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Mind-wandering (MW), task-unrelated thought, has been examined by researchers in

an increasing number of articles using models to predict whether subjects are in MW,

using numerous physiological variables. However, these models are not applicable in

general situations. Moreover, they output only binary classification. The current study

suggests that the combination of electroencephalogram (EEG) variables and non-linear

regression modeling can be a good indicator of MW intensity. We recorded EEGs

of 50 subjects during the performance of a Sustained Attention to Response Task,

including a thought sampling probe that inquired the focus of attention. We calculated

the power and coherence value and prepared 35 patterns of variable combinations

and applied Support Vector machine Regression (SVR) to them. Finally, we chose

four SVR models: two of them non-linear models and the others linear models; two

of the four models are composed of a limited number of electrodes to satisfy model

usefulness. Examination using the held-out data indicated that all models had robust

predictive precision and provided significantly better estimations than a linear regression

model using single electrode EEG variables. Furthermore, in limited electrode condition,

non-linear SVR model showed significantly better precision than linear SVR model. The

method proposed in this study helps investigations into MW in various little-examined

situations. Further, by measuring MW with a high temporal resolution EEG, unclear

aspects of MW, such as time series variation, are expected to be revealed. Furthermore,

our suggestion that a few electrodes can also predict MW contributes to the development

of neuro-feedback studies.

Keywords: support vector machine regression, machine learning, electroencephalogram, mind-wandering,

neuro-feedback

INTRODUCTION

Mind-wandering (MW; Smallwood and Schooler, 2006) can be defined as a thought that is
irrelevant to the task or situation at hand preventing one from paying attention to the task/situation.
While MW, is a common phenomenon, known to occupy 46.9% of daily life, it relates to various
psychological problems. Through measurements in daily life, Killingsworth and Gilbert (2010)
noted that happiness declines when a person is inMW. Further, the trends that can be observed with
MW positively correlate with neuroticism, meaning difficulty in emotional regulation, alexithymia,
and dissociation (Baer et al., 2006; Jensen et al., 2016). One study indicated that schizophrenia
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patients have a higher trait for MW and that the severity of
positive symptoms and MW traits are correlated (Shin et al.,
2015). In addition, the relationship between MW and anxiety has
also been found, with a brain-imaging study proposing a model
illustrating that trait anxiety strengthens MW mediated by the
worrying trait (Forster et al., 2015). Furthermore, the relationship
between depression symptoms and MW is particularly often
investigated. Smallwood et al. (2007b) reported that people with
high depressive traits experience MW more often than those
with low traits. Other studies also reported the same result and
indicated that MW frequency correlates with rumination traits
(Burg and Michalak, 2010). Rumination is a crucial variable for
the occurrence, maintenance, and deterioration of depression
(Nolen-Hoeksema et al., 2008) and mediates between MW and
symptoms of depression (Marchetti et al., 2014).

Therefore, MW is a critical theme for various psychiatric
problems, including depression, and further research is needed.
For investigating MW, it is important to know how to evaluate
one’s MW. Currently, to measure MW, many researches use
thought sampling during a task. In this method, subjects
complete a tedious task, such as a Sustained Attention to
Response Task (SART; Robertson et al., 1997), and during the
task, subjects report when that their mind wanders by button
pressing. While this method is known as the self-caught thought
sampling method, another available method is the probe-caught
sampling, in which a thought probe asks subjects whether they
are in MW through interrupting the task at several 10-s intervals
(Smallwood et al., 2007a).

However, both methods have some limitations. First, the
self-caught method is affected by the meta-awareness ability of
subjects. People cannot generally monitor whether they are in
MW, and awareness ofMW is intermittent (Schooler et al., 2011).
Thus, MW in subjects whose ability to realize their MW is weak
can be hard to calculate. In addition, considering that a greater
level of MW is disturbing to cognitive performance, the less likely
one is to be aware of MW (Smallwood et al., 2008) as self-caught
thought sampling is prone to failure in detecting higher levels of
MW. Second, the probe-catching method is suitable for subjects
with a shortage of meta-awareness (Smallwood and Schooler,
2006); however, the questions presented in this method inevitably
interrupt subjects’ MW.

Recently, reports predicting the existence of MW from
biological multi-variance methods are increasing. Mittner et al.
(2014) measured subjects’ default mode network (DMN; Raichle
et al., 2001) activity, known to be a neural basis of MW, by
functional magnetic resonance imaging (fMRI) and the temporal
changing of their pupil size. Mittner et al. (2014) then fitted
a model estimating whether subjects were in MW with these
measured data and a machine-learning algorithm. Bixler and
D’Mello (2016) also succeeded in detecting MW during reading
using oculometric variables, such as the changes in gaze direction
and pupil size. These prediction models enable us to not only
evaluate one’s MW without an effect on either meta-awareness
ability or questioning interruption but also quantify their MW
with high temporal resolution.

However, these studies also have some limitations when
evaluating MW. First, the models proposed by these studies

only provide a binary estimation and are not able to refer
to the “deepness” of MW. Previous studies claim that MW is
not dichotomous but a phenomenon with continuous intensity
(Schad et al., 2012; Farley et al., 2013). The intensity of MW
can be an informative variance to research on MW. Allen et al.
(2013) measured the intensity of MW during a task with thought
sampling using a Likert scale and clarified the relation between
the task performance and average and variance of intensity of
MW. However, existing models just predict whether subjects are
in MW or not. With a method of measuring continuous MW
intensity with high temporal resolution, we can evaluate MW
time series variation that has not been investigated previously,
such as the sustaining duration of MW and the time it takes from
noticing MW until returning to a concentrated state. Second,
these models cannot be used in a general situation; installing and
running fMRI device involves an enormous cost; eye-tracking
devices are not applicable in the closed-eye state, such as trying to
sleep or meditate (in many case they do it with eye-closed state),
whose relationship toMW is getting attention (Drummond et al.,
2013; Mrazek et al., 2013). Blanchard et al. (2014) tried to predict
the existence of MW using skin conductance and temperature
and to solve the problem of the model’s low versatility. However,
the said study remains imprecise, and the authors suggested the
amount of information from skin conductance and temperature
for prediction to be insufficient.

Electroencephalogram (EEG) measurement is easy, has few
limitations in measurement circumstance, and expected to have
an adequate amount of information. The EEG indicator can
reveal the nature of MW in uninvestigated conditions, such as
trying to sleep or meditate. Further, the EEG model is useful
for neuro-feedback. If an EEG model requiring a short number
of electrodes is obtained, a simplified portable EEG device can
provide feedback to one’s MW. The model may enable subjects
to take mobile EEG feedback devices home like Zich et al. (2015)
did and increase effectiveness through intensive home practice.

Some previous studies reported EEG features associated with
MW, and many scholars investigated whether EEG changes
represent DMN activity. Scheeringa et al. (2008), measuring
fMRI and EEG spontaneously during the resting state, reported
a negative correlation between theta frequency band (2–9Hz)
power on the frontal midline area and the BOLD intensity
of the areas composing DMN. The relationship between EEG
on the midline area and DMN activity has been indicated in
other studies too. To investigate how DMN activities appear on
EEG, Berkovich-Ohana et al. (2012) measured EEG before and
after subjects transitioned from the resting state to the on-task
state based on DMN’s character activated in the resting state
and inactivated in a condition demanding cognitive processing.
Accompanying the transition from resting to on-task state, they
observed decreased gamma (25–45Hz) power on the midline
area. The studies investigating EEG’s association with MW also
indicated the relations betweenmidline EEG andMW. Braboszcz
and Delorme (2011), performing self-caught thought sampling
and EEG recording, observed decreasing theta (4–7Hz) power
on the parietal midline area and delta (2–3.5Hz) power on
the frontal midline area after subjects were aware of MW and
concentrated on a task again. Considering these studies, although
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the reported frequency band is inconsistent, EEG changes of
midline areas are possible representation of DMN activity.

In addition to midline areas, studies by Braboszcz and
Delorme, (2011) and Berkovich-Ohana et al. (2012) indicated
lateral prefrontal EEG changes. The report regarding frequency
bands is, however, inconsistent; the former described gamma
(25–45 Hz) power decreases with disappearing MW, whereas the
latter beta (15–30 Hz) power increases. The lateral prefrontal
cortex makes up the Executive-Control Network (ECN; Seeley
et al., 2007). Usually ECN is activated in a contradictory way to
DMN (Menon, 2011); however, when MW is deep and exists
without meta-awareness, both ECN and DMN are activated in
the same way (Christoff et al., 2009).

As discussed above, previous research implies that mainly the
DMN and ECN domains relate to MW occurrence; however,
considering the inconsistency of the frequency bands reported,
EEG features indicate that the MW state may appear in a wide
frequency area. Further, considering that the relation between
ECN activity and MW varies according to the intensity of MW,
the correlation between an ECN activity and MW may be non-
linear.

In the present study, we aim to demonstrate what kind of
regression model can estimate MW deepness. We hypothesize
that multiple EEG variables combination predicts MW better
than single variable considering the association of several brain
areas and various frequency bands with MW. Furthermore, we
propose that non-linear models are more suitable than linear
ones owing to the complex relation between ECN and MW.

We fit some regression models, predicting the intensity
of MW obtained from probe-caught thought sampling with
multiple EEG variables and Support Vector machine Regression
(SVR algorithm. SVR can advantageously deal with high
dimensional data and provides not only a linear model but
also a non-linear one. Few studies try to predict subjective
reports from neural variables with SVR. Hoexter et al. (2013)
created a model to predict a self-reported anxiety severity
with MRI data and SVR and reported Pearson’s correlation
coefficient r = 0.49 as the predicting score. We expect that
our best model also can parallel such preciseness. We examine
the following hypotheses: the linear or non-linear multi-variate
SVR model has significantly better accuracy than the linear
single regression and that non-linear SVRmodel has significantly
better accuracy than the linear SVR model. In this way, this
study suggests that the combination of EEG variables and non-
linear regression modeling can be a good indicator of MW
intensity.

MATERIALS AND METHODS

Subjects
We called for participants using posters at Waseda University,
and 50 people participated in the experiment. We set two
exclusion criteria for the analysis: first, two people who scored
more than 2 SD on a scale measuring the tendency for depression
(details are described later) were removed from the sample.
Second, five participants whose difference between reported
maximum and minimum MW was under two points were

excluded. All finally included subjects were right-handed; 21 were
males and 22 females, and they averaged 21.77 (SD= 2.27) years.

The study was approved by the Waseda University Academic
Research Ethical Review Committee, and all participants
provided written informed consent.

Procedure
After informed consent for participation was obtained, we
assessed the subjects for depression symptoms by the Center for
Epidemiologic Studies Depression Scale (CES-D; Radloff, 1977).
This score was acquired to extract data from subjects who were
suspected of having little meta-awareness, given the possibility
of not collecting proper reports from participants with feeble
meta-awareness even in probe-caught thought sampling. Some
people with depression may not be able to describe their MW
correctly during a task as weak meta-awareness of one’s thoughts
is a marked feature of depression (Segal et al., 2002).

We subsequently introduced three tasks for subjects and
confirmed their understanding with some practice. After EEG
electrodes were attached to them, they completed two tasks
and rested for approximately 10 min; one task remained to be
performed.

We acquired EEG data during three tasks. Each task included
measures lasting 14min before and after a 30-s resting state,
except for the time of thought sampling and presentation of
instructions. Task 1 required subjects to tap their finger, and task
2 was an oddball task. However, we do not report them in this
article.

Task 3, described in this study, modeled SART (Figure 1).
In this task, the numerical digits 0–9 were presented on a
screen in front of subjects in a pseudorandom order at 2-s
intervals. Subjects were asked to press a button quickly when
the number changed, but they were asked not to when the
number “3” appeared. The number 3 was presented in 0.5% of
the trials, which were composed of one number changing and
one button pressing (or suspending to press) A thought sampling
probe, inquiring where their attention was focused interrupted
once every 20 s. We gave subjects the following instruction (in
Japanese) to answer to the probe question on a 7-point Likert
scale, ranging from “task-independent” to “task-centered”: “This
question asks howmuch you have focused on the task. If you have
been concentrating on the task, choose a lower number to rate.
If your mind has wandered and you have thought about other
things, choose a higher number to rate.” This probe models on
Mittner et al. (2014), but the number of points had expanded
from 5 to 7. Participants completed 42 sections, which were
composed of 10 trials (20 s each) and one thought probe. Hence,
we got 840 s of recorded data of EEG and 42 answers to probe.
Considering the substantial variability between subjects for their
MW rating, we normalized the reported MW scores in each
subject.

Behavioral Data
To confirm that the reports of the MW intensity are valid, we
investigated whether the behavioral data and off-task reports
correlated. We adopted a static method that was used in a
previous study (Kucyi et al., 2016) demonstrating that the
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FIGURE 1 | The procedure of Task 3.

variance of reaction time (RT) to a cognitive task correlates
positively to the self-reported intensity of MW. First, we
calculated Pearson’s correlation between the variance of RT in
each 42 sections and reported MW score within each subject.
Then, we converted acquired r value into Fisher’s z and applied
a Wilcoxon signed rank test to them.

EEG Recording and Preprocessing
We recorded the EEG data using the Geodesics EEG system
(Electrical Geodesics Inc.) and 17 electrodes (F3, F4, F7, F8,
Fz, T3, T4, TP9, TP10, P5, P6, P9, P10, Pz, O1, O2, and Oz),
with a 250Hz sampling rate, referenced to the Cz electrode.
Impedance was kept under 50 kohm as per the recommendation
of Electrical Geodesic Inc. We filtered the data using a 0.3–70Hz
band-pass filter and a 50 Hz notch filter. This filtering process
was completed using Waveform Tools, Net Station Version 4.2
(Electrical Geodesics Inc.).

The EEG data was divided into 1-s epochs, and the ones
contaminated with artifacts, such as eye movement, blinks,
and body movement, were removed. The artifact detection
algorithm was the same as that provided by Waveform Tools.
All epochs were Fourier-transformed, and the mean power value
and the coherence between each pair of electrodes in eight
frequency bands (Kubicki et al., 1979; delta: 1.5–6.0Hz, theta:
6.5–8Hz, alpha1: 8.5–10Hz, alpha2: 10.5–12Hz, beta1: 12.5–
18Hz, beta2: 18.5–21Hz, beta3: 21.5–30Hz, gamma: 35–44Hz)
were calculated. These values were averaged in each section and
normalized in each subject.

We then divided all participants into two groups: one
provided training dataset, and the other provided test dataset
including those of one-third of all subjects who were not used
for model construction but for verification. Finally, we removed
the sections in which any of the EEG data (i.e., the mean power
value and the coherence) having a Z-score more than 5 was
clubbed as an outlier. Using the abovementioned process, we
obtained training dataset including 440 data samples and test
dataset including 187 data samples (note that many sections were
totally contaminated by artifacts and removed.) One data sample
included 1,224 predictors [(17 electrodes for power values+ 17C2

electrodes pairs for coherence) × 8 frequency bands] and one
response variable, indicating the intensity of MW, i.e., the target
to predict. Both datasets were scaled by the average and variance
of training dataset.

Predictor Selection
As the collected data included too many predictors and
due to concern regarding over-fitting (severe deterioration
of prediction accuracy when a model is applied to novel
datasets), the predictors needed to be selected. The current
study employed a filter technique with Pearson’s correlation
coefficient, which is applicable to the model fitting the
algorithms we used. We screened out predictors whose
absolute value of correlation coefficient |r| to the response
variable was below a threshold (Mwangi et al., 2014). We
prepared some predictor-set patterns using thresholds
ranging from 0 to the maximum |r| with 0.01 intervals.
Furthermore, to estimate the predictive accuracy of single
variable regression, we added a predictor-set pattern including
only one predictor that showed the highest |r| value. We
calculated these correlation coefficients only with the training
dataset.

Model Fitting
Support Vector machine Regression (SVR) is based on a linear
regression function:

f (xi) = xi
Tβ + β0 (1)

xi denotes i -th sample of datasets and β is the weight vector. To
optimize weight vector, SVR minimizes the problem:

H (β) = C

N
∑

i =1

V
(

yi − f (xi)
)

+
1

2
‖β‖2 (2)

where,

VH (r) =

{

0 if |r| < ǫ,
|r| − ǫ, otherwise.

(3)

yi is i -th response variable and N is 440 in current study. ǫ and
C are user defined parameters. The model ignores the prediction
error lesser than ǫ. C regulates trade-off balance between error
smallness and model simplicity and contributes to avoid over-
fitting. By replacing dot product xi, xj, which is used to solve
above problem (for detail, see Hastie et al., 2009), by a kernel
function k

(

xi, xj
)

, SVR provides non-linear regression models.
The present study used linear SVR and Radial Basis Function
(RBF) kernel SVR:

k
(

xi, xj
)

= exp
(

−γ ‖xi − xj‖
2
)

(4)

γ is also user defined parameter and regulates model simplicity.
We determined ǫ, C, and γ using a grid search, which tries all

patterns of parameter candidates to make models and adopts the
best prediction accuracy combination. The grid search method
uses cross-validation for the presumption of precision. In this
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approach, training datasets are divided into some (in this study:
10) groups in as equally as possible; one group is set as the test
dataset in cross-validation; and the others are set as training
dataset in cross-validation. After a model fitting with training
dataset in cross-validation, we evaluated the mean squared error
(MSE) between measured values and estimated values with test
dataset in cross-validation. Another group was then assigned as
test dataset in cross-validation, and MSE was revealed by the
same procedure. This operation was repeated until all groups had
been set as test dataset in cross-validation, and finally, the average
of allMSEs was regarded as the estimated prediction score of the
parameter pattern.

We applied single regression analysis to the training dataset
of the single predictor pattern and two SVR algorithms to the
other predictor-set patterns and estimated each cross-validation
MSE score. We adopted predictor-patterns producing the best
score, and additionally, the best one among the patterns using
≤9 electrodes considering model’s usefulness. Thus, we fitted five
models. Models 1 and 2 are non-linear SVR models using RBF,
Models 3 and 4 are linear SVR models, Models 2 and 4 use a few
(under 10) electrodes and are expected to have good versatility,
and Model 5 is single regression model. We applied these models
to the test dataset and obtained correlation coefficients between
estimated values and measured values as that is indicative of the
model’s precision.

While Model 1 was expected to provide as high a level of
accuracy as possible andmeet the demands of basicMWresearch,
Model 2 was adapted to situations using limited-measurement
environments, such as neuro-feedback at home and expected to
show less but close score to Model 1. Models 3 and 4 were created
to examine if non-linear model predicts MWmore precisely than
linear model, and Model 5 confirmed multiple regression models
(Models 1–4) as it had better precision than previously proposed
single regression models. For these comparisons, we examined
the significant difference in r-values between models: Models 1
vs. 2, Models 3 vs. 4, Models 1 vs. 3, Models 2 vs. 4, Models 1–4

vs. Models 5. We performed the above analysis using MATLAB
R2016a (MathWorks).

RESULTS

First, to provide the validation of the reports of MW intensity,
we used a Wilcoxon signed rank test. The mean within-subject
correlation between RT variance and reported MW intensity was
positive and significantly >0 (p= 0.000060).

The coherence between electrode Pz and O1 in the beta-3
band showed the strongest correlation with response values (|r|
= 0.346), and thus 35 patterns of predictor-set with thresholds
ranging from |r| = 0.00 to 0.34 were acquired. We presumed
the accuracy of linear and non-linear SVR models when each
patterns are adopted by cross-validation. Consequently, the
predictor-set with threshold |r| = 0.22 showed the best score
in both non-linear and linear algorithms and we fitted Models
1 and 3 from this predictor-set. Seven predictor-set patterns
using under 10 electrodes were acquired, and the predictor-
set with threshold |r| = 0.28 indicated the lowest MSE in both
non-linear and linear algorithms and were set as predictors
of Models 2 and 4. These models used eight electrodes (F3,
F4, F8, P6, P9, P10, Pz, and O1), while Models 1 and 3 used
16 (F3, F4, F7, F8, T3, T4, TP9, TP10, P5, P6, P9, P10, Pz,
O1, O2, and Oz). We illustrate MSE and the number of used
electrodes in each of the 35 predictor-sets in Figure 2 and list
them with the value of three grid searched parameters: γ , ε, C
in Table 1. We illustrate variables finally chosen in five models in
Figure 3.

We then investigated the precision of the five models with
test dataset. The correlation coefficients between estimated values
and measured values were r= 0.54 in Model 1, r= 0.49 in Model
2, r= 0.51 inModel 3, r= 0.39 inModel 4, and r= 0.35 inModel
5. To compare accuracy of the models, the differences in r-values
were examined. Comparison between Models 1–4 and Model

FIGURE 2 | Cross-validation scores of Support Vector machine Regression (SVR) models on each threshold and number of electrodes.
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TABLE 1 | The MSE, the number of used electrodes, and used parameters for each threshold and algorithms.

Threshold (Pearson’s r) Number of electrodes SVR (RBF) SVR (linear)

MSE γ ε C MSE γ ε C

0.000 17 0.858 0.0005 0.500 0.500 0.850 0.0005 0.250 0.125

0.010 17 0.852 0.0005 0.500 0.250 0.843 0.0005 0.250 0.125

0.020 17 0.846 0.0005 0.500 0.250 0.838 0.0005 0.250 0.125

0.030 17 0.837 0.0005 0.500 0.250 0.832 0.0005 0.250 0.125

0.040 17 0.830 0.0005 0.500 0.250 0.826 0.0005 0.250 0.125

0.050 17 0.828 0.0010 0.500 0.250 0.820 0.0010 0.250 0.063

0.060 17 0.826 0.0010 0.500 0.250 0.819 0.0010 0.250 0.063

0.070 17 0.821 0.0010 0.500 0.250 0.815 0.0010 0.250 0.063

0.080 17 0.818 0.0010 0.500 0.125 0.815 0.0010 0.250 0.063

0.090 17 0.809 0.0010 0.500 0.125 0.809 0.0010 0.500 0.125

0.100 17 0.805 0.0010 0.500 0.125 0.805 0.0010 0.500 0.125

0.110 17 0.811 0.0020 0.500 0.125 0.798 0.0020 0.500 0.063

0.120 17 0.804 0.0020 0.500 0.125 0.796 0.0020 0.500 0.063

0.130 17 0.794 0.0020 0.500 0.125 0.790 0.0020 0.500 0.063

0.140 17 0.787 0.0020 0.500 0.125 0.785 0.0020 0.500 0.063

0.150 17 0.779 0.0020 0.500 0.125 0.780 0.0020 0.500 0.125

0.160 17 0.790 0.0039 0.500 0.125 0.776 0.0039 0.500 0.063

0.170 17 0.770 0.0039 0.500 0.125 0.763 0.0039 0.500 0.063

0.180 17 0.759 0.0039 0.500 0.125 0.761 0.0039 0.125 0.063

0.190 17 0.762 0.0039 0.500 0.125 0.762 0.0039 0.500 0.063

0.200 17 0.764 0.0078 0.500 0.125 0.755 0.0078 0.250 0.063

0.210 16 0.760 0.0078 0.500 0.125 0.746 0.0078 2.000 2.000

0.220 16 0.753 0.0078 0.500 0.125 0.729 0.0078 2.000 4.000

0.230 15 0.775 0.0156 0.500 0.125 0.743 0.0156 2.000 2.000

0.240 14 0.772 0.0156 0.500 0.125 0.745 0.0156 0.016 0.063

0.250 14 0.759 0.0156 0.500 0.125 0.745 0.0156 0.250 0.063

0.260 11 0.770 0.0313 0.250 0.125 0.747 0.0313 0.125 0.063

0.270 10 0.767 0.0313 2.000 4.000 0.756 0.0313 0.125 0.063

0.280 8 0.782 0.0625 0.500 0.250 0.751 0.0625 2.000 1.000

0.290 5 0.811 0.1250 0.500 0.063 0.771 0.1250 2.000 1.000

0.300 4 0.822 0.1250 1.000 0.250 0.789 0.1250 1.000 0.125

0.310 4 0.820 0.2500 1.000 0.500 0.782 0.2500 1.000 0.063

0.320 4 0.823 0.2500 2.000 1.000 0.783 0.2500 1.000 0.250

0.330 3 0.815 0.5000 0.500 0.250 0.787 0.5000 0.500 0.125

0.340 2 0.841 1.0000 0.500 0.125 0.833 1.0000 0.500 0.500

The values with which the models are fitted are indicated by bold style.

MSE, Mean square error; RBF, Radial basis function; SVR, Support vector machine regression.

5 (multiple predictors vs. single predictor) results significant
differences in r between Models 1–3 and Model 5 (vs. model 1: Z
= 3.45, p= 0.00026; vs. model 2: Z = 2.45, p= 0.0067; vs. model
3: Z= 2.53, p= 0.0057) but not betweenModel 4 andModel 5 (Z
= 0.56, p= 0.29). All models’ accuracy and difference in r-values
compared to Model 5 are summarized in Table 2. Comparison
between Models 1 and 3 and Models 2 and 4 (non-linear vs.
linear) revealed that significant differences in r-values existed
between Models 2 and 4 (Z = 3.49, p= 0.00024) but not between
Models 1 and 3 (Z = 1.08, p = 0.14). Comparison between
Models 1 and 2 and Models 3 and 4 (full electrodes vs. limited
electrodes) revealed that significant differences existed between

Models 3 and 4 (Z = 2.98, p = 0.0014) but not between Models
1 and 2 (Z = 1.27, p = 0.10). These results are summarized in
Table 3.

DISCUSSION

The aim of this study was to prove that a model with multiple
EEG variables and non-linear regression estimatedMW intensity
better than single variable or linear models. First, we confirmed
that the RT variance correlates to self-reported MW intensity
as shown in previous research and validated the reported
MW score. Then, we prepared a combination of patterns of
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FIGURE 3 | The set of selected features in Model 1 and 3 (B), Model 2 and 4 (C), and Model 5 (D). The red and gray dots indicate disposed electrodes, and (A)

indicates their corresponding names. The red dots mean that the power value of that electrode is used as a feature. The blue lines mean the coherence between

those two electrodes is used as a feature (e.g., D indicates that the coherence between Pz and O1 in beta 3 frequency band is used as a feature in Model 5).

predictors and fitted models by SVR. Finally, using prediction
accuracy estimated by cross-validation and the number of used
electrodes, we proposed five models: Models 1 and 2 are non-
linear models, Models 3 and 4 are linear models, Models 2 and
4 use restricted number of electrodes, and Model 5 is a single
regression model. All models showed robustness, and Model
1–3 presented higher accuracy than similar SVR-using studies
(Hoexter et al., 2013) through examination using held-out test
data.

TABLE 2 | The results of Pearson’s correlation test and r difference test between

Model 5 and Model 1–4.

Pearson’s correlation test r differ test (vs. model 5)

|r| p Z p

Model 1 (RBF, full

electrodes)

0.54 1.02E-15 3.47 0.00026

Model 2 (RBF,

limited electrodes)

0.49 8.40E-13 2.48 0.0067

Model 3 (linear, full

electrodes)

0.51 9.74E-14 2.53 0.0057

Model 4 (linear,

limited electrodes)

0.39 4.79E-08 0.56 0.29

Model 5 (single

electrodes)

0.35 1.18E-06 – −

RBF, Radial basis function.

The variable indicating the highest correlation coefficient with
response values was the beta 3 coherence between the parietal
midline area (Pz) and the occipital area (O1). Previous research
suggests that EEG over the midline area reflects DMN activity
(this variable is suspected to relate to DMN). In addition to this
variable, Models 2 and 4 include beta 1 and beta 2 activities over
the lateral prefrontal area and beta 1 EEG over the parietal area.
Considering that both areas are known to be a part of the ECN
(Seeley et al., 2007), Models 2 and 4might handle the information
on ECN activity. Models 1 and 3 markedly add to coherence
between the prefrontal area and right parietal area on low-
frequency bands. The same coherence pattern has been reported
in previous research, in which this EEG network, observed during
mental arithmetic, correlated with BOLD signals from the right
pre-motor area, left cerebellum, and left angular gyrus (Mizuhara
and Yamaguchi, 2007). The pre-motor area and cerebellum
are known to attribute to the preparation and coordination
of physical movements (Ito, 2000; Schubotz and von Cramon,
2003). Moreover, the authors interpreted the observed EEG
activity as a reflection of visual imaging of numbers, based on
the previous research in which similar pattern of coherence was
reported during the manipulation of abstract visual patterns
(Sauseng et al., 2005) Thus, characteristic coherences in Models
1 and 3 may also be associated with the preparation for button
pressing or the processing of the visual image of presented
numbers.

Significantly higher accuracies of Models 1–4 compared to
Model 5 partially indicate the validity to use multi-variate

Frontiers in Human Neuroscience | www.frontiersin.org 7 July 2017 | Volume 11 | Article 365

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kawashima and Kumano Prediction of Mind-Wandering by EEG

TABLE 3 | The result of r difference test.

Z p

Model 1 vs. Model 3 (full electrodes, RBF vs. linear) 1.08 0.14

Model 2 vs. Model 4 (limited electrodes, RBF vs. linear) 3.49 0.00024

Model 1 vs. Model 2 (RBF, full vs. limited electrodes) 1.27 0.10

Model 3 vs. Model 4 (linear, full vs. limited electrodes) 2.98 0.0014

RBF, Radial basis function.

regression algorithms for estimation of MW intensity from
EEG data. Models 1 and 3 showed no significant differences in
their precision, and the suitability of the non-linear regression
algorithm over the linear one was not confirmed. However, when
the number of electrodes was limited, the non-linear model
(Model 2) indicated better accuracy than the linear model (Model
4). It is seemed that Model 5 predicted the intensity of MW
from DMN activity, and Model 2 and 4 used additional ECN
activity. The Non-linear relationship between ECN activity and
MW could be the possible cause for better accuracy in Model 2
than in Model 5, but not in Model 4. However, Models 1 and 3
indicated significantly higher precision than Model 5 since these
models seemed to additionally use the brain activity involving
pressing the button or the processing of numbers for prediction,
and importance of ECN activity for predictionmight be relatively
small for them.

This research has some limitations. First, all subjects were
young (averaging 21.77 years), and it is not clear whether
the proposed models work on older people. Previous research
indicates that aging decreases MW frequency during tasks.
Zavagnin et al. (2014) investigated the MW frequency of
several age groups using SART and probe-caught thought
sampling, showing that MW reports reduce as age increases.
As physiological support, Damoiseaux et al. (2008) reported
that DMN activity during the resting state decreases in older
subjects. However, it is unlikely that neural mechanisms of MW
occurring in older people are qualitatively distinct from that in
younger people as Maillet and Schacter (2016) explained that
age-related differences in task interest cause this contrast. Hence,
we assume that the present results are reproducible in older
subjects, although further research is needed to establish this.
Second, whether our models apply to EEG data during other
conditions is unclear. We used EEG data during SART to make
models requiring simple vigilance, and they may fit EEG in
various tasks. However, in this experiment, frequent presentation
of thought probes could make subjects conscious of MW and
enhance their meta-awareness to MW. Further, the intervals
of probes were fixed and the possibility that some subjects
anticipate the probe occurrence timing cannot be denied. These
influences of the presence of thought probe to EEG patterns may
deteriorate prediction accuracy when the models were applied
to conditions which have no probes. Further, Models 1 and 3
seem to be estimated on the basis of the neural activity for
processing numerical visual images and button-pressing and
may not be applicable to other conditions. Conversely, although
further research is required, we implied that Model 2 uses only

activity of ECN and DMN and can estimate MW in diverse
settings.

As advanced research, a prediction model focused on the
MW with the strict definition is worth investigating. The present
study used probes including a questioning probe asking where
the attention was focused on. The same probes were used in
previous researches in which prediction model was created from
physiological measures (Blanchard et al., 2014; Mittner et al.,
2014; Bixler and D’Mello, 2016). However, recent researches
(Stawarczyk et al., 2011; Smallwood and Schooler, 2015) suggest
that “task-independent” or “off-task” answer can indicate various
conscious states, such as a state distracted by external stimulus
(e.g., sound of measurement devices), guessing the purpose of
the task, or MW in a narrow sense (self-generated thought that
is totally irrelevant to the task). By assessing the content of
thoughts and purifying the target of prediction, the accuracy
of prediction may improve. However, many studies, like the
present study, regard all the states that are not attentive to the
current task as MW (e.g., Mason et al., 2007; Christoff et al.,
2009; Jensen et al., 2016; Maillet and Rajah, 2016). Particularly,
such MW in the broad sense has recently been deemed to be
an intervention target psychiatric problem (Segal et al., 2002;
Kabat-Zinn, 2015). A proper prediction target depends on the
purpose.

In conclusion, we illustrated that non-linear regression
algorithm with multiple EEG variables estimates MW intensity
well. A prediction by EEG enabled us to evaluate intensity of MW
in high temporal resolution and observe uninvestigated aspects
of MW, such as time-series variation. Moreover, although future
research is required, MW estimation by EEG might be applicable
to various situations. Our proposed method is expected to clarify
the nature of MW in various little-examined situations, such
as those involving attempts to sleep or meditate. Further, we
demonstrated that EEG data from a few electrodes can also
precisely estimate the intensity of MW and contribute to the
development of neuro-feedback studies.
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