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ABSTRACT
Tumor-specific, circulating cell-free DNA in liquid biopsies is a promising source of biomarkers for
minimally invasive serial monitoring of treatment responses in cancer management. We will review
the current understanding of the origin of circulating cell-free DNA and different forms of DNA release
(including various types of cell death and active secretion processes) and clearance routes. The dynamics
of extracellular DNA in blood during therapy and the role of circulating DNA in pathophysiological
processes (tumor-associated inflammation, NETosis, and pre-metastatic niche development) provide
insights into the mechanisms that contribute to tumor development and metastases formation. Better
knowledge of circulating tumor-specific cell-free DNA could facilitate the development of new ther-
apeutic and diagnostic options for cancer management.
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Introduction

Molecular-biological and instrumental diagnostic approaches in
cancer management are intended for screening, early detection,
risk stratification, effective therapy selection, treatment response
monitoring, and disease recurrence prevention. Current decision-
making tools in oncology are limited, which leads to overdiagnosis
(particularly with mammography),1,2 false-positives, and low spe-
cificity (particularly with serum biomarkers, like CA125).3,4 As
a result, standard imagingmodalities typically only provide tumor
detection at advanced stages of the disease.5 Furthermore, the
“gold standard” for cancer diagnosis is a tissue biopsy, which is
an invasive procedure associated with discomfort and risk of
potential complications.6,7 Moreover, accessibility of tumors for
biopsy is limited, and it does not reflect intratumor heterogeneity
or the emergence of new subclones during tumor evolution.8,9

Alternatively, a “liquid biopsy” is a promising approach that could
overcome these shortcomings.10,11

A liquid biopsy is a minimally invasive approach for detecting
prognostically or diagnostically significant tumor-derived mar-
kers in body fluids.7,12 Definition of liquid biopsy applies to:

● circulating tumor cells,13,14

● circulating extracellular nucleic acids, including cell-free
DNA (cfDNA), mRNA, and microRNA (miRNA),7,15

● extracellular vesicles (e.g., exosomes),16,17

● nucleosomes,18,19

● various glycoproteins and antigens (e.g., PSA, CEA, CA
125, CA19-9, βHCG, αFP, etc.).3,4

Although all these components of liquid biopsies have
advantages and limitations (for reviews, see refs.20,21), the
present review will focus on cfDNA. cfDNA carries informa-
tion about the dynamics of cancer-specific genetic and epige-
netic alterations.22 It was shown that the cfDNA level during

treatment was correlated with outcome.23,24 Some studies
suggested that analyses of cfDNA outperformed instrumental
methods (such as computed tomography), required a lower
tumor burden, and prolonged the time window for adopting
clinical decisions.23,25

Studies of cfDNA in oncology are predominantly devoted
to clinical applications of cfDNA as a tumor biomarker. An
association of cfDNA level with treatment outcome, low inva-
siveness of an assay, implementation of high-throughput tech-
niques make liquid biopsy using extracellular DNA an
attractive candidate for a routine test in cancer management.
Nevertheless, we have a long way to go in determining reliable
markers, estimating prognostic significance, standardizing
assays, and validating findings in large-scale prospective clin-
ical trials.26–28 Moreover, despite the increase in studies that
implicate the importance of cfDNA in oncology, a number of
unresolved questions remain about the nature of cfDNA, its
subtypes, its mechanisms of release, and its clearance in
patients with cancer. In addition, it is important to determine
the significance of cfDNA in cancer development: i.e., its
association with the origin, aggressiveness, and metastatic
potential of tumors, in addition to its association with the
response to treatment. Current analysis performed by a joint
panel of experts of American Society and Clinical Oncology
and the College of American Pathologists demonstrated insuf-
ficient evidence of clinical validity and utility for the majority
of ctDNA assays in advanced and in early-stage cancer, for
treatment monitoring, or residual disease detection.29

In this review, we consider the dynamics of extracellular
DNA, the balance between cfDNA release and clearance, and
the roles of various cfDNA subfractions in pathophysiological
processes during tumor development. Here, we distinguish
three pools of circulating DNA: total circulating cfDNA, cir-
culating tumor-specific cell-free DNA (ctDNA), and circulat-
ing mitochondrial DNA (mtDNA).
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Levels of cell-free DNA

cfDNA was first described in immune complexes derived from
patients with systemic lupus erythematosus in 1948,30 but serum
cfDNA levels from patients with cancer were characterized for the
first time 30 years later.31 It was shown that the total amount of
circulatingDNAwashigher in patientswith cancer than in healthy
subjects.31,32 However, an increased cfDNA content was not spe-
cific to malignancies; elevated levels were also detected in the
plasma of pregnant women and in patients that received
transplantations.33,34 Elevated cfDNA might also reflect
physiological (e.g., exercise)35,36 and non-malignant pathological
processes,7 such as inflammation, diabetes, tissue trauma, sepsis,
and myocardial infarction.37–39

The concentration of cfDNA in blood varies significantly;
it ranges between 0–5 and >1000 ng/ml in patients with
cancer and between 0 and 100 ng/ml in healthy subjects.7,24

There is also a marked variation in blood ctDNA levels among
patients with different tumor types. For example, the ctDNA
detection frequency in patients with advanced pancreatic,
ovarian, colorectal, gastroesophageal, breast, melanoma, and
some other malignancies was higher than in patients with
primary brain, renal, and thyroid cancers.40,41 Khier and
Lohan42 hypothesized that this variability could be explained
by tumor localization; for example, the blood-brain barrier
and the capsules surrounding some organs could limit the
release of ctDNA into the body fluids.

It was observed that patients with benign lesions or with
early-stage cancer have lower amounts of cfDNA compared to
patients with advanced or metastatic tumors of comparable
size.24,43 That finding suggested that the level of ctDNA shed
by tumors differed at various stages of cancer; thus, the level
could reflect tumor interactions with the microenvironment
or the various metabolic properties of progressing cancer.44,45

Therefore, although the variability in ctDNA is typically
attributed to the tumor burden,46 it actually might reflect
tumor metabolism.47,48 For example, in patients with mela-
noma, ctDNA levels were correlated with metabolic disease
volume, estimated with18F-labelled fluorodeoxyglucose posi-
tron emission tomography.49,50 Therefore, the ctDNA level
was a complex reflection of tumor biology, rather than simply
associated with tumor burden or the number of dying cells.
This finding suggested that ctDNA measurements might be
more relevant to advanced stages of the disease and less
relevant to precancerous lesions. However, the use of multi-
analyte tools (e.g., CancerSEEK) and combinations of several
marker types (i.e., ctDNA and tumor-related glycoproteins)
represent promising approaches for early tumor detection.51

Tissue origin of cell-free DNA

The source of cfDNA is an intriguing question in cancer and
in other pathological conditions. The identification of the
cfDNA origin could contribute to revealing the affected tis-
sues or organs and provide information about the mechan-
isms of cfDNA shedding. Several approaches have been used
to investigate this question, including i) identification of tis-
sue-specific patterns of promoter methylation;52–55 ii) analysis
of tissue-specific modifications in circulating nucleosomes,

per se;18,19 and iii) identification of tissue-specific DNA frag-
mentation patterns or nucleosome occupancy.53,56,57 In can-
cer, all these approaches could aid in defining the cfDNA
tissue of origin without requiring a preliminary search for
genetic differences.27

It can be postulated that circulating tumor cells are not the
main source of cfDNA. Indeed, the amount of cfDNA in blood
corresponds to several thousand genomic equivalents, andmuch
fewer circulating tumor cells are present in blood.41,58,59 Next,
a significant part of total cfDNA consists of non-mutated DNA.
According to various studies, the fraction of ctDNA constitutes
~0.1–89% of cfDNA,41,49,60 but it may increase with disease
progression.59 Consequently, it can be speculated that the bulk
of cfDNA originates from cells in the tumor microenvironment,
destroyed in hypoxic conditions, or from cells involved in the
antitumor response.61 Indeed, analyses of DNA fragmentation
patterns and nucleosome occupancy showed that the nucleo-
some footprint in healthy subjects corresponded to hematopoie-
tic lineages, but in patients with cancer it also aligned with the
cancer type.62 Interestingly, whole-genome array cfDNA ana-
lyses of tissue-specific methylation patterns in healthy indivi-
duals demonstrated that most cfDNAs were of hematopoietic
origin (55% white blood cells and 30% erythrocyte
progenitors).54,55,63 In addition, a fraction of cfDNAs from
solid tissues were derived from vascular endothelial
cells (~10%), neurons (~2%), and hepatocytes (~1%).54,55

Methylation profiles of patients with cancer (n = 4 with meta-
static colon cancer, n = 4 with lung cancer, and n = 3 with breast
cancer) also showed that cfDNA levels were elevated compared
to levels observed in healthy individuals (>20-fold increase). The
largest fraction of cfDNA in patients with cancer was derived
from the tumor tissue of origin.29,54

Mechanisms of cfDNA release into the circulation and
subfractions of cfDNA

Mechanisms of cfDNA release can be deducted by analyzing
cfDNA subfractions. cfDNA comprises mainly double-
stranded (ds) nuclear DNA and mtDNA. Some studies have
also described small extrachromosomal circular DNA
(eccDNA), microDNA, and single-stranded (ss), viral, bacter-
ial, or food-derived (plant and meat) DNAs.64–67

Most cfDNA that originates from the nucleus is packaged
in the form of mono- or oligonucleosomes.68 cfDNA is pre-
sent both on the surface and in the lumen of vesicles.69

However, some studies have suggested that over 90% of the
cfDNA was associated with exosomes.70 Vagner et al. (2018)
demonstrated that most ctDNA is packaged in large (1–10 µm
diameter) extracellular vesicles. Those DNA particles are is
chromatinized, and can comprise up to 2 million base pairs.71

The association of ctDNA with extracellular vesicles was con-
firmed by the observation that patients with cancer had ele-
vated levels of exosomes and nucleosomes in peripheral
blood.12,67,68 In vitro analyses also showed higher amounts
of exosomes secreted by tumor cells compared to the amounts
secreted by cultured fibroblasts.72 Wang et al73 demonstrated
that ctDNA released from cultured cancer cells did not corre-
late with the level of cellular apoptosis or necrosis; instead, it
was correlated with the percent of cells in G1 phase. They
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suggested that increased release of cfDNA from differentiated
cells might be due to the active release of cfDNA packaged
inside exosomes or in other forms that are protected from
degradation in the blood. It is worth noting that the profile of
free nucleic acids in plasma (DNA and miRNA) differs from
that found in exosomes,15 and profiles vary among various
subtypes of vesicles.69 Thus, exosome isolation can be used to
enrich ctDNA.

The estimated size of cfDNA varies from ~40–200 base pairs
(bp), with a peak at about 166 bp.56,74,75 However, individual
cfDNAs might carry thousands of base pairs (>20–30 kb).24,64

Separation of extracted cfDNA with gel electrophoresis has
displayed fragment ladders that ranged from ~160 or 180 bp
to 1000 bp. The size of these fragments is due to multiple DNA
lengths in nucleosomes and predominantly corresponds to
mono- and oligonucleosomes. This feature is characteristic of
caspase-dependent cleavage; consequently, it is assumed that
the bulk of cfDNAs found in healthy and ill individuals is
released during apoptosis.16,56,65,76

Longer DNA fragments (i.e., >10 kb) are considered to
result from necrotic cell death; for example, from cells in
necrotized parts of tumors.25 Experiments in vitro have
demonstrated that the amount of extracted DNA fragments
depended on the type of necrosis-inducing agent applied.77,78

Moreover, blood sampling can affect the type of cell death;
indeed, the collection of serum stimulates a release of necrotic
DNA from blood cells; this mechanism could account for the
higher levels of total cfDNA found in serum compared to
levels found in plasma samples.23 Unexpectedly, some studies
have observed that radiation therapy, which potentially
induces necrosis, could result in a reduction of cfDNA levels
(up to 90%) in the plasma of patients with cancer.31,79 This
finding has raised questions about cell death mechanisms and
DNA release during various therapeutic interventions.

Shorter fragments of DNA (<100 bp) are enriched with
ctDNA, mtDNA, and bacterial DNA.65,74,80,81 This observa-
tion can be useful in developing methods for enhancing
ctDNA detection, and it has led to questions about the nature
of these short fragments and the mechanisms of their release.
Short fragments comprise DNA that is protected from nucle-
ase degradation by nucleosomes in blood. They may form by
transcription factor positioning (35–85 bp) or they may repre-
sent harmful DNA excreted by exosomes.16,26,56,82

The distribution of DNA fragments of different lengths has
clinical significance because it reflects cfDNA integrity.
cfDNA integrity is determined by the ratio of long to short
PCR product amplified from the same locus (for example, the
ALU1 locus). Patients with cancer have a significantly ele-
vated level of cfDNA integrity compared to healthy indivi-
duals and patients with benign diseases.83,84 High integrity is
explained by augmented levels of necrotic death in large
tumors at advanced stages, and it is also associated with
tumor aggressiveness.76,83

Apart from apoptotic and necrotic cell death, other DNA
release mechanisms have been described, including oncosis,
pyroptosis, phagocytosis, active secretion, neutrophil extracel-
lular trap release (NETosis), and excision repair.24,85–89 In
contrast to various forms of cell death, active secretion occurs
in live, functional cells. Examples of active secretion include

the expulsion of nuclei by maturing erythroblasts,90 vital
NETosis,91 and egestion of mtDNA.92,93 These activities give
rise to several questions: why do live cells get rid of DNA, and
how do they live without it? Are there some pathways that
compensate for secreted DNA, and what is the biological
significance of active secretion?

Activated neutrophils release nuclear DNA in response to
various stimuli. Such DNA forms neutrophil extracellular traps
(NETs). Although NETosis was first described in neutrophils, it
was also shown to occur in mast cells, basophils, and
macrophages.94 The fibers of NETs comprise nuclear DNA
strands decorated with proteins that possess anti-bacterial char-
acteristics (myeloperoxidase, pentraxin 3, neutrophil elastase,
MMP9, and others).91,95 The release of NETs usually takes
hours, and it eventually leads to neutrophil lysis (suicidal
NETosis).96 On the other hand, another fraction of polymorpho-
nuclear leukocytes can rapidly excrete vesicular NETs to provide
an effective, rapid response to bacteria. The remaining anuclear
neutrophils are not lysed but retain the ability to crawl and
engulf bacteria (vital NETosis).91,95 Platelets can trigger
NETosis. The importance of platelet/neutrophil interplay was
underscored by a study that showed that inhibiting platelet
activation with aspirin significantly reduced NET formation.97

Platelets induce NETosis by releasing thromboxane A2; then, in
turn, NETosis leads to thrombin generation.37,98

Lymphocytes, monocytes, and neutrophils can also release
mtDNA strands.93 In the blood, mtDNA can be present in
both particle-associated and non-particle associated forms.99

mtDNA webs are different from NETs; they are not decorated
with pathogen-slaying proteins.93 However, these two types of
DNA webs can be connected: mtDNAs can reside in NETs100

and mtDNA can potently induce the formation of NETs.101

Clearance of cfDNA

The level of extracellular DNA in the circulation is determined
by a balance between DNA release and DNA clearance pro-
cesses. cfDNA clearance can occur in the “home” tissue, in
blood or other body fluids, and in organs, such as the liver,
spleen, kidney, or lymph nodes.102 Healthy individuals have
low levels of circulatory cfDNA because apoptotic cells and
cfDNA are rapidly cleared. In malignancies, chronic inflamma-
tion, or excessive cell death, clearance is insufficient, and cfDNA
accumulates. Insufficient clearance might explain the correlation
between high cfDNA levels and pathological conditions. The
exact mechanisms of cfDNA accumulation remain obscure,
but it can be speculated that an excess of dying cells could
overload the clearance system and surplus cell content is released
into the medium.

The estimated half-life of cfDNA in circulating blood varies
from several minutes (e.g., 4 min after hemodialysis cessation) to
1–2 h.103–106 Interestingly, clearance of fetal DNA frommaternal
blood occurs in a bi-phasic manner: first, a rapid phase occurs
with amean half-life of ~10min to 1 h; then, a second slow phase
occurs with a mean half-life of ~13 h.107 The half-life of the
ctDNA level after surgical tumor resection in a pre-clinical rabbit
model of head and neck cancer was 23–52 min.25 A serial ana-
lysis of ctDNA in patients with colorectal cancer showed a half-
life of 114 min.108 The short half-life of cfDNA is convenient for
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“real-time” analyses of cfDNA; it facilitates treatment response
evaluations and dynamic tissue status assessments in various
pathophysiological conditions; for example, tissue damage or
regeneration.

The half-life of cfDNA depends on various factors, including
its association with molecular complexes that prevent rapid
cfDNA degradation, the type and stage of the tumor, the treat-
ment modality, etc.24,102 In blood, cfDNA degradation is carried
out essentially by circulating enzymes, such as DNase I, plasma
factor VII–activating protease (FSAP), and factor H.109,110 For
example, the level of DNase I was inversely correlated with the
concentration of cfDNA in patients with cancer.82,111

Elimination of cfDNA occurs in the liver, spleen, and
kidney.107,112 The liver is the main organ for nucleosome clear-
ance: 71.0% to 84.7% of the nucleosomes are removed from the
circulation within 10 min.106 Kupffer cells in the liver and
macrophages in the spleen were shown to be responsible for
trapping and clearing DNA and nucleosomes.113 Studies on
extracellular ssDNA removal by the kidneys showed that the
clearance rate of naked DNA through glomeruli depended on
DNA size. Short fragments (160–200 bp) were present in the
kidney even after 24 h, but longer fragments (2–6 kb) were not
detected.103 Those data suggested that the kidney might be
selective in DNA clearance, but that study did not completely
reflect the situation in vivo, because cfDNA is mainly double-
stranded, coiled around histones, or bound with other multi-
molecular complexes. Moreover, experiments in animals have
shown that chronic renal failure was associated with low cfDNA
uptake and low plasma cfDNA levels, which suggested that the
kidney was only partially involved in cfDNA clearance.103 In
addition, the kidney has moderate-to-high deoxyribonuclease
activity, and urine has the highest enzyme activity. These proper-
ties might explain why urine samples have low DNA concentra-
tions and high DNA fragmentation.103,114

Potential biological significance of cfDNA

Extracellular DNA can be considered a “passive”, transient
passenger or even a waste molecule in body fluids collected in
pathological or physiological conditions. However, a plethora
of research has supported the notion that cfDNA plays active
roles. Indeed, cfDNA is a heterogeneous, complex entity,
which includes different types of DNA that can appear in
various forms and can be included in multimolecular com-
plexes. The particular subtype and distribution of cfDNA in
blood might determine its activity. Here, we will describe the
key functions of different cfDNA subtypes as distinct entities,
but they are definitely interconnected.

Immunomodulation and tumor-associated inflammation

Molecules released upon cell death or cell damage act as damage-
associated molecular patterns (DAMPs), which mediate immu-
nomodulatory effects. Proinflammatory effects can be mediated
by the active secretion of DNA (for example, in vital NETosis).
This secreted cfDNA is carried in extracellular vesicles in the
blood, and leukocytes can take it up into the cytoplasm through
endocytosis. Proinflammatory effects can also be induced
by intrinsic DNA, which was leaked from the nucleus or

mitochondria into the cytoplasm after DNA damage or during
alterations in genes that control DNA-damage repair. Strictly
speaking, in these cases, the cell’s own DNA is not properly
considered cfDNA, but its “precursor”.

Extracellular histones, nucleosomes, andnaked cfDNAdiffer in
terms of cytotoxicity andproinflammatory action.94Histones elicit
proinflammatory signaling via toll-like receptors (TLR2/4), which
results in the production of TNF-α, IL-6, IL-10, and MPO.
Histones also exhibit TLR-independent cytotoxicity.115,116 They
can also induce NET formation, which in turn releases more
histones.115 Histones are cytotoxic to the endothelium and can
induce macro- and microvascular thrombosis and renal
dysfunction.116 Antibodies to histones mitigated mortality in var-
iousmousemodels of sepsis.116 In contrast, nucleosomes stimulate
different inflammatory pathways, and they do not have the cyto-
toxic effects displayed by histones.94 The rapid elimination of
nucleosomes through hepatocytes decreases the likelihood that
more harmful nucleosome components will be present in
blood.94 mtDNA, which is similar to bacterial DNA, is recognized
by immune cells as a DAMP.93 However, in contrast to bacterial
DNA, mtDNA does not induce IL-6 production.117–119

Nevertheless, cfDNAs of mitochondrial, nuclear, and bacterial
origins have similar procoagulant and platelet-stimulating
potentials.119 These examples highlight observations that the ori-
gin and type of cfDNA determine the various types of cellular
reactions.

Extracellular mtDNA activates white blood cells (e.g., neutro-
phils, dendritic cells) via TLR9.117–120 TLR9 activation and the
activation of AIM2 and NLRP3 inflammasomes induce the secre-
tion of proinflammatory cytokines and stimulate an immune
interferon response.93,96 Cytokines secreted as a result of cfDNA-
TLR9 signaling are implicated in tumor-associated inflammation.
These signals recruit monocytes and induce their transformation
into pro-tumorigenic M2 macrophages.121,122 Thus, cfDNAs can
contribute to the rewiring of tumor microenvironments.

When oxidized mtDNAs or damaged nuclear DNAs (i.e.,
damaged by chemotherapeutics or created in FA/BRCA – or
mismatch-repair pathway-deficient cells) leak into the cytosol,
they are sensed by the cGAS-STING (stimulator of interferon
genes)-IRF3 or the STING–NF-kB pathway.120,123 In turn,
STING induces the production of proinflammatory cytokines
and chemokines, which participate in tumor development. DNA
located either on the surface or inside vesicles can also initiate
activation of the interferon type I (INFI) response through the
cGAS-STING pathway. For example, DNA can be transferred
from T-lymphocytes to dendritic cells through an immunologi-
cal synapse.69 Activation of the INFI pathway through the trans-
fer of mtDNA is part of a mechanism that increases the
resistance of dendritic cells to viral infection.69

Another effect of STING activation is the upregulation of the
immune checkpoint protein, PD-L1, found in tumor cells, in
microenvironment cells, and on exosomes.124–126 DNA repair
defects or DNA-damaging therapy can upregulate PD-L1, includ-
ing the PD-L1 molecules located on exosomes, to induce
immunosuppression.124,127–129 Moreover, changes in extracellular
cfDNA levels correlate with the response to anti-PD-1 immu-
notherapy drugs (Nivolumab or Pembrolizumab), as shown in
patients with non-small lung cancer, uveal melanoma, or micro-
satellite-unstable colorectal cancer.130–132
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Maintenance of cell homeostasis

One of the functions of active DNA release is the removal of
damaged DNA, such as oxidized mtDNA found in vesicles.69

Damaged DNA is harmful to cells; it is expelled via exosomes to
maintain cellular homeostasis and prevent aberrant immune
responses.133 The secretion of damagedmtDNA through exosome
biogenesis is necessary to maintain mitochondrial homeostasis
and mtDNA metabolism.69 Cellular DNA is partly degraded in
the cytosol by TREX1 (DNase III).88 However, this DNA might
also be excreted through exosomes, although the exact pathway
remains unknown. Moreover, the mechanism for secreting nor-
mal, undamaged DNA from living cells remains obscure.

Observations in cell lines and affected patients have shown that
nucleosome leakage into the cytoplasm can be induced by DNA-
damaging agents, such as chemotherapeutics,125,126 or it can result
from inherited DNA-damage repair defects (e.g., BRCA1/2 or
ATM deficiency). Studies of ATM-deficient cells showed that
predominantly ssDNA was released into the cytoplasm, although
dsDNA also contributed to cytosolic DNA.126 The fate of DNA
that is leaked into the cytoplasm remains unclear, but we assume
that part of this DNA can be secreted in extracellular vesicles.

Transforming ability and functional modulation of other
cells

The ability of cfDNA to transform cells was demonstrated when
NIH3T3 murine cells were treated with serum from patients
with colon cancer or with the supernatant of SW480 human
cancer cells.134,135 The observation that cfDNA could integrate
into the genomes of healthy cells led to the development of the
genometastasis hypothesis.134–138 However, further studies
showed that the uptake of vesicles that contain DNA depends
on the condition of the cell recipient. For example, transformed
cell line variants are more sensitive to exosome-mediated uptake
than other cell lines. In addition, serial passages might result in
the disappearance of genomic DNA present in vesicles. Thus,
this type of “external” DNA might not integrate into the host
genome, and its effects on cell behavior might be transient.139

In addition to the integration of cfDNA into the genomes of
cells, the horizontal transfer of genomic DNA might mediate
intercellular communication and influence the functions of
affected cells.140 Moreover, tunneling nanotubes and extracellular
vesicles, which are used to transfer mitochondria to neighboring
cells, might also be used to transfer mtDNA to other cells.69,141–143

Intact exogenous mtDNA transferred in this manner was shown
to act as an oncogenic signal that induced endocrine therapy
resistance in OXPHOS-dependent breast cancers.92

Tumor growth and metastatic niche establishment

Apart from their role in antibacterial defense, NETs are found
in tumors at sites of neutrophil accumulation. It is thought
that these NETs might influence the cancer microenviron-
ment, promote tumor growth, and contribute to the establish-
ment of a pre-metastatic niche.144 When a contact pathway
activates DNA release by NETosis, it induces a strong pro-
coagulant response. This response was observed in patients
with breast cancer after chemotherapy.145 The deposition of

NETs in the microvasculature was shown to aid in the trap-
ping and immobilization of tumor cells, protects them physi-
cally or by the generation of tumor-promoting thrombi. The
combination of vascular dysfunction and NETosis creates
convenient conditions for tumor cells to enter into surround-
ing tissues.95,146

NETosis may contribute to metastatic niche development
and facilitate metastases, particularly on a background of
post-surgical infection in patients with cancer. Among
patients undergoing liver resections for metastatic colorectal
cancer, surgical stress, accompanied by increased NET forma-
tion, was associated with a >4-fold reduction in disease-free
survival.147 In addition, metastatic breast cancer cells can
induce neutrophils to form metastasis-supporting NETs,
even in the absence of infection.148 Particular components of
NETs, such as MMP9, might also contribute to metastasis
formation by supporting extracellular matrix remodeling and
an angiogenic switch.149 Recently, it was shown that NETs,
released in response to inflammation, through proteases,
MMP9, and neutrophil elastase, might stimulate proliferation
of dormant cancer cells.150

NETosis can be stimulated by a hypoxic microenvironment
and tumor-derived exosomes. Increased plasma levels of
G-CSF, IL-8, and TGFβ predispose neutrophils to NET for-
mation in patients with cancer.146,149,151

Understanding the role of NETs in tumor progression could
suggest potential therapeutic directions. Inhibiting G-CSF and
IL-8 production diminished NET-induced vascular
dysfunction.95,97,146 Degradation of NETs with DNase restored
vascular function, suppressed inflammation, and reduced tumor
cell invasion and metastasis.148,152 NETosis could be reduced
with an antibody block of P-selectin or P-selectin glycoprotein
ligand 1 (PSGL-1), which is involved in neutrophil–platelet
interactions; with the inhibition of PAD4, which is implicated
in histone citrullination (marker of NETosis); or with DNase
treatment. These approaches can be considered attractive inter-
ventional options for NET-associated pathologies.97,146,152–154

It should be noted that, in addition to promoting tumor
growth, NETosis also aids neutrophils in killing tumor cells.
The exact role of NETs can be defined by the cytokine
landscape.155 Moreover, various therapeutics may stimulate
NET production differently: an analysis of estrogen receptor
modulators showed that Tamoxifen induced156 and Raloxifene
inhibited NET formation.157

Discussion

cfDNA has attracted increasing attention as a promising com-
ponent of the liquid biopsy. cfDNA carries information about
genetic and epigenetic tumor-specific alterations. The pre-
sence of cfDNA, its amount, integrity, and the fraction of
ctDNA, appear to comprise a marker of tumor sensitivity to
treatment and correlate with cancer aggressiveness (Figure 1).

An analysis of data in the literature has revealed many
unclear aspects connected to cfDNA biology. The origin of
increases in cfDNA observed in patients with cancer has not
been sufficiently investigated. A variety of DNA release
mechanisms have been described; some are consequences of
various cell death pathways; others are variants of active
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secretion. Most cfDNA is associated with macromolecules
(proteins, lipids, other nucleic acids) or packaged in vesicles.
cfDNA size might be indicative of the mechanisms and indu-
cers related to DNA release.

The ctDNA fraction is typically extracted from blood and
treated as a single entity. One must remember that cfDNA is
a heterogeneous mix, comprised mainly of nuclear and mito-
chondrial DNA. The content and profile of nucleic acids differ in
various compartments; cfDNA might be free, oxidized, damaged
or undamaged, present in exosomes, or present in other extra-
cellular vesicles. The patterns of DNA integrity reflect various
mechanisms of cell death and tumor interactions with the micro-
environment. Therefore, addressing each cfDNA subfractionmay
potentially be indicative of therapeutic effects, after taking into
consideration the contributions from DNA release mechanisms.

Increasing evidence has suggested that cfDNA plays active
roles. Nuclear and mitochondrial DNA are actively secreted in
response to various external stimuli. In physiological condi-
tions, DNA released into the blood by NETosis participates in
antimicrobial immune responses. In pathological conditions,
DNA release can lead to sterile inflammation or even promote
metastases and the establishment of a metastatic niche. DNA
released by NETosis facilitates vascular dysfunction and
induces thrombotic complications in patients with cancer.

The secretion or leakage of damaged DNA is a homeostatic
mechanism that responds to DNA-damaging agents, muta-
tions in DNA-damage repair pathways, or mitochondrial oxi-
dation. This DNA is sensed as a DAMP, and it plays a role in
antibacterial or antiviral innate immune reactions. In the
context of tumor cells with DNA-damage repair mutations,
these DAMPs sustain tumor-associated inflammation and
support the reprogramming of tumor infiltrating cells.

Some fascinating studies showed that cfDNA played a role
in the functional rewiring of cells, and they demonstrated that
cfDNA had the ability to transform tumor DNA.

In conclusion, despite the increasing number of studies on
the clinical utility of cfDNA, little is known about the biology of
cfDNA. Future studies on the mechanisms of cfDNA release and
clearance might shed light on tumor biology and aid the devel-
opment of more sophisticated assays for cfDNA in the field of
clinical oncology. Studies that investigate cfDNAs will provide
important insights into intracellular communication, cell turn-
over, body defense mechanisms, tumor growth promotion, and
metastatic niche formation.
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