage of 60× for the tumor and

30× for the normal were set for the sequencing, and the above protocol yielded

paired-end reads of 150-bp read length for each of the matched normal and tu-

mors in the cohort.

Sequence data alignment

To align the raw WGS reads to the reference assembly hg19, BWA v0.7.15 [63] with

default options was used. The resulting binary alignment map (BAM) files were then

refined following Genome Analysis Toolkit’s (GATK [64]) recommended best prac-

tices available through the website https://software.broadinstitute.org/gatk/best-

practices/. These included removal of optical duplicates with Picard’s (http://broad

institute.github.io/picard/) utility MarkDuplicates, correction of local realignment

around indels via GATK’s Indel-Realigner module, and recalibrating and reducing

machine-read error induced noise from individual base quality score with GATK’s

base quality score recalibration (BQSR) module (Additional file 1: Figure S6).

TCGA dataset used for comparative analysis

The TCGA dataset, “Glioblastoma Multiforme (TCGA, Provisional),” downloaded from

cBioPortal was used for all comparative analyses.

Somatic Copy Number Alteration (SCNA) calling and comparison with TCGA SCNA data

Somatic copy number aberrations present in tumor samples were determined with

ascatNGS (Additional file 1: Figure S6 [18]). For a given sample, matched refined T-

and N- BAM files were provided as input data to the tool and executed with default

options. Resulting “seg” output files were then used for comparison with the TCGA

SCNA dataset. To assess if the SweGBM-1 copy number profiles had alterations that

matched with the TCGA, GISTIC defined recurrent SCNAs, data for the latter was first

downloaded from the cBioPortal, after which a custom script was run to find regions

that overlapped in the two cohorts.

Somatic variant calling and filtration

The tumor (T)- and normal (N)- BAM files were also used as input for the som-

atic mutation calling tools of MuTect2 v3.7-0 [21] and Strelka v1.0.15 [22]. Each

of these tools output a variant calling format (VCF) file that contains somatic

point and indel mutations present per matched T/N sample. To eliminate poten-

tial sequencing and germline artifacts and other sources of false-positive calls that

may be present in the VCFs, a series of filtration steps were performed. Firstly,

calls that were marked as germline SNPs in at least two samples in a “Panel of

Normals” (PoN) dataset were filtered out. The PoN dataset was built from filtered

SNPs/germline variants called by the GATK’s HaplotypeCaller across the normal

samples of the SweGBM-1 cohort. Another round of filtering involved removal of

germline calls that were present in the publicly available databases of dbSNP

v150 [65] and SweGen Variant Frequency Dataset [66]. Since there is a possibility

that in these two databases some somatic variants are erroneously marked as
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germline variants, calls present in either resources which also overlapped with

somatic variants present in the COSMIC database [26] were “whitelisted,” i.e., not

filtered out. To further minimize the rate of false-positive calls, the list of filtered

calls generated with MuTect2 and Strelka was intersected. Only the somatic point

mutations (SPM) and somatic indel mutations (SIM) that were in consensus be-

tween the callers were used as the final call set for all downstream analysis.

Classification of SweGBM-1 SPM and SIM calls and identification of significantly mutated

genes

To functionally classify variants into coding and non-coding categories, the SPM

and SIM calls were annotated by the tool Oncotator [23]. To discover genes that

may contain putative coding driver mutations, two methods were adopted: first, a

statistical approach using the tool MutSigCV [24] with default options was run to

get significantly mutated genes (SMGs). The counts here were then augmented

with a frequency-based approach, wherein genes that were mutated in ≥ 4 tumor

samples (approximately 10% of samples) were tallied to get a list of frequently

mutated genes (FMGs).

Visualization of the somatic alterations

To visualize alterations in the SMGs and FMGs, oncoprints and lollipop plots were

generated using tools available on the web-based utility cBioPortal [27].

TERT promoter mutation analysis

The TERT promoter locus encompassing known hotspot mutations on chromosome 5

at positions 1,295,228 and 1,295,250 was examined for alterations in the MuTect2-

Strelka concordant dataset for all of the samples.

Defining a key GBM gene set for the investigation of non-coding variants with regulatory

potential

Alterations in key genes, especially SMGs, are known to be associated with GBM

tumor initiation and/or progression. To investigate if non-coding regulatory vari-

ants of these key GBM genes might contribute to the GBM phenotype, we com-

piled a set of genes by pooling together the list of the SMGs (n = 71 [27]) from

the TCGA-GBM cohort and SMGs/FMGs (n = 12) from the SweGBM-1, resulting

in a total of n = 78 genes (Additional file 4: Table S3).

Non-coding variants associated with the above-described key genes were then

examined in greater detail. GERP RS scores, a measure of sequence conservation,

were collated for every SPM and SIM across the cohort, based on the data from

the UCSC GERP RS conservation track [16]. Non-coding variants, whose position

had a GERP RS score ≥ 2 and which were located within 3′- or 5′-UTRs, introns,

or ± 100-kbp intergenic flanking regions, were extracted. These variants, referred

to hereafter as non-coding constrained mutations, or NCCMs, were subsequently

annotated with regulatory annotations downloaded from either the UCSC genome

browser or ENCODE portal, or both. These include, among others, information

from tracks pertaining to transcription factor binding sites (TFBS), methylation
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and histone modification markers (H3K4Me, H3K27Ac), regulatory markers

(ORegAnno), transcription start sites, enhancer information, and chromatin im-

munoprecipitation assay data of DNA regions where TFs/proteins bind (Txn Fac-

tor ChIP) (Additional file 1: Figure S7).

Statistical tests for enrichment analysis

The rate of NCCMs around key genes was compared with the same class of

variants associated with all other protein-coding genes (OPCG). A t test was per-

formed using the R statistical framework (R Foundation for Statistical Computing,

Vienna, Austria. http://www.R-project.org/).

Transcription factor binding affinity prediction

The sTRAP module from the TRAP tools (http://trap.molgen.mpg.de/cgi-bin/trap_form.

cgi) was used to predict if regulatory sequences associated with NCCMs of key GBM genes

and OPCG could alter transcription factor binding affinity to DNA. For every NCCM, 41-

bp sequences were analyzed with the wild-type or the mutant allele centered. The matrices

for the analysis were set to the JASPAR database, and for the background model “human

promoter,” option was selected. The JASPAR database (http://jaspar.genereg.net) was used

to obtain information about TF binding matrices and motifs of interest.

EMSA (electrophoretic mobility shift assay)

For the NCCM9 and wild-type sequence in the SEMA3C promoter, 5′ biotin-labeled

and unlabeled forward strand DNA oligos and their reverse complementary unlabeled

strand (HPLC-purified, purchased from IDT (Integrated DNA Technologies) were as

follows:

wt_F:GCAACAGTGGTTTGCTCTGGAGAGGAAA

wt_R:TTTCCTCTCCAGAGCAAACCACTGTTGC

NCCM9_ F:GCAACAGTGGCTTGCTCTGGAGAGGAAA

NCCM9_R:TTTCCTCTCCAGAGCAAGCCACTGTTGC

Oligos were first annealed in equimolar amounts in 1× annealing buffer (50 mM

NaCl, 10 mM Tris-HCl, 10 mM MgCl2, 100 μg/ml BSA, pH 7.9 at 25 °C) in a thermo

cycler by heating to 95 °C for 5 min and gradual cooling at 1 °C/min to 4 °C. Nuclear

protein was extracted from patient-derived glioblastoma cells U3065MG [62] using

the NucBuster™ Protein Extraction Kit (Millipore). The subsequent binding reaction

of the dsDNA with nuclear protein extract was processed using LightShift™ Chemi-

luminescent EMSA Kit (Thermo Scientific) as per the manufacturer’s protocol and

incubated on ice for 40 min for the binding reaction. Following this, 5 μl of loading

buffer was mixed with each binding reaction and a total of 20 μl per reaction was

then loaded per well onto a Bio-Rad Criterion gel (Bio-Rad) and electrophoresed for

90 min at 200 V. The gel was transferred to a GeneScreen Plus nylon hyrbidization

transfer membrane (PerkinElmer) for 1 h at 45 V followed by UV crosslinking for

15 min with the membrane facing down on a transilluminator and additional 1 more

minute with the membrane turned over. The membrane was developed using the

Chemiluminescent Nucleic Acid Detection Module Kit (Thermo Scientific) and

visualized on the Bio-Rad CCD camera (Bio-Rad).
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Mutational signatures discovery

The mutational signature detection for the cohort was performed with the online tool

Mutalisk [51]. VCF files for the cohort were used as inputs, and the maximum likelihood

with linear regression options was turned on. A specific cancer type was not selected for.
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