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[Abstract] Objective: Diffuse large B-cell lymphoma (DLBCL) is an aggressive type of non-
Hodgkin lymphoma. Due to its genetic heterogeneity and abnormal metabolism, many DLBCL 
patients have a poor prognosis. This study investigated the key metabolism-related genes 
and potential mechanisms. Methods: Differentially expressed genes, differentially expressed 
transcription factors (TFs), and differentially expressed metabolism-related genes (DEMRGs) of 
glucose and lipid metabolic processes were identified using the edgeR package. Key DEMRGs were 
screened by Lasso regression, and a prediction model was constructed. The cell type identification 
by estimating relative subsets of RNA transcripts algorithm was utilized to assess the fraction of 
immune cells, and Gene Set Enrichment Analysis was used to determine immune-related pathways. 
A regulatory network was constructed with significant co-expression interactions among TFs, 
DEMRGs, immune cells/pathways, and hallmark pathways. Results: A total of 1551 DEMRGs 
were identified. A prognostic model with a high applicability (area under the curve=0.921) was 
constructed with 13 DEMRGs. Tumorigenesis of DLBCL was highly related to the neutrophil 
count. Four DEMRGs (PRXL2AB, CCN1, DECR2 and PHOSPHO1) with 32 TF–DEMRG, 36 
DEMRG–pathway, 14 DEMRG–immune-cell, 9 DEMRG–immune-gene-set, and 67 DEMRG–
protein-chip interactions were used to construct the regulatory network. Conclusion: We provided a 
prognostic prediction model based on 13 DEMRGs for DLBCL. We found that phosphatase, orphan 
1 (PHOSPHO1) is positively regulated by regulatory factor X5 (RFX5) and mediates MYC proto-
oncogene (MYC) targeting the V2 pathway and neutrophils.
Key words: diffuse large B-cell lymphoma; metabolism-related gene; immune microenvironment; 
regulatory network; PHOSPHO1

Lymphoma refers to the most common blood 
malignancy, including Hodgkin lymphoma and 
non-Hodgkin lymphoma (NHL)[1, 2]. Being the most 
aggressive among various kinds of NHL, diffuse large 
B-cell lymphoma (DLBCL) accounts for approximately 
31% of patients newly diagnosed worldwide[2, 3]. In the 
USA, more than 30 000 people develop DLBCL every 
year. The primary therapeutic method for DLBCL is 
the combination of monoclonal antibody treatment and 
chemotherapy; for instance, the most frequently used 
regimen is rituximab, cyclophosphamide, doxorubicin, 
vincristine, and prednisone (R-CHOP)[4]. Under most 

circumstances, despite being an aggressive malignancy, 
the initial treatment is effective. Rare tumor recurrence 
has been observed in patients after treatment, with 
a 3-year cancer-free survival rate of about 60%[4]. 
Nevertheless, owing to the genetic heterogeneity of 
this malignant lymphoma to a certain extent, most 
patients with DLBCL become refractory or relapse. 
Currently, the therapeutic regimens to improve clinical 
outcomes have mainly involved increased doses of 
standard agents in the context of autologous stem cell 
transplantation[5]. Hence, the identification of genetic 
heterogeneity and abnormalities is of urgent medical 
need to discover novel targets for DLBCL therapy.

Metabolic reprogramming is a significant chara-
cteristic of DLBCL, which may be caused by gene 
mutations and genetic abnormalities[6]. The alteration 
of metabolism influences the energy stores, stimulates 
the tumor extracellular environment, modulates cell 
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proliferation and survival, and induces resistance 
to chemoradiotherapy[7]. Therefore, studies on 
metabolism-based mechanisms may provide critical 
insight into understanding tumor initiation and 
progression of DLBCL, benefiting the diagnosis and 
treatment of this disease. However, the associations 
between metabolism-related biomarkers and tumor 
progression as well as the corresponding target-directed 
treatment have rarely been explored in DLBCL. This 
study is innovative because it not only aimed to analyze 
the metabolism-related DLBCL biomarkers but also 
uncovered individualized therapeutic methods.

In this study, based on the RNA profiles of 
normal peripheral blood mononuclear cells (PBMCs) 
and DLBCL samples, a transcriptome bioinformatics 
analysis was conducted to explore key transcription 
factors (TFs), differentially expressed genes (DEGs), 
downstream DLBCL-related hallmark pathways, and 
essential ligand-receptor interactions. Additionally, 
potential TFs and pathways of key metabolism-
related genes were integrated to construct a regulatory 
network, thus providing novel therapeutic targets and 
candidate predictors for DLBCL.

1 MATERIALS AND METHODS

1.1 Data Collection 
The RNA sequencing profiles of 47 DLBCL pati-

ents were obtained from The Cancer Genome Atlas 
(TCGA) database as the experimental group (https://
tcga-data.nci.nih.gov)[8]. The control group consisted of 
337 normal PBMC samples obtained from the Genotype-
Tissue Expression Portal (GTEx, https://commonfund.
nih.gov/GTEx/)[9]. The demographics (age, sex, eth-
nicity, etc.), survival endpoints (vital status, death, and 
last follow-up), clinical stages, and histological types of 
these samples were also extracted. In addition, samples 
with incomplete clinical information were excluded. 
The batch effects introduced by comprehensive analysis 
of two datasets were diminished using the “normalize 
between array” function in the limma package. 
DLBCL-related hallmark signaling pathways were 
collected from the Molecular Signatures Database 
(MSigDB) v7.1 (https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp)[10], and 318 TFs were retrieved 
from Cistrome Database (http://cistrome.org/)[11]. A 
total of 1551 metabolism-related genes were retrieved 
from two metabolism-related Gene Ontology (GO) 
pathways (http://www.geneontology.org/), including 
GO_GLUCOSE_METABOLIC_PROCESS and GO_
LIPID_METABOLIC_PROCESS[12]. Reverse-phase pr-
otein array (RPPA) protein chip data were collected 
from TCGA database.
1.2 Identification of Differentially Expressed Genes 
and Functional Annotation

The “edgeR” R package was used to identify 

DEGs between normal PBMC samples and DLBCL 
samples. |Log2 Fold Change (FC)| >1.0 and False 
Discovery Rate (FDR) <0.05 served as the screening 
criteria for DEG selection[13]. The heatmap and volcano 
plot of DEGs were constructed, while differentially 
expressed RPPA protein chips were also identified.

GO enrichment analysis was conducted to explore 
the potential function associated with DEGs including 
biological processes (BPs), cellular components 
(CCs), and molecular functions (MFs). In addition, 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis was utilized to explore the relevant 
functions. Both results were displayed by bar charts 
using the “cluster Profiler” R package with thresholds 
of P<0.01 and FDR <0.05[14].
1.3 Gene Set Over-representation Analysis

Gene Set Over-representation Analysis (GSORA) 
was used to evaluate the fraction of genes of interest 
(e.g., DEGs) that belongs to the test clusters (e.g., 
hallmark pathways). In this study, 54 DLBCL-related 
hallmark signaling pathways downloaded from the 
MSigDB were categorized into 9 clusters based on 
similar functional characteristics, including cluster C1 
to 8 and H[10]. Furthermore, GSORA was performed 
to identify the functional enrichment of DEGs in the 
MSigDB gene sets (https://github.com/tomastokar/
gsoap).
1.4 Identification of Differentially Expressed 
Metabolism-Related Genes

To identify the tumor metabolism in DLBCL, 
differential expression analysis was applied to explore 
metabolism-related genes. Differentially expressed 
metabolism-related genes (DEMRGs) were defined 
with thresholds of P<0.05 and |log2 FC| >1. The 
heatmap and volcano plot were constructed to illustrate 
the expression levels of DEMRGs.
1.5 Construction and Evaluation of the Prognostic 
Prediction Model

We followed the methods of Guo et al[15]. Least 
Absolute Shrinkage and Selection Operator (LASSO) 
regression[16] was utilized to reduce the over-fitting 
phenomenon and to identify the top 20 DEMRGs with 
great significance, which were incorporated into a 
proportional hazards model. In the proportional hazards 
model, the cross-validation for tuning parameter 
selection was performed. The β value represented the 
regression coefficient of the corresponding integrated 
DEMRG in this model. The risk score was calculated 
for the gene expression level with the following 
formula[17]:

Risk score=β1×gene1+β2×gene2+β3×gene3……+βn×genen

Specifically, the order number of relevant genes in 
the model was defined as “n”; the regression coefficient 
of a gene was defined as “β”; and gene indicated the 
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expression level of the nth key gene for each sample, 
respectively.

Moreover, according to the median risk score, 
samples were divided into low- and high-risk groups. 
The accuracy of this model was evaluated using 
receiver operator characteristic (ROC) curves. In 
addition, a Kaplan–Meier curve was made to assess the 
prognostic value of the multivariate model. Then the 
risk curve and scatter plot were constructed to reorder 
these samples. In order to test the prognostic value 
of the risk score in relation to demographics, clinical 
stages, and TNM stages, multivariate Cox analysis was 
performed.
1.6 Identification of Potential Immune Cells, 
Immune Gene Sets, and Hallmark Gene Sets 

Due to the crucial roles of the immune 
microenvironment in the tumorigenesis of DLBCL, 
we further evaluated the fraction of immune cells and 
immune gene sets between normal PBMC and DLBCL 
blood, utilizing cell type identification by estimating 
the relative subsets of RNA transcripts (CIBERSORT). 
Samples with a CIBERSORT output of P<0.05 were 
extracted. Further, the Wilcoxon rank-sum test was 
performed to explore the relationship between immune 
cells and DLBCL. Single-sample Gene Set Enrichment 
Analysis (ssGSEA) was also performed to quantify 
22 immune-related gene sets in each sample. Then 
we performed Pearson correlation analysis to identify 
the correlation characteristics of key DEMRGs with 
immune cells and immune gene sets.

Next, Gene Set Variation Analysis (GSVA) and 
Gene Set Enrichment Analysis (GSEA) were used to 
explore potential downstream hallmark pathways of 
DEMRGs. The absolute quantification of 50 hallmark 
signaling pathways was evaluated by GSVA to select 
differentially expressed pathways between normal 
PBMC and DLBCL samples. GSEA was conducted to 
reveal the noteworthy enrichment of upregulated and 
downregulated hallmark gene sets in normal PBMC 
and DLBCL samples. Furthermore, correlations of 
hallmark gene sets of GSVA and GSEA were extracted, 
and the interactional pathways were considered as key 
pathways in DLBCL.
1.7 Identification of Upstream TFs

To further explore the potential mechanism of 
DLBCL, a total of 318 cancer-related TFs were obtained 
from the Cistrome Database (http://cistrome.org/)[11]. 
Co-expression analysis was conducted to identify the 
upstream TFs that were significantly associated with 
the key DEMRGs. TFs with correlation coefficients 
greater than 0.50 were extracted for subsequent 
analysis.
1.8 Co-expression Analysis of TFs, DEMRGs, 
Protein Chips, Immune Genes, Immune Cells, and 
Signaling Pathways

Among DEMRGs, TFs, protein chips, immune 

genes, immune gene sets, and hallmark gene sets, 
Pearson correlation analysis was conducted to 
reconstruct the regulatory network using Cytoscape 
(3.7.1). Further, the protein–protein interaction (PPI) 
network was then established utilizing the String 
database[18]. The interaction relationships between 
DEMRGs and the remaining components were 
controlled with P<0.05 and |correlation coefficient| 
>0.40.
1.9 ChIP-seq Data Analysis

The ChIP-seq data of histone H3 lysine 27 
acetylation (H3K27ac) including 4 DLBLC samples 
were downloaded from the Sequence Read Archive 
(SRA) database (Accession ID: SRP309761), while 
two GM12878 cell line samples were also downloaded 
from the SRA database (Accession ID: SRP007993) 
as the control samples. After removing the duplicate 
and low-quality reads by FastaQC and Trimmomatic 
software, the clean data were aligned to the reference 
genome file (version: Ensemble GRCh38) by HIAST2 
software and sorted by SAMTools software. Only 
the unique mapped read was used for peak calling by 
MACS2 with the parameter of q<0.05. ChIPseeker was 
used for peak assignment annotation. Differentially 
bound region identification was performed by the 
DiffBind package, with FDR<0.05 and log 2-fold-
change >1 or ≤1. Besides, the bamCoverage function 
from deepTools software was used to generate the 
bigwig files, which were visualized by the R package 
of Givz.
1.10 Statistics Analysis

In this study, it was statistically significant only 
when a two-sided P-value was less than 0.05. All 
statistical analyses were performed with R software 
(Institute for Statistics and Mathematics, Vienna, 
Austria; www.r-project.org, version 3.6.1).

2 RESULTS

2.1 DEGs and Functional Annotation 
The analytical procedure is shown in fig. 1. In 

total, 15 303 DEGs were identified between 47 DLBCL 
samples and 337 normal PBMC samples, including 
8722 upregulated genes and 6581 downregulated 
genes. The results are displayed in a heatmap plot (fig. 
2A) and a volcano plot (fig. 2B). 

GO and KEGG analyses were performed to 
annotate the functions of DEGs. The results showed that 
the most significant GO terms for BPs, CCs, and MFs 
were ncRNA metabolic process, mitochondrial inner 
membrane, and sulfur compound binding, respectively 
(fig. 2C). The results of KEGG analysis revealed that 
the functional similarities were mainly enriched in 
cytokine–cytokine receptor interactions (fig. 2D).
2.2 Gene Set Overrepresentation Analysis

In the cluster of C1 to 8 and H, the hallmarks 
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METABOLIC PROCESS and GO LIPID METABOLIC 
PROCESS) were analyzed. Based on them, a total of 
853 DEMRGs were identified. The heatmap plot (fig. 
4A) and volcano plot (fig. 4B) showed their distribution 
between normal PBMC samples and DLBCL samples. 

To avoid over-fitting, Lasso regression was 
conducted, and the top 20 DEMRGs were identified (fig 
4C and 4D). The results showed that GCKR, ACOT4, 
ADORA1, ANKRD1, CCN1, DECR2, EFR3B, GPC6, 
IDI2, PHOSPHO1, PLA2G4E, PRXL2B, and PTGDS 
were extracted for multivariate Cox regression analysis. 
These 13 DEMRGs were incorporated in a proportional 
hazards model to assess the prognosis of DLBCL, in 
which 6 DEMRGs (PLA2G4E, PHOSPHO1, EFR3B, 
IDI2, DECR2, and ACOT4) were considered as risk 
factors while 7 DEMRGs (ADORA1, PRXL2B, 
CCN1, GPC6, PTGDS, ANKRD1, and GCKR) were 
selected as protective factors (fig. 4E). 
2.4 Evaluation of Prognostic Model and 
Identification of Independent Prognostic Factors 

According to the median of the risk score, DLBCL 
samples were divided into low-risk and high-risk 
groups. The scatter dot plots indicated that high-risk 
DLBCL patients had worse survival outcomes than 
those with a low-risk score based on the prognostic-
related DEMRG signature (fig. 5A). A significantly 
different risk score distribution was observed between 

Fig. 1 The flow chart of the analytical processes

in which DEGs were mostly enriched were chr5q31, 
WONG embryonic stem cell core, ALKBH3 target 
genes, MODULE 54, GO ncRNA processing, RPS14 
DN V1 DN, GSE22886 naive B cell vs. neutrophil 
DN, HAY bone marrow neutrophil, and HALLMARK 
E2F targets, respectively (fig. 3A). Further, the DEG 
enrichment degree of HAY bone marrow neutrophils 
ranked first among all hallmarks, indicating that the 
bone marrow immune microenvironment played a 
critical role in DLBCL. Subsequently, a total of 36 
prominent gene sets/pathways were selected (fig. 3B). 
Importantly, apart from gene set chr7p15, almost all 
gene sets/pathways were significantly activated in 
the pathogenesis of DLBCL and were related to cell 
metabolism (REACTOME rRNA processing[19], GO 
ribosome biogenesis[20], GO ribosomal subunit[20], 
and hallmark HEME metabolism[21]), immunity (GO 
secretory granule membrane[22], GO specific granule[22], 
GSE22886 naive B cell vs. neutrophil DN, GSE29618 
monocyte vs. PDC UP, GSE18893 TCONV vs. Treg 
24h TNF STIM UP, HAY bone marrow neutrophil, 
and hallmark TNFA signaling via NFKB), DNA repair 
(ALKBH3 target genes)[23], and cell cycle progression 
(hallmark E2F targets)[24].
2.3 Construction of Multivariate Prognostic Model

The expression levels of 1551 metabolism-
related genes from two GO gene sets (GO GLUCOSE 

RNA sequencing profiles of 47 DLBCL samples and 337 
normal peripheral blood samples were collected from the 
Cancer Genome Atlas (TCGA) and the Genotype-Tissue 
Expression Portal (GTEx). A total of 1 551 metabolism 
related genes (MRGs) were retrieved from two 
metabolism-related Gene Ontology (GO) items.

318 cancer-related TFs were obtained from the Cistrome 
database.
Differential expression analysis was performed 
to identify key TFs.

Differential expression analysis, functional enrichment 
analysis, GSORA analysis. 
Identification of differential expressed metabolism related 
genes (DEMRGs).

Construction and evaluation of the prognostic model based
on DEMRGs.

Identification of key immune cells, immune pathways via 
CIERSORT and ssGSEA. 
Identification of key hallmark gene sets via GSVA and 
GSEA.

Identification of key protein chip via differential expression
analysis.

DEMRGs, 22 types of immune cells, 26 immune-related gene sets, 50 hallmark gene sets (signaling pathways) acquired by the 
Gene Set Vanation Analysis (GSVA) and 318 transcription factors (TFs) obtained from Cistrome database were integrated into 
co-expression analysis. 

Connectivity Map (CMap) analysis was performed to select the potential small-molecule inhibitors specific to key MRGs 
in DLBCL.
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Fig. 2 The differentially expressed genes (DEGs) and functional enrichment analysis between diffuse large B-cell lymphoma (DLBCL) 
samples and normal peripheral blood mononuclear cells (PBMCs) 
The heatmap (A) and volcano plot (B) for DEGs between DLBCL and normal control samples. The functional enrichment 
analysis for DEGs in GO terms (C) and KEGG pathways (D). GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and 
Genomes
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Fig. 3 The gene set over-representation analysis (GSORA) of differentially expressed genes (DEGs) and hallmark pathways
A: the bar plot for GSORA of DEGs and significant hallmark pathways; B: the dot plot for GSORA of DEGs and significant 
hallmark pathways
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Fig. 4 The identification and prognostic model of differentially expressed metabolism-related genes (DEMRGs) between diffuse large 
B-cell lymphoma (DLBCL) and normal control samples
A and B: the heatmap plot (A) and volcano plot (B) of DEMRGs between DLBCL and normal control samples; C: cross-
validation for tuning parameter selection in the proportional hazards model; D: the coefficients in the Lasso regression for 
identifying the top 20 DEMRGs; E: the proportional hazards model based on 13 key DEMRGs

low- and high-risk DLBCL patients (fig. 5B). ROC 
curve analysis was used to determine the specificity 
and sensitivity of the multivariate prognostic model 

(AUC=0.921, fig. 5C). Further, the Kaplan–Meier 
curve showed that the prediction model of the risk 
score had an excellent effectiveness (P<0.001, fig. 5D). 
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Fig. 5 The prognostic roles of differentially expressed metabolism-related genes (DEMRGs) in diffuse large B-cell lymphoma 
(DLBCL) patients
A: the scatter dot plot of each sample reordered by the status score; B: the scatter plot of the samples (green and red represent 
the low-risk and high-risk groups, respectively); C: the receiver operator characteristic (ROC) curve for  prognostic DEMRGs 
[the area under the ROC curve (AUC)=0.921]; D: the Kaplan–Meier curve of overall survival for prognostic DEMRGs; E: the 
risk plot of samples in the low- and high-risk groups (green and red represent the low-risk and high-risk groups, respectively); F 
and G: the univariate (F) and multivariate (G) Cox regression models (yellow and blue represent the univariate and multivariate 
Cox regression model, respectively)
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The scatter plot showed that the high-risk and low-risk 
groups had a high degree of separation. The patients in 
the high-risk group showed a higher mortality than in 
the low-risk group (fig. 5E).

2.5 Clinical Significance of Prognostic Model
To correct the gene expression levels by 

demographics, we integrated the risk score from 
the prognostic model and the clinicopathological 



762 Current Medical Science  42(4):2022

characteristics including age, sex, extra-nodal 
involvement, and therapeutic outcome. Next, 
univariate and multivariate Cox regression analyses 
were performed to explore the independent prognostic 
factors influencing overall survival, which indicated 
that the risk score was an independent prognostic 
factor in the univariate [HR=82.401, 95%CI 
(10.370–654.760), P<0.001, fig. 5F] and multivariate 
[HR=1.036, 95%CI (1.013–1.059), P=0.002, fig. 5G] 
Cox regression models. 

Additionally, the therapeutic outcome was 
identified to have a significant impact on the overall 
survival in univariate [HR=2.188, 95%CI (1.264–
3.788), P=0.005, fig. 5F] and multivariate [HR=9.089, 
95%CI (1.432–57.708), P=0.019, fig. 5G] Cox 
regression models. Interestingly, no prognostic 
significance of age, sex, or extra-nodal involvement 
in DLBCL was observed, which was not consistent 
with our general cognition of malignancies. A possible 
reason for the inconsistency was the limited DLBCL 
sample size, which contributed to the lack of adequate 
representation of the DLBCL patient population.
2.6 Correlation Analysis of Immune Cells/Gene Sets 
and Hallmark Signaling Pathways

Due to the crucial roles of the bone marrow 
immune microenvironment in DLBCL, the immune 
cells and genes in DLBCL were further identified. In 
each sample, the fractions of 22 types of immune cells 
or gene sets are illustrated in fig. 6A. The results of 
the nonparametric test showed the fractions of naive 
B cells (P<0.001), memory B cells (P<0.001), plasma 
cells (P<0.001), CD8+ T cells (P<0.001), memory 
activated T cells (P<0.001), follicular helper T cells 
(P<0.001), regulatory T cells (Tregs) (P<0.001), 
gamma delta T cells (P<0.001), activated natural killer 
(NK) cells (P<0.001), M0 macrophages (P<0.001), M1 
macrophages (P<0.001), M2 macrophages (P<0.001), 
resting dendritic cells (P<0.001), and activated 
dendritic cells (P<0.05) were significantly greater in 
DLBCL samples than in normal PBMC samples, while 
infiltrates of CD4– T cells (P<0.001), resting NK cells 
(P<0.001), monocytes (P<0.001), activated mast cells 
(P<0.001), and neutrophils (P<0.001) were relatively 
fewer in DLBCL samples (fig. 6B). Moreover, ssGSEA 
was performed to identify immune cells and pathways 
that are significantly correlated with DEMRGs and are 
shown in a heatmap plot (fig. 6C).
2.7 Identification of Downstream Signaling 
Pathways and Upstream TFs

The differential expression levels of 50 hallmarks 
of cancer were illustrated between DLBCL and normal 
tissues in a heatmap (fig. 7A) and a volcano map (fig. 
7B). Besides, the differential expression levels of 50 
hallmarks of cancer and immune cells/gene sets were 
further assessed by GSVA and GSEA, respectively 
(fig. 7C and 7D). According to the results of the t-test, 

we illustrated the most significantly up- and down-
regulated hallmark signaling pathways with red and 
green bars, respectively. 

Meanwhile, edgeR was used to identify 
differentially expressed TFs. The heatmap and volcano 
plot illustrated 183 differentially expressed TFs 
extracted from 318 TFs (fig. 7E and 7F). 
2.8 Co-expression Analysis

The co-expression interaction pairs of TFs, 
DEMRGs, protein chips, immune genes, immune cells, 
and hallmark signaling pathways were used to construct 
the regulation network by co-expression Pearson 
correlation analysis (fig. 8A). The co-expression heat 
map shows the regulatory patterns and expression 
levels of the six aforementioned factors (fig. 8B). In 
the co-expression heatmap, the TF regulatory factor X 
5 (RFX5) exhibited a significant co-expression pattern 
with the metabolism-related gene phosphatase, orphan 
1 (PHOSPHO1) (R=0.73, P<0.001). There was a 
significant relationship between PHOSPHO1 and the 
hallmark MYC proto-oncogene (MYC), targeting the 
V2 pathway (R= – 0.56, P<0.001) as well as neutrophil 
1 (R=0.64, P<0.001). There was a significant co-
expression trend between the protein chip INPP4B 
and PHOSPHO1 (R=0.56, P<0.001). Moreover, we 
identified a higher peak of H3K27ac in the region of 
the PHOSPHO1 gene in DLBCL than in human B cells 
(GM12878), indicating the enhanced transcription of 
PHOSPHO1 (fig. 8C).

3 DISCUSSION 
 
DLBCL refers to the most common pathological 

type of NHL, accounting for about 35% of NHL in 
developed countries and up to 60% in developing 
countries[25]. In the tumorigenesis and recurrence of 
DLBCL, metabolic reprogramming is a significant 
feature. In this study, comprehensive bioinformatics 
analysis was performed on metabolism-related genes 
involved in glucose and lipid metabolic processes. 
Based on 13 identified DEMRGs, we constructed a 
prognostic model with a high applicability. In addition, 
our data indicated that the tumorigenesis of DLBCL 
was highly related to the bone marrow immune 
microenvironment; thus, the immune genes and 
immune cells were also identified. In the regulatory 
network, we found that the TF RFX5 might regulate 
the metabolism-related gene PHOSPHO1 and that 
PHOSPHO1 was also associated with MYC targeting 
the V2 pathway and neutrophils.

Metabolic reprogramming is recognized as one 
of the ten new hallmarks of tumor cells[6]. Increased 
glycolysis under normoxic conditions, also known as the 
“Warburg effect,” is considered as a key characteristic 
of human cancers as well as glutamine metabolism[26]. 
A recent study suggests that low pretreatment brain 
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Fig. 6 The differentially expressed immune cell analysis between diffuse large B-cell lymphoma (DLBCL) samples and normal 
peripheral blood mononuclear cells (PBMCs)
A: the bar chart of differentially expressed immune cells between DLBCL and normal PBMC samples; B: the box plot of the 
fraction of immune cells between DLBCL and normal control samples via the Wilcoxon rank-sum test; C: the co-analysis of 
immune cells/pathways by single-sample Gene Set Enrichment Analysis
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Fig. 7 Differential expression signaling pathway analysis between diffuse large B-cell lymphoma (DLBCL) and normal control samples
A and B: the heatmap (A) and volcano plot (B) of signaling pathways between DLBCL and normal control samples by Gene Set 
Variation Analysis (GSVA); C: the bar plot of the t value of the GSVA score; D: the heatmap of immune cells/gene sets between 
DLBCL and normal control samples by GSEA; E and F: the heatmap (E) and volcano plot (F) of transcription factors between 
DLBCL and normal control samples based on the P value and log |Flod change| value
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Fig. 8 The regulatory network of transcription factors (TFs), differentially expressed metabolism-related genes (DEMRGs), immune 
cells/gene sets, protein chips, and signaling pathways 
A: the regulatory network of TFs, DEMRGs, immune cells/gene sets, protein chips, and signaling pathways (Arrows represent 
TFs. Diamonds represent DEMRGs. Ellipses and triangles represent immune cells/gene sets. Hexagons represent protein chips. 
Rectangles represent hallmark signaling pathways); B: the heatmap for the correlation analysis of DEMRGs, TFs, immune cells/
gene sets, protein chips, and hallmark signaling pathways; C: the ChIP-seq of H3K27ac in the region of the PHOSPHO1 gene 
in diffuse large B-cell lymphoma and normal human B cells

glucose metabolism is correlated with a worse outcome 
of patients with DLBCL, and this phenomenon cannot 
be reversed by R-CHOP therapy[27]. In addition, 
overwhelming evidence supports the concept that 
dysregulation of lipid metabolic processes is also one 
of the principal metabolic markers of cancer cells and 
is tightly correlated with the tumorigenesis, metastasis, 
radiosensitivity, and chemosensitivity of multiple 
malignancies, including DLBCL[28]. In aggressive B cell 
lymphoma, substantial transcriptional reprogramming 
associated with increased lipid metabolism has been 
identified; in addition, relevant genetic heterogeneity 
and abnormalities have been observed[29]. Based 
on bioinformatics analysis and multidimensional 
validation, PHOSPHO1 was postulated to be positively 
regulated by RFX5 and to mediate MYC targeting the 
V2 pathway and neutrophils.

RFX5, a TF, belongs to the RFX family of DNA-

binding proteins. RFX5 and CIITA form a complex that 
activates transcription from major histocompatibility 
class Ⅱ (MHCⅡ) complex promoters[30]. Based on 
systematic identification of transcriptional target genes 
of RFX5, it may also be implicated in cancer-related 
pathways such as DNA damage repair, cell cycle, and 
proliferation pathways[31]. In a subset of DLBCL cases, 
loss of MHCⅡ expression has been correlated with an 
extremely poor prognosis in a recent study[32]. These 
results confirmed that the loss of MHCⅡ expression 
in DLBCL patients was probably due to altered 
transcriptional regulation induced by RFX5, which 
has profound biological, prognostic, and potential 
therapeutic implications.

PHOSPHO1, a soluble cytoplasmic phosphatase, 
consists of three peptide motifs belonging to the 
haloacid dehalogenase superfamily[33]. PHOSPHO1 
exhibits high activities toward phosphocholine 
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and phosphoethanolamine (PE). Therefore, it is 
associated with glycerophospholipid biosynthesis[34, 35].
Generally, PHOSPHO1 is correlated with the 
production of inorganic phosphate (Pi) for matrix and 
skeletal mineralization[36]. Activation of cytosolic PE 
metabolism decreases the mitochondrial respiration 
activity and increases glycolysis[37]. Furthermore, 
PE values before cancer treatment are related to the 
response to medication at 6th month and the time 
to therapy failure in DLBCL patients[38]. Therefore, 
an increased level of PHOSPHO1 may be a novel 
biomarker to predict the treatment outcome of DLBCL 
patients and enhanced Warburg effects in DLBCL 
cellular energy metabolism via regulating PE levels. 

MYC targets V2 pathway functions as a cancer-
related pathway to activate cellular proliferation and 
tumorigenesis[39]. The translocation of the MYC gene 
locus (8q24) represents a characteristic biomarker of 
NHL[40]. In the current WHO lymphoma classification, 
high-grade B-cell lymphoma with MYC/BCL2 double-
hit (DH) is considered to be a distinct entity with a dismal 
prognosis after classical immunochemotherapy[41]. 
DLBCL patients with MYC abnormalities demonstrate 
a high-grade morphology, poor clinical outcomes, and 
distinct gene-expression signatures[42]. For patients 
with follicular lymphoma (FL), histopathological 
transformation to high-grade FL and DLBCL is an 
unfavorable step in cancer progression[43]. Oncogene 
MYC activation and cancer microenvironment 
remodeling are implicated in FL progression. An 
increased MYC level might be an immediate outcome 
of genomic aberrations implicated in the MYC locus[44]. 
Various MYC-targeted gene inhibitors have been 
identified and tested, such as Alisertib and Romidepsin, 
which regulate the expression of MYC, and rituximab, 
which targets the translocation of MYC[40]. Thus, drugs 
targeting oncogenes involved in MYC targeting the 
V2 pathway may provide new strategies for DLBCL 
treatment.

CHOP chemotherapy is the first-line treatment 
for patients with DLBCL, and multiple variations 
have been reported with various clinical outcomes, 
such as immune therapies[45, 46]. Also, inflammation 
is considered as playing a fundamental role in 
lymphomagenesis and cancer invasion[47]. Immune cell 
subsets from peripheral blood such as neutrophils can 
offer an indication of inflammation[48]. The neutrophil-
to-lymphocyte ratio (NLR) was identified as a signifi-
cant prognostic marker in DLBCL. More recently, 
specific studies have found important associations 
between the NLR and the time-to-progression, lym-
phoma-specific survival, progression-free survival, 
and overall survival for DLBCL patients treated with 
CHOP-based chemotherapy[49]. Therefore, based on 
in-silico analyses and other studies, neutrophils were 
postulated to be significant therapeutic or prognostic 

biomarkers that might be beneficial for DLBCL 
prognosis prediction and improving therapy for patients 
with this disease.

There were still several inevitable limitations of 
this study. First, the quantity of related data acquired 
from online datasets was statistically incomplete. It 
is far too difficult to reduce the potential error and 
bias by obtaining the same number of samples with 
different sexes, ages, and races, leading to the lack of 
comprehensiveness. Second, despite the results being 
validated by external databases, the sample size was 
limited. Third, the scientific hypothesis was mainly 
based on bioinformatics, and it was not validated by 
exploring the underlying molecular mechanisms. 
Therefore, ChIP-seq and ATAC-seq can be further 
used to determine the direct transcriptional regulation 
pattern between TFs and DEMRGs.

To sum up, our data provide a well-applied model 
based on 13 DEMRGs for the prognosis of DLBCL. 
In addition, our data indicate that PHOSPHO1 is 
positively regulated by RFX5 and mediates MYC 
targeting the V2 pathway and neutrophils.
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