
Article
Robust importance sampli
ng for error estimation in
the context of optimal Bayesian transfer learning
Graphical abstract
Highlights
d A transfer learning (TL) framework for Bayesian error

estimation (BEE) is proposed

d Relatedness between domains is modeled by a joint prior in a

Bayesian paradigm

d TL-based BEE can leverage data from other relevant domains

to improve accuracy

d Data from domains with moderate to high relatedness can

improve BEE outcomes
Maddouri et al., 2022, Patterns 3, 100428
March 11, 2022 ª 2022 The Authors.
https://doi.org/10.1016/j.patter.2021.100428
Authors

Omar Maddouri, Xiaoning Qian,

Francis J. Alexander,

Edward R. Dougherty,

Byung-Jun Yoon

Correspondence
bjyoon@ece.tamu.edu

In brief

Accurate estimation of classification error

is challenging in scientific domains,

where available data are limited. Although

transfer of data and knowledge from

relevant domains can alleviate this issue,

previous studies on transfer learning have

mostly focused on improving the learned

models rather than enhancing the

performance analysis. In this paper, we

propose a transfer learning scheme for

Bayesian error estimation that can

leverage data from relevant domains to

enhance the estimation of classification

error in the domain of interest.
ll

mailto:bjyoon@ece.tamu.�edu
https://doi.org/10.1016/j.patter.2021.100428
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2021.100428&domain=pdf


OPEN ACCESS

ll
Article

Robust importance sampling for error estimation
in the context of optimal Bayesian transfer learning
Omar Maddouri,1 Xiaoning Qian,1,2 Francis J. Alexander,2 Edward R. Dougherty,1 and Byung-Jun Yoon1,2,3,*
1Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
2Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
3Lead contact

*Correspondence: bjyoon@ece.tamu.edu
https://doi.org/10.1016/j.patter.2021.100428
THE BIGGER PICTURE In scientific domains with limited data availability, accurate classification error esti-
mation is practically challenging. Although transfer learning (TL) may provide a promising solution under
such circumstances by learning from data available in other relevant domains, it has not been explored
for enhancing error estimation. Here, we place the problem of estimating the classification error in a
Bayesian paradigm and introduce a TL-based error estimator that can significantly enhance the accuracy
and robustness of error estimates under data scarcity. We demonstrate that our proposed TL-based
Bayesian error estimation framework effectively models and exploits the relatedness between different do-
mains to improve error estimation. Experimental results based on both synthetic data as well as real-world
data show that our proposed error estimator clearly outperforms existing error estimators, especially in a
small sample setting, by tapping into the data from other relevant domains.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Classification has been a major task for building intelligent systems because it enables decision-making un-
der uncertainty. Classifier design aims at building models from training data for representing feature-label
distributions—either explicitly or implicitly. In many scientific or clinical settings, training data are typically
limited, which impedes the design and evaluation of accurate classifiers. Atlhough transfer learning can
improve the learning in target domains by incorporating data from relevant source domains, it has received
little attention for performance assessment, notably in error estimation. Here, we investigate knowledge
transferability in the context of classification error estimation within a Bayesian paradigm. We introduce a
class of Bayesian minimum mean-square error estimators for optimal Bayesian transfer learning, which en-
ables rigorous evaluation of classification error under uncertainty in small-sample settings. Using Monte
Carlo importance sampling, we illustrate the outstanding performance of the proposed estimator for a broad
family of classifiers that span diverse learning capabilities.
INTRODUCTION

Transfer learning (TL) provides promising means to repurpose

the data and/or scientific knowledge available in other relevant

domains for new applications in a given domain. The ability to

transfer relevant data/knowledge across different domains prac-

tically enables learning effective models in target domains with

limited data. Classifier design can take advantage of TL to

address small-sample challenges we often face in various scien-

tific applications. However, rigorous error estimators that can
This is an open access article under the CC BY-N
leverage such transferred data/knowledge for better estimation

of classification error have been missing to date, which makes

the design framework epistemologically incomplete.1 Generally,

the scientific validity of any predictive model is assessed by the

ability to generalize outside the observed training sample. How-

ever, the available sample is often too small inmany scientific ap-

plications (e.g., bio-marker discovery) to hold out sufficient data

just for testing purpose, which makes the reuse of training data

for both classifier design and error estimation inevitable. While

various error estimation schemes exist to date, their accuracy
Patterns 3, 100428, March 11, 2022 ª 2022 The Authors. 1
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and reliability in a small-sample setting are often questioned.2

For instance, in Dalton and Dougherty3 many classification

studies of cancer gene expression data have been listed where

the performance was assessed by cross-validation (CV) based

on small-size training datasets. Analyses in Braga-Neto and

Dougherty4 have shown that CV error estimators derived based

on small-size samples show large variance, which explains the

controversy across many biological studies that relied on data-

driven CV.5 Model-based error estimation also faces practical

challenges as non-informative modeling assumptions may

mislead the error estimators in case of model mismatch.

The ability for accurate error estimation based on small sam-

ples is also critical in other contexts, an example being continual

learning,6 where a series of labeled datasets are sequentially fed

to the learner as in realistic learning scenarios. In recent years,

continual learning regained attention as a promising strategy

for avoiding ‘‘catastrophic forgetting’’ that may arise when the

training data are split for a series of small learning operations

called tasks.7 Such a continual learning setting is becoming

prevalent these days, where retaining the observed training

data is either undesirable (confidentiality) or intractable (high-

throughput systems), and developing reliable task-specific error

estimators is indispensable. For instance, an intuitive approach

to continual learning from a Bayesian perspective is to leverage

the posterior of the current task to update the prior of the next

task.8 However, analysis in Farquhar and Gal9 has shown that

evaluation approaches for this prior-focused setup suffer from

severe bias in realistic scenarios, particularly for finely parti-

tioned data. Recent work in Goodfellow et al.10 provided a solu-

tion for test data scarcity by reusing the same test set in the

context of a continuously evolving classification problem. To

avoid overfitting the test data, the authors employed a reusable

holdout mechanism based on the area under the receiver oper-

ating characteristic curve metric. Nevertheless, this approach

remains contingent on the availability of an independent test

set. For these reasons, there is a pressing need to develop novel

error estimators that can effectively overcome data scarcity lim-

itations. For assessing different classification models in the

context of small-size training datasets, having an accurate error

estimator with TL capabilities that can take advantage of relevant

datasets in other domains would be highly beneficial. Such an

estimator would be readily applicable to continual learning as

cross-task datasets can be seen as related source-target

samples.

In the next sections, we provide a brief review of the standard

error estimation techniques along with prevalent TL scenarios. A

more comprehensive review can be found in the supplemental

information, sections 3 and 5.

For unknown feature-label distributions, the classification er-

ror of a given classifier is typically estimated by leveraging a

large sample collected from the true distribution. However,

limiting factors, such as the excessive cost of large-scale

data acquisition, make it often infeasible to collect and hold

out large test sets. Consequently, the available small-size sam-

ple may have to be used for both training and evaluating the

classifier, and researchers have strived to devise practical

methods for accurate error estimation. Existing error estimation

schemes can be broadly categorized into parametric and non-

parametric methods. Non-parametric estimators compute the
2 Patterns 3, 100428, March 11, 2022
error rate by counting the misclassified points, where widely

used estimators include the resubstitution, CV, and bootstrap

estimators. Parametric methods include the popular plug-in

estimator that naively estimates the true error from an empirical

model. The Bayesian minimum mean-square error estimator

(BEE) proposed in Dalton and co-workers3,11 is another bench-

mark parametric estimator that significantly enhances the

robustness by computing the expected true error with respect

to the posterior of the model parameters. The BEE has shown

notable improvements over standard estimators as it effectively

handles the uncertainty about the underlying feature-label

distribution.3,11

Recently, TL has emerged as an alternative to provide rem-

edies for pitfalls caused by training data scarcity in a target

domain by utilizing available data from different yet relevant

source domains.12 Based on the properties of source and target

domains, two scenarios of TLmay arise. The first one, commonly

known as ‘‘homogeneous TL,’’ occurs when the source and

target domains share the same feature space. The second sce-

nario is called ‘‘heterogeneous TL’’ and is considered when dif-

ferences exist between domains in terms of their feature space

or data dimensionality. In practice, the most common setting

for TL, known also as domain adaptation, assumes similar fam-

ilies of feature-label distributions across domains.

In this study, we propose a TL framework for robust estima-

tion of classification error based on a rigorous Bayesian para-

digm. To the best of our knowledge, this study is the first

work on TL-based BEE, which can significantly enhance our

understanding of transferability across domains in the context

of error estimation. Building on the Bayesian transfer learning

framework proposed in Karbalayghareh et al.,13 we introduce

a TL-based BEE estimator that can enhance the error estima-

tion accuracy in the target domain by utilizing the data available

in a relevant source domain based on the joint prior of their

feature-label distributions. We present a rigorous study of error

estimation in the context of Bayesian TL and show that our pro-

posed TL-based BEE effectively represents and exploits the

relatedness (or dependency) between different domains to

improve error estimation in a challenging small-sample setting,

where the number of observed data points from the target

domain of interest is in the range of 5–50. For applicability of

the proposed TL-based BEE estimator in real-world problems

for arbitrary classifiers, we introduce an efficient and robust

importance sampling setup with control variates where the

importance density and the control variates function are care-

fully defined to reduce the variance of the estimator while keep-

ing the overall sampling process computationally feasible and

scalable. For this purpose, we utilize Laplace approximations

for fast evaluation of matrix-variate confluent and Gauss hyper-

geometric functions. The performance of the TL-based BEE

estimator is extensively evaluated using both synthetic data-

sets as well as real-world biological datasets. As our main

focus in this study is the estimation of classification error, we

consider a variety of existing classifiers with different levels of

learning capabilities to demonstrate the general applicability

of our TL-based BEE estimation scheme. We also show the

outstanding performance of the proposed estimator with

respect to standard error estimation techniques that are

commonly used.
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RESULTS AND DISCUSSION

Overview of the proposed Bayesian error estimation
via TL
We propose a class of Bayesian minimum mean-square error

(MMSE) estimators for TL where the observed sample is a

mixture of source and target data. The basic classification

setting and a brief review of the standard BEE estimator are pre-

sented in the supplemental information, sections 2 and 4. For

symbols and notations, see Table S1.

Rooted in signal estimation, the BEE has been motivated by

optimal filtering for functions of random variables.3 For a function

of two random variables gðX;YÞ, the optimal estimator bgðYÞ of a
filter gðYÞ after observing only Y in the mean-square sense is

given by

bgðYÞ = EX ½gðX;YÞjY �: (Equation 1)

Replacing X with the parameter vector q of the feature-

label distribution and Y by the sample Sn (of size n), leads to

the standard BEE that has been introduced in Dalton and Dough-

erty3 as

bεðSnÞ = Eq½εnðq;SnjSnÞ�: (Equation 2)

In TL, the sample Sn is a mixture of source and target data

such that Sn = ðDsWDtÞn, with n = Ns +Nt, and the classifier

jn is designed either on Dt, Ds, or DsWDt. We note that Ds

and Dt are two labeled datasets from the source and target do-

mains with sizesNs andNt, respectively (see Bayesian TL frame-

work for binary classification, for generation details). This re-

quires close attention as the TL-based BEE is valid only for

fixed classifiers given the sample. This assumption carries limita-

tions. For instance, classifiers that are only fixed givenDt but not

Ds, are not deterministic for every set of parameters estimated

based on DsWDt. In this paper, we introduce the TL-based

BEE defined as

bε�ðDsWDtÞn
�
= Eq

�
εn

�
q; ðDsWDtÞn

���ðDsWDtÞn
�
; (Equation 3)

where q= ½qt; qs� denotes the parameter vector of the joint model

formed by the target parameters qt and the source parameters

qs. For a fixed classifier given ðDsWDtÞn, this estimator is optimal

on average in the mean-square sense and unbiased when aver-

aged over all parameters and samples. For classification in the

target domain, the posterior density p�ðqÞ reduces to the poste-

rior of the target parameters after observing the target and

source data and takes the form

p�ðqtÞ = p�ðqtjDs;DtÞ; (Equation 4)

where p�ðqtjDs;DtÞ is obtained by marginalizing out the

source domain parameters. Ultimately, the BEE for TL takes

the form

bε�ðDsWDtÞn
�
= Eqt

�
εn

�
qt; ðDsWDtÞn

���ðDsWDtÞn
�

=Ep�ðqtÞ
�
εn

�
qt; ðDsWDtÞn

��
:

(Equation 5)

For the sake of simplicity we write

bε = Ep� ½εn�; (Equation 6)
where p� =p�ðqtjDt;DsÞ denotes the posterior of the target pa-

rameters after observing the hybrid sample DtWDs.

Experiments and datasets
To evaluate the performance of the proposed error estimator, we

consider the mean-square error (MSE) as a performance mea-

sure to understand the joint behavior of the classification error

εn and its estimate bε. For the random vector ðεn;bεÞ, the MSE is

defined as

MSEðbεÞ = E
h
jbε � εnj2

i
: (Equation 7)

In what follows, we present an overview of the experimental

setup for demonstrating the performance of the proposed TL-

based BEE based on three different types of classifiers (see

experimental procedures, sections 4.5 and 4.6 for more details)

applied to both synthetic data as well as real-world biological

datasets.

Bayesian TL framework for binary classification
We consider a binary classification problem in the context of su-

pervised TL where there are two common classes in each

domain. Let Ds and Dt be two labeled datasets from the source

and target domains with sizes Ns and Nt, respectively. We

are interested in the scenario where Nt � Ns. Let Dy
s = fxys;1;

xys;2; /; xys;nsg, y˛f0;1g, where nys denotes the size of source

data in class y. Likewise, let Dy
t = fxyt;1; xyt;2;/; xyt;ntg, y˛f0;1g,

where nyt denotes the size of target data in class y. We consider

a d-dimensional homogeneous transfer learning scenario where

Ds and Dt are normally distributed and separately sampled from

the source and target domains, respectively.

xy
z �N

�
my
z ;
�
Ly

z

��1
�
; y˛f0;1g; (Equation 8)

where z˛fs;tg, my
z is a ðd31Þmean vector in domain z for class y,

and Ly
z is a ðd3dÞ precision matrix (inverse of covariance) in

domain z for label y. An augmented feature vector xy =

"
xyt
xys

#
is

a joint sample point from two related source and target domains

given by

xy �N
�
my ; ðLyÞ�1

�
; y˛f0;1g; (Equation 9)

with

my =

"
m
y
t

my
s

#
;Ly =

"
L

y
t L

y
ts

L
yT
ts Ly

s

#
; (Equation 10)

where XT denotes the transpose of matrix X. This sampling is

enabled through a joint prior distribution forLy
s andL

y
t that mar-

ginalizes out the off-diagonal block matrix L
y
ts. Using a

Gaussian-Wishart distribution as the joint prior for mean and pre-

cision matrices, the joint model factorizes as

p
�
my
s;m

y
t ;L

y
s;L

y
t

�
= p
�
my
s;m

y
t

��Ly
s ;L

y
t

�
p
�
Ly

s;L
y
t

�
: (Equation 11)

For conditionally independent mean vectors given the covari-

ances, the joint prior in (Equation 11) further factorizes into
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Table 1. Independent schizophrenia RNA-seq datasets sampled

from two different brain tissues

Disease No. of samples Brain region Dataset

Case Control

Schizophrenia 53 53 frontal cortex syn459090914

262 293 DLPFC syn275979216

Total 315 346
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p
�
my
s;m

y
t ;L

y
s ;L

y
t

�
= p
�
my
s

��Ly
s

�
pðmy

t jLy
t Þp
�
Ly

s;L
y
t

�
: (Equation 12)

The block diagonal precision matrices Ly
z for z˛ft; sg are ob-

tained after samplingLy from a predefined joint Wishart distribu-

tion as defined in Karbalayghareh et al.13 such thatLy �W2dðMy;

nyÞ, where ny is a hyperparameter for the degrees of freedom that

satisfies nyR2d andMy is a ð2d32dÞ positive definite scale ma-

trix of the form

My =

 
My

t My
ts

MyT
ts My

s

!
: (Equation 13)

My
t and My

s are also positive definite scale matrices and Mts de-

notes the off-diagonal component that models the interaction

between source and target domains. Given Ly
z , and assuming

normally distributed mean vectors, we get

my
z �N

�
my

z ;
�
kyzL

y
z

��1
�
; z˛fs; tg and y˛f0;1g; (Equation 14)

where my
z is the ðd31Þ mean vector of the mean parameter my

z

and k
y
z is a positive scalar hyperparameter. The joint prior distri-

bution pðLy
s;L

y
t Þ as derived in Karbalayghareh et al.13 acts like a

channel through which the useful knowledge transfers from the

source to the target domain, causing the posterior of the target

parameters of the underlying feature-label distribution to be

distributed more narrowly around the true values.

Synthetic datasets

To simulate and verify the extent of knowledge transferability

across domains, we consider a wide range of joint prior densities

that model the different levels of relatedness between the source

and target domains. The proposed setup is as follows. We

consider a binary classification problem in the context of homo-

geneous TL with dimensions 2, 3, and 5. In the simulated data-

sets, the number of source data points per class varies between

10 and 500 and between 5 and 50 for target datasets. This

mimics realistic settings of small-size sample conditions (espe-

cially in the target domain) as reported in the literature.3 We set

up the data distributions as follows. n = ny = d + 20, kt = k
y
t =

100, ks = k
y
s = 100, m0

t = 0d, m
1
t = w3 1d, m

0
s = m0

t + 103

1d, m
1
s = m1

t + 103 1d, where w is an adjustable scalar used

to control the Bayes error in the target domain, and 0d and 1d
are d31 all-zero and all-one vectors, respectively. For the scale

matrices of Wishart distributions we set My
t = ktId, M

y
s = ksId,

and My
ts = ktsId, where Id is the identity matrix of rank d. To

ensure that the joint scale matrix My =

 
My

t My
ts

MyT
ts My

s

!
is positive

definite cy˛f0;1g, we set kts =a
ffiffiffiffiffiffiffiffi
ktks

p
with kt>0, ks> 0, and
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jaj<1. As in Karbalayghareh et al.,13 the value of jaj controls
the amount of relatedness between the source and target do-

mains (see experimental procedures, section 4.6, for more de-

tails). To control the level of relatedness by adjusting only jaj
without involving other confounding factors, we set kt = ks = 1

such that My
ts = a Id. In this setting, the correlation between

the features across source and target domains are governed

by jaj, where small values of jaj correspond to poor relatedness

between source and target domains while larger values imply

stronger relatedness. To sample from the joint prior, we first

sample from a non-singular Wishart distribution W2dðMy; nÞ to

get a block partitioned sample of the form Ly =

 
L

y
t L

y
ts

L
yT
ts Ly

s

!
from which we extract ðLy

t ; Ly
sÞ. Afterward, we sample

m
y
z � Nðmy

z ; ðkyzLy
zÞ�1Þ for z˛fs; tg and y˛f0; 1g. In our simula-

tions we use two types of datasets: training datasets that contain

samples fromboth domains and testing datasets that contain only

samples from the target domain. In all the simulations we consider

testing datasets of 1,000 data points per class and we assume

equal prior probabilities for the classes.

RNA sequencing datasets

To evaluate the performance of the TL-based BEE on real-world

data, we consider classifying patients diagnosed with schizo-

phrenia using transcriptomic profiles collected from psychiatric

disorder studies.14 Based on two RNA sequencing (RNA-seq)

datasets listed in Table 1, we selected the transcriptomic profiles

of three genes, based on a stringent feature selection procedure

comprising the analysis of differential gene expression, clus-

tering of gene-gene interactions, and statistical testing for multi-

variate normality. More specifically, we focus on analyzing the

astrocyte-related cluster of differentiation 4, found to be signifi-

cantly upregulated in subjects with schizophrenia.14 We select

the top three hub genes that collectively satisfy the Royston’s

multivariate normality test applied to the full datasets for both

classes at a significance level of 99%. The identified genes satis-

fying all the aforementioned criteria include SOX9, AHCYL1, and

CLDN10, with an average module centrality of 0.86 measured by

genes’ module membership (kME).14 In addition to normalization

and quality control performed in Gandal et al.,14 the selected fea-

tures in both datasets have been further standardized to zero

means and unit variances across both classes as in Karbalay-

ghareh and co-workers.13,15

We consider the dataset syn2759792, sampled from the brain

dorsolateral prefrontal cortex (DLPFC) area, as a target dataset

and syn4590909, sampled from the frontal cortex (FC) region,

as a source dataset. Among 555 postmortem brain samples in

syn2759792, we randomly draw 5 samples per class as training

data and we use the remaining samples to evaluate the classifi-

cation error. This process is repeated 10,000 times to estimate

the averageMSE deviation of the TL-based BEE from the true er-

ror. To determine the model hyperparameters, we assume

shared values for case and control samples in source and target

domains and we set n = 103 d = 30, nt = 5. As jaj represents a
cross-domain property, we employ the TL-based BEE to

conduct an exhaustive greedy search for jaj˛f0:01;0:05;0:1;
0:15;0:2; 0:25;0:3; 0:35;0:4;0:45;0:5;0:55;0:6;0:65;0:7;0:75;

0:8; 0:85; 0:9; 0:95;0:99g in the task of estimating the true
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Figure 1. Effect of source data on the perfor-

mance of the TL-based BEE for quadratic

classifiers

MSE deviation from true error for Gaussian distri-

butions with respect to source sample size. The

Bayes error is fixed at 0.2 in all subfigures. For direct

evaluation and higher dimensions, see Figures S2

and S3.
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classification error by leveraging data points from a source

domain dataset. In our hyperparameter tuning experiments, we

consider source datasets of different sizes (ns˛f10;30; 50g)
and we retain the value of jaj that leads to the smallest MSE de-

viation from the true error across all the experiments. At each

iteration, we randomly permute the source samples for statistical

significance. The remaining parameters are set as follows: kt =

nt, ks = ns, and kt = ks = 1
n
, such that the mean of the Wishart

precision matrices will be equal to the identity matrix, which

matches the normal standardization. For mean vectors mt and

ms, we pool all case and control samples in each domain and

consider their means, respectively.

Performance on synthetic datasets
We start by evaluating the performance of the proposed TL-

based BEE in estimating the Bayes error, which corresponds

to the true error of the quadratic discriminant analysis (QDA)

(see experimental procedures, section 4.5) in the target domain,

for different levels of jaj and different size combinations of the

utilized source and target datasets.

In Figure 1, we investigate the behavior of the TL-based BEE

when the target data are fixed while we vary the size of the

source data. We show the results for d = 2 in the first column,

the results for d = 3 in the second column, and the results for

d = 5 in the last column. The rows correspond to the results for

target datasets with different sizes: nt = 20 on the top and nt =

50 on the bottom. The MSE curves show similar trends for all

three values of d, where we can see that the deviation of the error

estimate from the true error significantly decreases when highly

related source data are employed. This behavior diminishes as

the relatedness between the two domains decreases. Notably,

using large source datasets (nsR200) of moderate to small relat-

edness values (jaj%0:7) does not negatively impact the perfor-

mance of the estimator for low dimensions (d˛f2; 3g) as shown

in the first and second columns of Figure 1. As the dimensionality

further increases (d = 5), relying on large source datasets with
moderate or poor relatedness to the target

domain slightly increases the deviation of

the estimated error from the true error

(i.e., jaj= 0:7 in the third column). This

tiny asymptotic deviation is explained by

potential undesirable effects of relying on

large source datasets of modest related-

ness. However, it is important to note

that the proposed TL-based BEE in the

context of the given Bayesian TL frame-

work suppresses this behavior, as it does

not directly depend on the source data

but the information transfer occurs
through the joint prior. The joint prior acts like a bridge through

which the useful knowledge passes from the source to the target

domain. Effects of using source data in different TL settings

(especially, a non-Bayesian setting) may require further investi-

gation. Moreover, the simulation results in different columns

show that the MSE deviation decreases as we rely on larger

target datasets. However, the gain in performance as we use

additional source data is reduced when target data are more

abundant. This is illustrated by the slope of the MSE graphs

that flattens as nt increases. Finally, Figure 1 shows that, for

higher dimensions, the MSE deviation tends to increase. This

is expected as increasing the dimensionality generally leads to

a more difficult error estimation problem.

Next, Figure 2 shows the MSE deviation with respect to the

size of the target dataset for dimensions 2, 3, and 5. The first

row corresponds to the case of using source datasets of size

ns = 50 and the second row shows the results for ns = 200.

The performance of the TL-based BEE estimator improves with

the increasing availability of target data. We can also clearly

see that the MSE deviation from the true error asymptotically

converges to comparable values for all relatedness levels.

When highly related source data are available, the TL-based esti-

mator yields accurate estimation results even when the target

dataset is small. These results consolidate the findings in Figure 1

about the redundancy of source data in the presence of abun-

dant target data. Across all graphs in Figure 2, we can see that

a relatedness coefficient jaj= 0:95 results in a nearly constant

deviation from the true error as a function of target data size,

which suggests that highly related source data jaj>0:95 act

almost identically like the target data, regardless of the shift

across the domains in terms of their means. Similar to the trends

shown in Figure 1, results across different columns of Figure 2

demonstrate that the error estimation difficulty increases with

the increase of dimensionality. This is clearly reflected in the

MSE deviation from the true error in Figure 2, which shows

that, as the dimension increases from d = 2 (first column) to
Patterns 3, 100428, March 11, 2022 5
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Figure 2. Effect of target data on the perfor-

mance of the TL-based BEE for quadratic

classifiers

MSE deviation from true error for Gaussian distri-

butions with respect to target sample size. The

Bayes error is fixed at 0.2 in all subfigures.
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d = 5 (last column), the MSE increases by one order of

magnitude.

Now, we aim at investigating the effect of classification

complexity on the performance of the proposed TL-based

BEE. To this end, we conduct simulations, in which we vary

the Bayes error through a wide range of possible values and

evaluate the TL-based BEE at each given Bayes error for

different sizes of target data while using source datasets of a

fixed size ns = 200. In binary classification, the Bayes error has

an upper bound specified by the true error of random classifica-

tion, which is 0.5, as every data point can be randomly assigned

one of the class labels. Ideally, we would vary the Bayes error

across the interval ½0;0:5� as in Dalton and Dougherty.11 How-

ever, in our setup, we do not impose any structure on the covari-

ance matrices, nor do we assume that they are scaled identities.

This makes the control of the Bayes error much more difficult. In

addition, the joint sampling setup within our Bayesian TL frame-

work inhibits any modification of the randomized parameters.

Consequently, the only practical way to adjust the Bayes error

is to tune the mean vector parametersmy
t that specify themeans

for the class mean vectors m
y
t with y˛f0;1g. In our experiments,

we were able to fully control the Bayes error for d = 2 and we

considered the following values ½0:05; 0:1; 0:15; 0:2; 0:25; 0:3;
0:35;0:4;0:45;0:5�. Achieving the same range of values for d =

3 and d = 5wasmore challenging, and our implemented heuristic

did not converge for high values of Bayes error as setting m0
t =

m1
t did not help in increasing the Bayes error. However, we

were able to vary the Bayes error for d = 3 within the range

½0:05;0:1;0:15;0:2;0:25;0:3;0:35;0:4;0:45�, and for d = 5, within

½0:05;0:1;0:15;0:2;0:25;0:3;0:35;0:4�, sufficient for observing the

trends.

Figure 3 shows theMSEdeviationwith respect to theBayes er-

ror for dimensions 2, 3, and 5. Results in the first row are obtained

using target datasets of size 20 and those in the second row are

obtained using target datasets of size 50. We can see that the
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Bayesian MMSE estimator performs best

when using source data of high related-

ness to the target domain as expected.

For Bayes error in the range ½0:25; 0:35�,
the MSE deviation from the true error is

very high, whichmakes this range of Bayes

error as themost challenging setting for er-

ror estimation. For a Bayes error of 0.2, the

MSE deviation is average across all the ex-

periments, which confirms the validity of

our previous assumption in selecting this

value to investigate classification prob-

lems of moderate difficulty. We note that

the TL-based BEE shifts the performance

in favor of low and high Bayes error levels.

Indeed, the TL-based BEE performswell in
this case because the estimated target parameters are suffi-

ciently accurate, even with a small target sample.

In addition to investigating the effect of different relatedness

levels between source and target domains, in Figure 4 we have

examined the performance of the TL-based BEE for the case

when the source class means are swapped between the two

classes, such that they show opposite trends compared with

the classmeans in the target domain. For this purpose, we repro-

duced the experiments in Figure 1 after flipping the class means

of source datasets with respect to the target classes (i.e., my
s =

m1�y
t , for y˛f0; 1g). In the first row of Figure 4, we use the

generated source datasets as observed samples from the source

domain. Interestingly, the obtained resultsmatch those observed

in Figure 1. This postulates that the knowledge transfer across

source and target domains in the context of the studied Bayesian

TL framework does not depend on the arrangement of the class

means in the sourceand target domainsbut only restson the level

of relatedness between the two domains. For verification, we

have intentionally considered the same source datasets in the

previous experiment as target datasets for estimating the TL-

based BEE and we plotted the obtained results in the second

row of Figure 4. Clearly, the TL-based BEE veers away from the

true error as we consider additional source data points. This de-

viation is worse with poorly related source data (jaj = 0:1). These

results confirm previous findings in Karbalayghareh et al.13 that

the joint prior model in the utilized Bayesian TL framework acts

like a bridge that distills the useful knowledge from the source

domain and effectively transfers it to the target domain.

Results from the second set of experiments that use a linear

discriminant analysis (LDA) classifier (see experimental proced-

ures, section 4.5) were similar to the ones obtained using the

QDA classifier except for some differences in the performance

of the TL-based BEE with respect to the Bayes error that we

report in Figure 5 (see supplemental information, section 8, for

additional results). The TL-based BEE performance has similar
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Figure 3. Effect of the classification

complexity on the performance of the TL-

based BEE for quadratic classifiers

MSE deviation from QDA true error with respect to

Bayes error. Source sample size was set to ns = 200

in all subfigures.
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trends with respect to small and moderate Bayes errors when

compared with the presented results obtained using the QDA

classifier. A notable difference here is observed for large values

of Bayes error where the TL-based BEE shows decreased per-

formance in terms of MSE deviation from the true error, which

is due to the fact that the employed LDA classifier is sub-optimal

compared with the Bayes classifier. This is expected as linear

decision boundaries tend to be more sensitive to deviations

from true model parameters for highly overlapping class-condi-

tional distributions. In our final set of experiments using synthetic

datasets, we compare the performance of the proposed TL-

based BEE to standard error estimators for different dimensions

and various source datasets of relatedness level jaj= 0:9 to the

target domain for an optimal Bayesian transfer learning (OBTL)

classifier (see experimental procedures, section 4.5). In Figure 6,

we show the MSE deviation with respect to different target data-

set size. As clearly shown, our proposed TL-based BEE signifi-

cantly outperforms all other standard error estimators by a sub-

stantial margin. In agreement with previous findings in the

literature, the standard error estimators perform comparably

for low dimensions (i.e., d = 2), where the bootstrap may show

a slight advantage. As the dimensionality increases (i.e., d =

5), the performance shift of the studied estimators becomes

more apparent. For example, the resubstitution estimator per-

forms poorly in the small-sample regimewhile the bootstrap esti-

mator outperforms leave-one-out cross validation (LOO) andCV.

Furthermore, we noticed that increasing the size of the source

dataset does not lead to any apparent performance improve-

ment for the standard estimators. This is because these estima-

tors do not directly depend on the source data for error estima-

tion (as they are incapable of taking advantage of data from

different yet relevant domains). However, providing additional

source data to the TL-based BEE considerably reduces the

MSE deviation from the true error for all dimensions as shown

in Figure 6.
Performance on real-world RNA-
seq datasets
To analyze the performance of the TL-

based BEE on real-world data, we have

trained a QDA classifier on a small target

dataset that consists of five sample points

per class extracted from syn2759792 in

Table 1. Using different source datasets

collected from syn4590909, we show in

Figure 7A the MSE deviation of the TL-

based BEE from the true error with

respect to jaj.
For all combinations and different sizes

of source datasets, the FC brain region

showed high relatedness to the DLPFC

brain area where the optimal MSE devia-
tion from the true error was obtained for jaj = 0:99. Interest-

ingly, findings in Gandal et al.14 also confirm that syn4590909

and syn2759792 are highly related, as independent gene

expression assays for both brain regions have consistently

replicated the gradient of transcriptomic severity observed for

three different types of psychiatric disorders, including bipolar

disorder and schizophrenia.14 We note that the significant

decrease in the MSE deviation from the true error in Figure 7A

corresponds to the boost in performance caused by increasing

jaj from 0.01 to larger values. This can be explained by the high

relatedness between the two studied domains. Indeed,

assuming very poor relatedness (i.e., jaj = 0:01) between the

domains, deviating from the ground truth of high relatedness

results in a very large MSE. We show in Figure 7B the

increasing gain in accuracy of the TL-based BEE in estimating

the classification error after using additional labeled observa-

tions from the source domain. These results again confirm

the efficacy and advantages of our TL-based error estimation

scheme, compared with other standard error estimation

methods, when additional data are available from different

source domains that are nevertheless relevant to the target

domain. From a practical perspective, our proposed TL-based

BEE has the potential to facilitate the analysis of real-world da-

tasets in the context of small-sample classification. Challenges

of designing and evaluating classifiers (e.g., for clinical diag-

nosis or prognosis) in a small-sample setting are prevalent in

scientific studies in life sciences and physical sciences due to

the formidable cost, time, and effort required for data acquisi-

tion. This is certainly the case for the example that we consider

in this section, where invasive brain biopsies would be needed

to get the data.

Insights gained
In this section, we summarize the insights gained from our ana-

lyses, which demonstrate the potential advantages of applying
Patterns 3, 100428, March 11, 2022 7
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Figure 4. Effect of the arrangement of the

class means in the source and target do-

mains on the performance of the TL-based

BEE

MSE deviation from true error with respect to

source sample size. The source class means are

flipped with respect to target classes ( my
s = m1�y

t ,

for y˛f0;1g). In the first row, the source datasets

are correctly considered as source samples. In the

second row, the source datasets are intentionally

considered as target samples. The Bayes error is

fixed at 0.2 and d = 5.
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TL to the estimation of classification errors. Our results have

shown that incorporating data and knowledge from relevant

source domains is helpful to significantly enhance the classifi-

cation error estimation accuracy. When an appropriate source

domain is identified, the efficiency of the knowledge transfer

process depends on the correlation of the features across do-

mains, rather than the class-conditional mean values of the fea-

tures, with our problem setups. From an error estimation

perspective, our investigation has revealed that, unlike classi-

fier design, the most challenging setting for error estimation

arises in classification problems of moderate complexity in

terms of Bayes error. When source datasets that are at least
A B C

D E F
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modestly relevant to the target domain

of interest are available, knowledge trans-

fer to the target domain by appropriate

modeling of the joint prior could enhance

both the accuracy and the reliability of the

error estimation. This was validated in our

current study, where the joint prior acts

like a ‘‘channel’’ as well as a ‘‘filter,’’

through which useful relevant knowledge
is passed from the source domain to the target domain. Our re-

sults have shown that using at least 200 data points from a

relevant source domain, whose relatedness level is above

0.7, enables an accurate error estimation even with small target

data (less than 50 sample points). Using real-world biological

data (RNA-seq data), we have shown that the relatedness level

can be empirically determined by exploring the range of

possible values.

Limitations of the study
This section discusses the limitations of our current work in

modeling assumptions, computational cost, and scalability to
Figure 5. Effect of the classification

complexity on the performance of the TL-

based BEE for linear classifiers

MSE deviation from LDA true error for Gaussian

distributions with respect to Bayes error. Source

sample size is set to ns = 200 in all subfigures. See

also Figures S4 and S5.
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Figure 6. Comparative analysis of the per-

formance of the TL-based BEE with respect

to standard error estimators

MSEdeviation from true error with respect to target

data size. The proposed TL-based BEE is

compared with other widely used estimators. In all

subfigures, the Bayes error is fixed at 0.2, and

jaj = 0:9.
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higher dimensions. Despite the precise mathematical definition

of our error estimator, accurate estimation of the classification

error is contingent on whether predictive posterior densities

are available in closed forms or can be approximated in an effec-

tive manner. While such densities are available for Gaussian

models (e.g., assuming joint Wishart priors), one may need to

derive them for different priors for non-Gaussian distributions.

The computational complexity to accurately estimate the pro-

posed TL-based BEE through direct sampling methods can be

excessive andmay scale poorly for higher dimensions. However,

we efficiently overcame this limitation by developing a robust

importance sampling setup that has shifted all the computational

overhead related to the TL process from Monte Carlo sampling

to the numerical evaluation of the importance likelihood. Devel-

oping similar statistical methods for TL-based BEE would be

needed for different modeling assumptions. While the definition

of the TL-based BEE and the proposed robust importance sam-

pling scheme are general and applicable to higher dimensions,

controlling the Bayes error for synthetic datasets for dimensions

higher than 5 can be challenging, which was the main reason

for choosing the dimensions d = 2;.;5 in this study. However,

this is not an issue in practice, as the classification complexity

in real-world applications (reflected by the Bayes error) is an

inherent property of a given classification problem governed by

the underlying feature-label distribution, and not a design

choice. Technically, the proposed TL-based BEE can be applied

to classification problems based on high-dimensional features

as long as the required computational resources are available.
A B
Furthermore, we can also consider classifier design and error

estimation based on a lower-dimensional representation of

the original feature space—e.g., using principal-component

analysis or auto-encoders—to make the computational cost

manageable.

Conclusions
In this study, we have introduced a Bayesian MMSE estimator

that draws from concepts and theories in TL to enable accu-

rate estimation of classification error in the (target) domain of

interest by utilizing samples from other closely related (source)

domains. We have developed an efficient and robust impor-

tance sampling setup that can be used for accurate error

estimation in small-sample scenarios that often arise in

many real-world scientific problems. Extensive performance

analysis based on both synthetic and real-world biological

data demonstrates the outstanding performance of the pro-

posed TL-based BEE clearly outperforming conventional

estimators.

In our proposed framework, Laplace approximations were

used to alleviate the complexity associated with the exact eval-

uation of generalized hypergeometric functions that appear in

the posterior distribution of the target parameters. Beyond the

Gaussian model assumed in the validation experiments, we

also provide a general mathematical definition for the TL-based

BEE that can directly be extended to applications with non-

Gaussian distributions where the model parameters can be in-

ferred through Markov chain Monte Carlo (MCMC) methods. In
Figure 7. Performance of the TL-based BEE

on real-world RNA-seq datasets

MSE deviation from QDA true error for normally

distributed brain gene expression data with respect

to jaj and ns. (A) Gene features from the FC brain

region demonstrate high relatedness with those

from DPLFC area (jaj = 0:99). (B) Utilizing the data

from source domain significantly reduces the MSE

of the TL-based BEE in the target domain.
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this study, target and source domains were related through the

joint prior of the model parameters that transfers useful knowl-

edge across domains. A key property of the proposed TL-based

BEE is its elegant ability to handle the uncertainty about the

model parameters by integrating this prior with data, deducing

robust estimates by accounting for all possible parameter

values.

Paramount practical challenges for the TL-based BEE include

the identification of suitable source domains that share similar

families of distributions as the target domain of interest. This is

crucial as the relatedness across domains is mathematically

modeled assuming the similarity of the feature-label distributions

across domains. Furthermore, learning the joint prior for the dis-

tributions and modeling the relatedness between different

domains may also present an engineering challenge. While tech-

niques for knowledge-driven prior construction have been devel-

oped,17,18 such techniques have yet to be developed for joint

prior construction for relevant domains, which is an important

future research direction.

An important aspect enabled by the proposed TL-based BEE

is optimal data acquisition from multiple domains that aims at

maximally enhancing the error estimation capability based on

a finite budget for data acquisition. For example, if one has a

fixed budget to acquire additional data from either the source

or target domain, what would be the most cost-effective strat-

egy for data acquisition? In typical TL scenarios, data acquisi-

tion cost may be relatively cheaper in the source domain than in

the target domain, although the data acquired in the target

domain might be more impactful. A natural question is how

one can maximize the ‘‘return-on-investment’’ for data acquisi-

tion given the available budget. Such strategies for optimal

experimental design19–24 and active learning25–27 have been

actively studied in a Bayesian paradigm that enables objec-

tive-based uncertainty quantification via mean objective cost

of uncertainty.28,29 While this is beyond the scope of this

current study, it opens up interesting directions for future

research.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact
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bjyoon@ece.tamu.edu.

Materials availability

This study did not generate any physical materials.

Data and code availability

All RNA-seq datasets that have been utilized in this study are publically

available. All original code has been deposited at https://github.com/

omarmaddouri/TL_BEE, archived in Zenodo under the https://doi.org/10.

5281/zenodo.5594476, and are publicly available as of the date of publication.

In addition to the proposed importance sampling estimate, we also provide im-

plementation of the direct evaluation using the predictive posterior density of

target parameters.

Bayesian TL for error estimation

The advantage of the mathematical formulation that underlies the proposed

TL-based BEE (and also the original TL Bayesian framework in Karbalayghareh

et al.13) is that it articulates a unified Bayesian inference model that assumes a

specified prior distribution governing the parameter vector qt and acting like a

bridge to help update p�ðqtÞ after observing Dt and Ds. From this standpoint,

the derivation of the TL-based BEE for TL depends on determining p�ðqtÞ. To
10 Patterns 3, 100428, March 11, 2022
determine the TL-based BEE in the context of the presented Bayesian transfer

learning framework we evoke the following theorem.

Theorem 1:13 given the target Dt and source Ds data, the posterior distribu-

tion of target mean m
y
t and the target precision matrix L

y
t for the classes

y˛f0; 1g has Gaussian-hypergeometric function distribution given by
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are, respectively, the confluent and Gauss matrix-

variate hypergeometric functions reviewed in the supplemental information,

section 6. Now, using Theorem 1 and assuming that the class-0 prior probabil-

ity c, q0t , and q1t are independent prior to observingDt andDs, the BEE for TL is

given by

bε = Ep� ½c�Ep�
�
ε
0
n

�
+ ð1�Ep� ½c�ÞEp�

�
ε
1
n

�
; (Equation 18)

where
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�
ε
y
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�
=

Z
Q

y
t

ε
y
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�
q
y
t

�
p��qyt �dqyt ; (Equation 19)

with Qy
t being the parameter space that contains all possible values for qyt .

Computing TL-based BEE for arbitrary classifiers

Computing the TL-based BEE for an arbitrary classifier jn involves the evalu-

ation of the integral in (Equation 19). Evenwhenwe have an analytic expression

for the true error of the studied classifier, the closed-form expression for the

mailto:bjyoon@ece.tamu.edu
https://github.com/omarmaddouri/TL_BEE
https://github.com/omarmaddouri/TL_BEE
https://doi.org/10.5281/zenodo.5594476
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TL-based BEE cannot be easily derived due to the complex expression of the

target posterior in the presence of the matrix-variate hypergeometric func-

tions. With non-linear classifiers, this becomes practically impossible as no

closed-form expression exists for the true error itself. The standard way to

approximate the true error in this case is to consider the test error. For a spec-

ified parameter qt, a large test set is generated from fqt ðx; yÞ, and the perfor-

mance of jn is evaluated on that test set. This requires sampling from p�ðqyt Þ
so that the integral in (Equation 19) can be approximated by a finite sum. Sup-

pose we have N posterior sample points q
y
t;i � p�ðqyt Þ; i = 1/N. Then the

approximation is given by

Ep�
�
ε
y
n

�
z

1

N

XN
i = 1

ε
y
n

�
q
y
t;i

�
: (Equation 20)

Because of the generalized confluent and Gauss hypergeometric functions

in the expression of p�, sampling directly from the posterior is very laborious

and the computational cost of applying MCMC methods is exorbitant

as the execution may take several weeks even on high-performance

computing clusters. To address this issue, in the next section we propose

an efficient self-normalized importance sampling setup with control

variates that provides accurate estimates for the TL-based BEE and signifi-

cantly reduces the computation time to make the proposed TL-based BEE

feasible.

Self-normalized importance sampling with control variates

Importance sampling

Importance sampling (IS) is a variance reduction technique that provides a

remedy to sampling from complex distributions.30 To estimate Ep� ½εyn�, IS

makes a multiplicative adjustment to ε
y
n to compensate for sampling from an

alternative importance distributionF� instead of p�. IfF� is a positive probabil-

ity density function on Qy
t , we can write
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Achieving an accurate IS estimation is contingent on selecting an appro-

priate importance density that is nearly proportional to ε
y
nðqyt Þp�ðqyt Þ. By anal-

ogy to Gordon and co-workers,31,32 a plausible and cogent candidate for F�

emanates as the posterior of target parameters upon observation of target-

only data. Obviously, both distributions are tracking the same model parame-

ters in the target domain upon observation of data. To determine F�ðqyt Þ=
pðmy

t ;L
y
t

��Dy
t Þ we require the following lemma:

Lemma 1:33 ifD= fx1;/;xngwhere xi is a d31 vector and xi �Nðm;ðLÞ�1Þ,
for i = 1; /; n, and ðm;LÞ has a Gaussian-Wishart prior, such that m

���L �
Nðm; ðkLÞ�1Þ and L � WdðM;nÞ, then the posterior of ðm;LÞ upon observing

D is also a Gaussian-Wishart distribution such that
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depending on the sample mean and covariance matrix

x =
1

n

Xn
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Using Lemma 1 we now get the expression of the importance density F�

given by
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with sample mean and covariance given by

xy
t =

1

ny
t

Xnyt
i = 1

xy
t;i

Sy
t =

Xnyt
i = 1

�
xy
t;i � xy

t

��
xy
t;i � xy

t

�T
:

After simplifications, the expression of the TL-based BEE in (Equation 21)

takes the form

Ep�
�
ε
y
n

�
= EF�

�
ε
y
n

�
q
y
t

�L�qyt ��; (Equation 27)

where q
y
t = ðmy

t ;L
y
t Þ and Lðqyt Þ is the likelihood ratio given by

Lðmy
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y
t Þ= etr
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(Equation 28)

Although the likelihood ratio has a simplified expression, computing

the hypergeometric functions involves the computation of series of

zonal polynomials, which is computationally expensive and not scalable to

high dimensions. To mitigate this limitation, we use the Laplace

approximations of these functions (see Figure S1 and supplemental informa-

tion, section 6). To rectify possible disproportionalities in likelihood

ratios due to approximations, we consider the self-normalized IS estimate

given by

bEF�
�
ε
y
n

�
z

PN
i =1ε

y
n

�
q
y
t;i

�
L
�
q
y
t;i

�
PN

i = 1L
�
q
y
t;i

� (Equation 29)

with q
y
t;i � F�ðqyt Þ; i = 1/N.

Control variates

Formore stable and efficient estimates, we further combine ISwith control var-

iates. Using control variates in conjunction with IS is a variance reduction tech-

nique, in particular when a significant portion of a model for estimating the

expectation can be solved explicitly. In our case, a useful control variates func-

tion (CVF) Vðqyt Þ satisfies
Patterns 3, 100428, March 11, 2022 11
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EF�
�V�qyt �� =

Z
Q
y
t

V�qyt �F��qyt � dqyt = d; (Equation 30)

where d is a constant. Under such circumstances, a more stable estimate for

the TL-based BEE can be derived as

~EF�
�
ε
y
n

�
z

PN
i = 1ε

y
n

�
q
y
t;i

�
L
�
q
y
t;i

�
PN
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� � 1

N

XN
i = 1

bV
�
q
y
t;i

�
F�
�
q
y
t;i

� + bd; (Equation 31)

where q
y
t;i � F�ðqyt Þ; i = 1/N and b is a weighting coefficient tuned to reduce

the variance of the estimate. The optimal value of b is given by

bopt =
cov

�
zyn
�
q
y
t

�
;V�qyt ��

var
�V�qyt �� ; (Equation 32)

with

zyn
�
q
y
t

�
=

ε
y
n

�
q
y
t

� L�qyt �
1
N

PN
i = 1L

�
q
y
t;i

� (Equation 33)

and cov½ ,; ,� and var½ ,� denote covariance and variance, respectively (see

supplemental information, section 7.3, for more details). In practice, it is not

likely that we know bopt beforehand, but it is estimated from the Monte Carlo

sample. It turns out that ~EF� has lower variance than bEF� by a factor of ð1 �
corr½zynðqyt Þ; Vðqyt Þ�Þ, where corr½a;b� denotes the correlation coefficient be-

tween a and b and given by

corr½a;b� = cov½a;b�ffiffiffiffiffiffiffiffiffiffiffiffi
var½a�p ffiffiffiffiffiffiffiffiffiffiffiffiffi

var½b�p : (Equation 34)

To select an appropriate CVF we need to consider two criteria. First, its

expectation with respect to F� should have an exact evaluation. Second, it

has to be correlated with the estimated error. A favorable candidate is the an-

alytic true error of linear classifiers. In this study, we consider a CVF given by

the true error of an LDA classifier defined by gNt
ðxÞ=aT

Nt
x+bNt

where aNt
=

S�1
t ðx1t � x0t Þ, bNt

= � 1
2a

T ðx1t +x0t Þ+ ln
n1t
n0
t

, and the pooled covariance St is

given by

St =

�
n0
t � 1

�
S0

t +
�
n1
t � 1

�
S1

t

Nt � 2
: (Equation 35)

xyt and Sy
t are the empirical estimates utilized in (Equation 26). Thus, the CVF is

given by

Vðmy
t ;L

y
t Þ = F

0B@ ð�1ÞygNt
ðmy

t Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT
Nt

ðLy
t Þ�1

aNt

q
1CA; (Equation 36)

with F denoting the standard normal Gaussian cumulative distribution func-

tion. Now it remains only to determine EF� ½Vðmy
t ;L

y
t Þ� in closed-form to fully

define the estimation setup. We can show after simplifications and using re-

sults from11 that

EF� ½Vðmy
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y
t Þ� =

1
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+
sgnðAÞ

2
I

0B@ A2

A2 +aNt
T
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My
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(Equation 37)

where sgnð ,Þ is the sign function,

A = ð�1ÞygNt

�
my

t;n

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
y
t;n

1+ k
y
t;n

s
; (Equation 38)

and Ið ,; ,; ,Þ denotes the regularized incomplete beta function given by
12 Patterns 3, 100428, March 11, 2022
Iðx; a;bÞ = Gða+bÞ
GðaÞGðbÞ

Z x

0

ta�1ð1� tÞb�1dt; (Equation 39)

with Gð ,Þ being the regular univariate gamma function. Details for simplifying

EF� ½Vðmy
t ;L

y
t Þ� are covered in supplemental information, section 7.4.

The complete specification of the CVF concludes our IS setup.We enumerate

some advantagesof theproposedsetup overdirect samplingmethods. First, the

importance density F� is much simpler than the nominal density p�, which in-

volves matrix-variate hypergeometric functions. Second, our setup successfully

combines two variance reduction techniques that enable accurate estimation.

Last, and most importantly, the independence of the generated Monte Carlo

samples w.r.t source data permits the reuse of the sampled parameters with

various source datasets for fixed models. This reusability significantly reduces

the computational cost of sampling from F� and makes the utilization of

advancedMCMCmethodsamenableas thewholeprocesscouldbeaccelerated

by a factor of 10–20,which also growswith the dimensionality and the number of

used source datasets (see supplemental information, sections 7.5 and 7.6, for

more details). For efficient sampling from F�, we use Hamiltonian Monte Carlo

(HMC), proven to have a superior performance to standard MCMC samplers.34

For this purpose, we utilize the STAN software, which offers a full Bayesian sta-

tistical inference framework with HMC.34

Classifier design

For a comprehensive evaluation of our TL-based error estimator, we design

and perform a set of experiments. The proposed TL-based estimator is applied

to a collection of classifiers with different levels of learning capacities and

tested under various scenarios. To separate error estimation from classifier

design, we start by analyzing the performance of the TL-based BEE estimator

for fixed classifiers that do not depend on training data. This setup distinctly

reveals the major characteristics of the TL-based BEE, excluding any con-

founding factors that may stem from classifier design and the performance

of the resulting classifier.

Next, we also conduct a comparative study of the TL-basedBEE performance

with respect to other widely used error estimators, which include resubstitution,

CV, LOO, and the 0.632-bootstrap estimators. As these popular data-driven es-

timators involve classifier design on the training data, we will also consider a TL-

based classifier designed on target and source data that operates in the target

domain for comparison. For this, we employ the OBTL classifier introduced in

Karbalayghareh et al.,13 which shares the same Bayesian framework on which

our TL-based BEE is developed. In what follows, we recall the definition of

each classifier considered in our evaluations and also present the details of

the evaluation experiments performed in this study.

In the first set of experiments, we employ a fixed quadratic classifier

assuming we know beforehand the true target parameters. For normally

distributed data, this quadratic classifier corresponds also to the Bayes clas-

sifier that is optimal for the given feature-label distributions. Using QDA, we

define JQDAðxÞ = xTAx+bTx+ c, where

A= � 1

2

�
L1

t �L0
t

�
; b=L1

t m
1
t �L0

t m
0
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����L1
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!
:

(Equation 40)

The error estimation problem turns out to be an estimation of the Bayes error

that coincides here with the true error of the designed QDA. Obviously, this

classifier is independent from any observed sample as it is fixed assuming

known true model parameters. Without loss of generality, we apply the TL-

based BEE using labeled observations from a compound dataset compiled

from target and source domains.

In the second set of experiments we investigate the behavior of the TL-

based BEE within the class of sub-optimal classifiers. To this end, we consider

a linear classifier derived through LDA and we defineJLDAðxÞ=aTx+b where

a = S�1
t ðm1

t � m0
t Þ, b = � 1

2 aT ðm1
t +m0

t Þ, and the average covariance St is

given by

St =

�
L0

t

��1
+
�
L1

t

��1

2
: (Equation 41)



Figure 8. Simulation diagram using synthetic data

Flow chart illustrating the simulation setup based on synthetic datasets.
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Our goal is then to approximate the true error of this sub-optimal classifier

using TL.

Next, we evaluate the performance of the TL-based BEE for the OBTL clas-

sifier that can take advantage of both source and target domain data. The

OBTL classifier is defined by

JOBTLðxÞ = arg max
y˛f0;1g

OOBTLðxjyÞ; (Equation 42)

where the objective function OOBTLðxjyÞ denotes the effective class-condi-

tional density pðxjyÞ given by the following theorem:

Theorem 2:13 the effective class-conditional density, denoted by pðxjyÞ =
OOBTLðxjyÞ, in the target domain is given by

OOBTLðxjyÞ=p�d
2
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(Equation 43)
where

kyx = k
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t;n + 1= k

y
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t + 1;�
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=
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t

��1
+
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y
t;n

k
y
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my

t;n � x
��
my

t;n � x
�T
:

(Equation 44)

Simulation setup

Figure 8 provides a combined illustration of the simulation setup for all three

classifiers. For rigorous evaluation of the performance of the proposed TL-

based BEE, we primarily focus our experiments on assessing the impact of us-

ing different types and amounts of source data. This is enabled by the joint

prior imposed over the model parameters and controlled by the relatedness

coefficient jaj that dictates the extent of interaction between the features in

the two domains. For this purpose, we repeatedly conducted experiments

following the flow chart in Figure 8 with different relatedness values (jaj =
½0:1;0:3;0:5;0:7;0:9;0:95�), where jaj= 0:1 corresponds to the lowest related-

ness between the two domains and jaj= 0:95 reflects the highest relatedness

within the range of studied values.

In the first set of experiments, we start by drawing a joint sample ðLy
t ;L

y
sÞ for

eachclass y˛f0; 1g, asdescribedpreviously.Next,we iterate over the valuesof

the hyperparameter w to control mtðwÞ through a dichotomic search to get a

desired value t of the Bayes error. This is achieved by drawing a sample

m
y
t � NðmtðwÞ; ðkytLy

t Þ�1Þand thengenerating a test set basedon the joint sam-

ple ðmy
t ;L

y
t Þ. Using this test set, we determine the true error of the optimal QDA

derived from ðmy
t ;L

y
t Þ. If the desiredBayes error (true error of the designedQDA)

is attained then the iteration stops, otherwise we update w and reiterate. In our

experiments, unless otherwise specified, we set t = 0:2 to mimic a moderate

level of classification complexity. This step is indeed crucial as it maintains

the same level of complexity across the experiments and guarantees a fair

comparison across different levels of relatedness. We note that this procedure

is valid for general covariances as it acts only on updating the value of themean

parameter without altering the structure of the covariances nor the random

mean vectors. Obviously, this approach to specify the Bayes error maintains

the Bayesian TL framework intact. However, it is not guaranteed to find values

of target parameters that correspond to the desired Bayes error, especially for

high dimensions and complex classification (largeBayes error) aswediscuss in

Performanceonsynthetic datasets.Once theproblemcomplexity is set and the

classifier is fixed, we generate Nd =10; 000 training datasets that we use to

evaluate the MSE of the TL-based BEE as depicted in Figure 8. To estimate

the TL-based BEE, we employ the IS setup described previously and we

draw 1,000 MC samples from the importance density using HMC sampler.

In the second set of experiments, we follow a similar setup using an LDA

classifier designed based on the truemodel parameters. As before, we employ

QDA to determine the Bayes error to maintain the same complexity level

across different experiments. As in the first set of experiments, we use the

TL-based BEE to estimate the true error of the designed LDA classifier.

In the last set of experiments on synthetic datasets, we conduct a compar-

ative analysis study using an OBTL classifier designed using training datasets

generated from the model parameters specified by the Bayes error. The error

estimation task, in this scenario, aims at approximating the true error of the de-

signed OBTL classifier determined using a large test set generated from the

true feature-label distributions. As illustrated in Figure 8, QDA and LDA classi-

fiers are fixed and derived from the true model parameters while the OBTL

classifier is designed based on training datasets collected from the underlying

feature-label distributions that correspond to the specified Bayes error. In all

simulations, the designed classifiers are fixed given the observed samples

and the TL-based BEE estimator is safely applied. Finally, regarding synthetic

datasets, we note that the flow chart in Figure 8 is valid for all classifiers (QDA,

LDA, and OBTL) and the notation J designates the classifier of interest in the

corresponding set of experiments. For instance, in the second set of experi-

ments, J refers to JLDA.

In addition to this in-depth analysis of the performance, behavior, and char-

acteristics of our proposed TL-based BEE based on synthetic datasets, we

also performed additional validation based on real-world biological datasets.

By using RNA-seq datasets syn2759792 and syn4590909 taken from different

brain regions for studying brain disorders, we train a QDA classifier using the

target data from the RNA-seq dataset syn2759792, and we leverage the
Patterns 3, 100428, March 11, 2022 13
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source data from syn4590909 to evaluate the performance of the proposed

TL-based BEE.
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