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Abstract

The research describes the recognition and classification of the acoustic characteristics of

amphibians using deep learning of deep neural network (DNN) and long short-term memory

(LSTM) for biological applications. First, original data is collected from 32 species of frogs

and 3 species of toads commonly found in Taiwan. Secondly, two digital filtering algorithms,

linear predictive coding (LPC) and Mel-frequency cepstral coefficient (MFCC), are respec-

tively used to collect amphibian bioacoustic features and construct the datasets. In addition,

principal component analysis (PCA) algorithm is applied to achieve dimensional reduction

of the training model datasets. Next, the classification of amphibian bioacoustic features is

accomplished through the use of DNN and LSTM. The Pytorch platform with a GPU proces-

sor (NVIDIA GeForce GTX 1050 Ti) realizes the calculation and recognition of the acoustic

feature classification results. Based on above-mentioned two algorithms, the sound feature

datasets are classified and effectively summarized in several classification result tables and

graphs for presentation. The results of the classification experiment of the different features

of bioacoustics are verified and discussed in detail. This research seeks to extract the opti-

mal combination of the best recognition and classification algorithms in all experimental

processes.

1. Introduction

In nature, communication between animals entails the transmission of specific information

between individuals of one or different species to invoke specific behaviors [1]. Therefore, con-

siderable work has focused on the study of animal behavior based on acoustic feature analysis

[2, 3]–even those abiotic signals have been studied. Several available adaptive theories analyti-

cal methods can be used to extract hidden information conveyed by any sound [4]. For
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example, the sound of human breathing, the release of vibration energy from objects, or the

abnormal automobile driving sound characteristics may implicitly indicate the existence of

some abnormal problems [5, 6]. Different acoustic characteristics represent dynamic behavior

characteristics under actual conditions. The sound characteristics of each animal reflect the

actual state of animal behavior, and thus reveal information about different behaviors [7], and

the sound information communicated by a large number of animals can be automatically and

systematically measured and monitored in nature.

By collecting and analyzing the characteristics of animal communication sounds of differ-

ent species, this research provides a more benefit and convenient way to monitor the dynamic

behavior of specific animal species, avoiding time-consuming manual monitoring and analysis

[8]. The application of bioacoustic monitoring technology is very effective in identifying exist-

ing species, especially in the case of species for which limited data is available [9]. Many well-

known research cases have established that acoustic signal data can be effectively collected and

digitally filtered feature identification [10, 11]. The application of signal comparison and rec-

ognition for bioacoustics includes well-trained artificial listening recognition or classification

by multi-channel spectrogram observation. Detection based on collected signals depends on

sensor signal measurement and acquisition using classifier algorithms such as machine learn-

ing. Well-trained professional observers can distinguish subtle spectrogram features, and then

can identify relevant sound features in the surrounding environment [12]. The time series clas-

sification and calculation method has emerged as a popular artificial intelligence research

topic.

Most supervised and unsupervised algorithms are typically applied to dynamic time series

signals [13]. Automatic animal sound detection and recognition from audio recordings is

gradually becoming an emerging topic in bioacoustics [14]. Technically speaking, bioacoustic

features and classification, after collecting and processing data, produce meaningful feature

information and provide a better method to measure ecosystem changes [15]. A research proj-

ect conducted at the Academia Sinica Biodiversity Research Center [16] has collected and ana-

lyzed audio field signals in forests, thereby constructing characteristic sound field training

datasets models for forest environments. Different from [16], this presented algorithms used

in this study is entirely new approaches of more samples.

Artificial intelligence (AI) techniques have been widely applied in many fields such as

image recognition, speech recognition, characteristic signal models, deduction and reasoning,

and data mining to solve problems that otherwise are addressed using traditional calculation

methods. Implementation challenges include difficult characteristic classification [17]. Nowa-

days, big data-related applications are a major application of AI for the algorithmic classifica-

tion of huge amounts of data to identify more practical optimization decision models.

Machine learning classification and recognition methods from AI are then applied to obtain

optimal prediction performance [18]. Appropriate machine learning techniques can be applied

to acoustic datasets to facilitate model training to obtain prediction solutions with optimal

adaptive calculations and minimal errors. In the iterative process of machine learning model

training, the loss weighting function is minimized to approximate the solution’s optimization

trend to train a prediction model that most closely approximates an ideal solution [19, 20]. All

in all, this research focuses on the basic application of artificial intelligence through the feature

extraction of original signals through filtering calculations, and the classification and recogni-

tion of feature spectrum datasets using machine learning techniques.

So-called machine learning (ML) techniques can deduce a system’s optimal model solution

from large datasets, and simultaneously perform large volume data analysis and classification.

The model is trained from known datasets, and testing data is used to extract the most suitable

prediction solution [21]. ML provides complementary data modeling techniques with
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traditional statistical methods [22]. Among modern algorithms, deep learning (DL) has

attracted widespread attention for its ability to train from large datasets [23]. The present

research selected characteristic sounds of 35 amphibian species, using a novel digital speech

algorithm to perform digital filtering analysis of the sound characteristics. Increasing demand

for big data collection and the advancement of computer processing speeds has driven the use

of deep learning techniques in practical applications in many fields. In the field of speech rec-

ognition, convolutional neural networks (CNN) [24–26], deep neural networks (DNN) [27]

long short-term memory (LSTM) [28] and other machine learning methods have been widely

used as classification algorithms in recent years. This article introduces deep neural network

(DNN) and long short-term memory (LSTM) and discusses to solution of the classification

problem for bioacoustic features in practical applications. In bioacoustic digital filtering, both

linear predictive coding (LPC) and Mel-frequency cepstral coefficient (MFCC) digital speech

algorithms can distinguish characteristic speech signals. These two popular filters are widely

used in digital speech signal processing [29, 30], especially in feature extraction of speech sig-

nals [31]. The sound feature datasets are used to introduce a mainstream data dimensionality

reduction algorithm using principal component analysis (PCA) to perform calculations on a

large number of feature datasets, thus reducing dimensionality and calculation loading, thus

obtaining better recognition and classification performance. Prior to implementation of image

processing or audio feature algorithms, many studies first reduce the dimensionality of big

data features to effectively reduce computational complexity and overhead. This PCA method

is commonly used for dimensionality reduction in the field of audio signal processing. It helps

not only expedite learning efficiency of the datasets but also classify the most effective feature

data for further analysis [32].

DNN of the adaptive learning has become major breakthrough in acoustic speech recogni-

tion [33, 34]. DNN is a classification algorithm that is often applied to very large amounts of

data and is used to develop the proposed experimental framework for bioacoustic classifica-

tion. The calculation characteristics of the neural network are modulated by a set of digital var-

iables called weights. We seek to optimize the neural network’s calculation performance based

on these optimal weights. Based on the multi-layer network connection architecture, we calcu-

late the approximate optimal solution of each node in each neural network. After training a

learning model, the neural network is used as an automatic iterative structure to calculate the

machine learning training model from the selected input to the required output [35].

In recent years, the long short-term memory (LSTM) algorithm has been increasingly

applied for continuous sequential speech signal processing [36, 37]. LSTM is a modified recur-

rent neural network (RNN) which can store information of previous input for a long time

[38]. It can solve the problems of vanishing and exploding gradients along with long sequence

training and memory retention [39]. All RNNs have feedback loops in the recurrent layer to

help store information in "memory" over time. However, standard RNNs may be difficult to

train to resolve the dependence of long-term problems that require learning. The gradient of

the loss function decays exponentially over time (a phenomenon called the vanishing gradient

problem), making training for a typical RNN difficult. This is why the modified RNN is modi-

fied to include a memory cell that can maintain information in memory over time. The most

widely used modified RNN is called LSTM, which uses a set of gates to control when informa-

tion enters the memory, thus solving the vanishing or exploding gradient problem [40]. In this

study, animal acoustic features are classified using the Python pytorch platform and we analyze

the performance of the two previously mentioned algorithms using principal component anal-

ysis in terms of calculation time, and performance. We then filter out the most suitable cate-

gory recognition algorithm classification structure for this dataset. Later in the article we

discuss the influence of principal component analysis on deep neural networks and long and
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short-term memory, and further infer the respective advantages of the two calculation

methods.

2. Theoretical description

2.1. Linear Predictive Coding (LPC) method

The digital speech linear predictive coding (LPC) method describes that a sample L[k] can be

approximately expressed as a function of the linear combination of the previous samples [41],

which is L½k� ¼
PP

m¼1
amL½k � m�. {am} represents the combined coefficient k = 1,2,. . .P called

the linear prediction coefficient. The basic structure of LPC algorithm model is illustrated as

Fig 1.

The characteristics of LPC is a linear combination of this function [42].

L½k� ¼ �
Pp

j¼1
Ajs½k � j� þ G

Pq
l¼0
Blu½k � l�; ð1Þ

where Aj and Bl are prediction coefficients. G is the gain value, and u[k] represents the

unknown input signal.

The z transformation signal T(z) of signal L[k] is expressed as [43]:

TðzÞ ¼
P1

n¼� 1L½n�z
� n: ð2Þ

The transfer function H(z) is the output of the filter to the input and corresponds to the fol-

lowing items.

H zð Þ ¼ G
Pq

l¼0
Blz� l

1þ
Pp

j¼1
Ajz� j

: ð3Þ

Fig 2 shows the process from collecting the original signals of the amphibian to construct-

ing the bioacoustic feature datasets. With the digital filtering algorithm called LPC, we are able

to do feature extraction to the original acoustic signals of every single specy of the amphibian,

adjust the linear predictive coefficients to create multiple filtering effects, and collect the fea-

ture spectral values of every single specy to construct the training datasets.

Fig 1. This figure presents the speech production model through LPC method.

https://doi.org/10.1371/journal.pone.0259140.g001
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2.2. Mel-Frequency Cepstral Coefficient (MFCC) method

This study is inspired from the feature classification experiments in [16]. The methods in [16]

are to use the MFCC digital filtering algorithm to extract features from the original acoustic

signals every single specy of the amphibian. The methods in [16] adjust the pre-emphasis coef-

ficients to create multiple filtering effects, collect the feature spectral values, and construct the

training datasets. Fig 3 shows the architecture of the MFCC.

2.3. Deep Neural Network (DNN) method

DNN provides better feature classification and is suitable for high-complexity mapping. The

basic structure of a neural network transforms the input into the desired output that meets the

goal. Inputs form input nodes, and outputs are represented as output nodes. The middle layer

between the input and output is called the hidden layer. The number of layers is not strictly

fixed, and networks typically use more layers. The general function of each neuron in a neural

network is basically described as follows [44].

y1

j ¼ Tf ð
P

ixi � w1

jiÞ: ð4Þ

Fig 2. Shows our study based on LPC to construct the bioacoustic feature datasets.

https://doi.org/10.1371/journal.pone.0259140.g002

Fig 3. Shows the architecture of the MFCC.

https://doi.org/10.1371/journal.pone.0259140.g003
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In fact, various neural networks can be constructed, depending on how the neurons are

connected. Fig 4 shows the constructed datasets based on the digital filter using the first

machine learning classifier, DNN, to perform feature classification.

2.4. Long Short-Term Memory (LSTM) method

The LSTM architecture is designed to solve the vanishing gradient problem and is the first tool

to introduce a gating mechanism. The modern LSTM architecture is shown in Fig 5.

Mathematically, the LSTM structure is defined as [45]:

it ¼ sðM
xixt þM

hiht� 1 þ b
i
Þ; ð5Þ

f t ¼ sðM
xf xt þM

hf ht� 1 þ b
f
Þ; ð6Þ

zt ¼ tanhðMxzxt þM
hzht� 1 þ b

z
Þ; ð7Þ

ct ¼ ðct� 1 � f tÞ � ðit � ztÞ; ð8Þ

ot ¼ σðMxoxt þM
hoht� 1 þ b

o
Þ; ð9Þ

ht ¼ ot � tanhðctÞ; ð10Þ

it, ft, ct and ot are four gates, respectively used for input, forgetting, cell and output. Thresh-

old values are calculated based on the linear combination of the gates, the current input xt and

the previous state ht−1 through the sigmoid activation function. The updated candidate zt is

Fig 4. DNN structure consisting of many hidden layers. In the experiment, four structures of DNNs with different hidden layer number are constructed in the

classification. There are 10240 feature lengths in the input layer. The output layer generates 35 predictive targets.

https://doi.org/10.1371/journal.pone.0259140.g004
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calculated by the linear combination of xt and ht−1, and pass the tanh activation function. The

cell state of the previous time period, ct−1, will be modified to obtain the cell state of the current

time period, ct, and this process is not directly related to any weight factor multiplication. The

output gate determines how to update the values of the hidden units [46]. Similar to the afore-

mentioned DNN method, the training model constructed by the digital filter is introduced in

this experiment through the second machine learning classifier using long and short-term

memory (LSTM) to perform feature classification.

2.5. Principal Component Analysis (PCA) method

The number of so-called principal components is basically less than or equal to the number of

original variables. The main concept of this conversion is that the first principal component

contains the largest possible variance [43]. The matrix to map the vector xi in the feature

dimension to the corresponding vector ui in the lower dimension needs to be defined. The set

of vectors yi and xi corresponds to yi = MTxi. The scattering matrix calculated in the eigen-

dimensional vector can be expressed as [43]:

Fv ¼
Xi¼N

i¼1

ðxi � mÞ
T
ðxi � mÞ; ð11Þ

where m ¼

Pi¼N

i¼1
xi

N represents the mean vector calculated on the feature dimension. Let the scat-

tering matrix calculated from the low-dimensional vector be calculated as Fu, which corre-

sponds to Fv because Fu = MTFvM.

The transformation matrix M is optimized to maximize the variance of each element in the

transformation vector. MT
k FvMk is maximized by the constraint MT

kMk ¼ 1. This can be solved

Fig 5. Modern LSTM units and its layer structure are illustrated. Same as those described for Fig 4, there are 10240

feature lengths in the input layer, where he output layer generates 35 predictive targets.

https://doi.org/10.1371/journal.pone.0259140.g005
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by the Langrangian method given as follows.

LðMk; lkÞ ¼ MT
k FvMk � lkðM

T
kMk � 1Þ: ð12Þ

2.6. Optimizer function of neural networks

The Adam algorithm exponentially smoothens a step to combine momentum and update.

When the processing forecast of the smoothed value is unrealistically initialized to zero, it

directly addresses the trend inherent in exponential smoothness [47]. Let Xt be the exponential

average of the tth parameter and set it to wt. This value can be modified by a formula similar to

RMSProp, but the parameter is ρ and the range is 0 to 1 [47].

Xt  rXt þ 1 � rð Þ
@L
@wt

� �2

8t: ð13Þ

This gradient is maintained with exponentially smoothed values, for which the tth compo-

nent is denoted as Ft. The smoothing process is also represented by another attenuation

parameter ρf.

Ft  rf Ft þ 1 � rf

� � @L
@wt

� �

8t: ð14Þ

Adaptive Moment Estimation optimizer (Adam) is widely used because it combines the

advantages of many optimizers and is quite competitive [47]. It is used here as an optimizer

function for deep neural networks (DNN) and long short-term memory (LSTM).

3. Experimental methods and verification

3.1. Raw data information of anuras

Roughly speaking, the experiment is divided into four main steps: collection of animals bioa-

coustic data, characteristic digital speech signal processing, classification, and recognition [48].

Fig 6 shows the experimental structure of the process [16, 49]. Table 1 below lists the 35

amphibians for which bioacoustics were collected. The source of the bioacoustic data sets can

be found in http://learning.froghome.org/D/index.html. The signal sampling rate is 44100Hz,

and the time series data captured by each sound file is about 20 seconds. Prior to processing,

we first obtain the original amphibian audio as shown in Fig 7.

3.2. Bioacoustic filtering processing

The LPC as well as MFCC filtering algorithms convert the signal from a common timing signal

to a bioacoustic spectrum feature, as shown in Figs 8 and 9 for LPC and Figs 10 and 11 for

MFCC. First of all, the construction of the feature data datasets is based on 35 types of amphib-

ians, each with 40 sets of LPC coefficients. The P value of the linear estimation filter ranges

from 22 to 100 and obtains one every 2 intervals, so there are a total of 1400 feature spectral

coefficients. The number of feature lengths selected for each coefficient is 10240, so the experi-

mental feature spectrum datasets are in the form of a 1400×10240 matrix as shown in Fig 12,

which belongs to multi-label multi-class datasets. In the same way, the MFCC method uses 40

pre-emphasis coefficients for each of 35 categories to construct feature datasets. The selection

range of the pre-emphasis coefficients ranges from 0.22 to 1 with an interval of 0.02. There are

also 1400 feature spectral coefficients, each with a feature length of 10240.
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3.3. Results of classification and identification

In terms of category recognition applications, the DNN and LSTM are used for feature recog-

nition in this experiment to train bioacoustic feature datasets. Pytorch is a very popular com-

puting platform that uses a parallel decentralized calculation GPU processor for feature data

classification using the “Adam” as the optimizer function. In the experimental process, a PCA

Fig 6. The structure of the experimental process for anuran bioacoustic classification.

https://doi.org/10.1371/journal.pone.0259140.g006

Table 1. Anuran species for classification.

Scientific Name of Anuras Species Scientific Name of Anuras Species

Rhacophorus taipeianus Frog Kaloula pulchra Frog

Rhacophorus arvalis Frog Limnonectes fujianensis Frog

Fejervarya limnocharis Frog Rana latouchii Frog

Lithobates catesbeianus Frog Fejervarya cancrivora Frog

Babina adenopleura Frog Buergeria japonica Frog

Microhyla ornata Frog Buergeria otai Frog

Rana longicrus Frog Buergeria robusta Frog

Hoplobatrachus rugulosus Frog Kurixalus eiffingeri Frog

Hylarana taipehensis Frog Kurixalus idiootocus Frog

Pelophylax plancyi Frog Polypedates braueri Frog

Polypedates megacephalus Frog Rhacophorus aurantiventris Frog

Pseudoamolops sauteri Frog Rhacophorus moltrechti Frog

Odorrana swinhoana Frog Rhacophorus prasinatus Frog

Rana okinavana Frog Khirixalus wangi Frog

Rana guentheri Frog Bufo bankorensis Toad

Microhyla butleri Frog Duttaphrynus melanostictus Toad

Microhyla heymonsi Frog Hyla chinensis Toad

Micryletta steinegeri Frog

https://doi.org/10.1371/journal.pone.0259140.t001
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classification method that can be used for dimensionality reduction of sound spectrum data-

sets is used out to compare the effectiveness of each algorithm’s architecture, where the num-

ber of principal component has been set as 200.

Fig 7. The collected data information of the first 4 anuras, including Rhacophorus taipeianus, Rhacophorus arvalis, Fejervarya
limnocharis, Lithobates catesbeianus, is plotted with time length of approximately 20 seconds for each raw data.

https://doi.org/10.1371/journal.pone.0259140.g007

Fig 8. The spectrum diagram of anuran bioacoustic features filtered through the LPC algorithm with P coefficient equal to 60,

including Rhacophorus taipeianus, Rhacophorus arvalis, Fejervarya limnocharis, Lithobates catesbeianus, Babina adenopleura,

Microhyla ornata, Rana longicrus,Hoplobatrachus rugulosus,Hylarana taipehensis, Pelophylax plancyi, Polypedates megacephalus,
Pseudoamolops sauteri, Odorrana swinhoana, Rana okinavana and Rana guentheri.

https://doi.org/10.1371/journal.pone.0259140.g008
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Fig 9. The spectrum diagram of anuran bioacoustic features filtered through the LPC algorithm with P coefficient equal to 60,

includingMicrohyla butleri,Microhyla heymonsi,Micryletta steinegeri, Kaloula pulchra, Limnonectes fujianensis, Rana latouchii,
Fejervarya cancrivora, Buergeria japonica, Buergeria otai, Buergeria robusta, Kurixalus eiffingeri, Kurixalus idiootocus, Polypedates
braueri, Rhacophorus aurantiventris, Rhacophorus moltrechti, Rhacophorus prasinatus, Khirixalus wangi, Bufo bankorensis,
Duttaphrynus melanostictus andHyla chinensis.

https://doi.org/10.1371/journal.pone.0259140.g009

Fig 10. The spectrum diagram of anuran bioacoustic features filtered through the MFCC algorithm with pre-emphasis coefficient

equal to 0.9, including Rhacophorus taipeianus, Rhacophorus arvalis, Fejervarya limnocharis, Lithobates catesbeianus, Babina
adenopleura,Microhyla ornata, Rana longicrus,Hoplobatrachus rugulosus,Hylarana taipehensis, Pelophylax plancyi, Polypedates
megacephalus, Pseudoamolops sauteri,Odorrana swinhoana, Rana okinavana and Rana guentheri.

https://doi.org/10.1371/journal.pone.0259140.g010
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Fig 11. The spectrum diagram of anuran bioacoustic features filtered through the MFCC algorithm with pre-emphasis coefficient

equal to 0.9, includingMicrohyla butleri,Microhyla heymonsi,Micryletta steinegeri, Kaloula pulchra, Limnonectes fujianensis, Rana
latouchii, Fejervarya cancrivora, Buergeria japonica, Buergeria otai, Buergeria robusta, Kurixalus eiffingeri, Kurixalus idiootocus,
Polypedates braueri, Rhacophorus aurantiventris, Rhacophorus moltrechti, Rhacophorus prasinatus, Khirixalus wangi, Bufo
bankorensis,Duttaphrynus melanostictus andHyla chinensis.

https://doi.org/10.1371/journal.pone.0259140.g011

Fig 12. The label establishment of 35 anuran datasets through bioacoustic spectral features filtered by an LPC algorithm. The label in the first

column, X_YY, indicates the X-th anura with linear prediction coefficient equal to YY. MFCC also uses similar data labeling and data model

construction methods to generate 10240 feature lengths corresponding to the 40 pre-emphasis coefficients. The two datasets are divided into two

parts in the machine learning classification stage. The experiment randomly selects 70% of the datasets for training, with the remaining 30% used for

testing.

https://doi.org/10.1371/journal.pone.0259140.g012
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There are four important parameter settings: the number of iterations is set to 1000, the

learning rate is set to 0.00002, and batch size is set to 1400, which means that the training pro-

cess for this model is an iterative operation to calculate neural network weighting and update

the value. The ratio of randomly selected validation datasets is 0.3, which means that 30% of

the model datasets are randomly selected as testing datasets, which is the basis for model calcu-

lation verification. Moreover, LPC and MFCC perform feature classification based on the two

deep learning classifiers mentioned previously.

The first classifier used in this study is deep neural network. We construct four different

DNN models for classification during the classifying process. Table 2 shows the four types of

deep neural network models. Model 1 through 4 respectively have 12, 16, 20 and 24 hidden lay-

ers. The activation function used in every neural network here is sigmoid activation function,

where the number of inputs here is 10240 feature lengths. The output layer has predicted target

number of 35.

Table 3 shows the LPC and MFCC feature classification results of DNN structures from

Table 2. For LPC datasets, using PCA for classification increases accuracy while reducing the

Table 2. Deep neural network models with labels.

DNN models

12-layer structure: [50,80,100,120,180,200,200,180,120,100,80,50]

16-layer structure: [50,80,100,120,180,200,240,300,300,240,200,180,120,100,80,50]

20-layer structure: [50,80,100,120,180,200,240,300,320,360,360,320,300,240,200,180,120,100,80,50]

24-layer structure: [50,80,100,120,180,200,240,300,320,360,400,480,480,400,360,320,300,240,200,180,120,100,80,50]

https://doi.org/10.1371/journal.pone.0259140.t002

Table 3. Training results of DNN models and PCA-DNN models.

Training model LPC-DNN LPC-PCA-DNN MFCC-DNN MFCC-PCA-DNN

12-layer 12-layer 12-layer 12-layer

Accuracy score 0.911 1.000 0.991 0.988

Accuracy difference ratio 9.7% -0.3%

Training period (sec.) 35.795 34.598 37.052 35.864

Training period difference ratio -3.3% -3.2%

Training model LPC-DNN LPC-PCA-DNN MFCC-DNN MFCC-PCA-DNN

16-layer 16-layer 16-layer 16-layer

Accuracy score 0.871 1.000 0.991 0.990

Accuracy difference ratio 14.8% -0.1%

Training period (sec.) 40.442 38.329 40.896 42.501

Training period difference ratio -5.2% 3.9%

Training model LPC-DNN LPC-PCA-DNN MFCC-DNN MFCC-PCA-DNN

20-layer 20-layer 20-layer 20-layer

Accuracy score 0.711 1.000 0.997 0.995

Accuracy difference ratio 40.6% -0.2%

Training period (sec.) 44.107 43.765 45.846 43.635

Training period difference ratio -0.8% -4.8%

Training model LPC-DNN LPC-PCA-DNN MFCC-DNN MFCC-PCA-DNN

24-layer 24-layer 24-layer 24-layer

Accuracy score 0.454 1.000 0.997 0.986

Accuracy difference ratio 120.1% -1.2%

Training period (sec.) 49.533 47.487 48.248 48.822

Training period difference ratio -4.1% 1.2%

https://doi.org/10.1371/journal.pone.0259140.t003
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training period. Figs 13(A), 14(A), 15(A) and 16(A) respectively show the loss function of the

LPC-DNN-12-layer, LPC-DNN-16-layer, LPC-DNN-20-layer and LPC-DNN-24-layer models

while Figs 13(B), 14(B), 15(B) and 16(B) show the classification process following PCA. Simi-

larly, Figs 17–20 respectively show the similar illustrations as Figs 13–16 but with MFCC filter-

ing algorithm. The LPC and MFCC feature datasets obtain different feature classification

results. Compared with the LPC-DNN model, the MFCC-DNN model presents a smoother

gradient decent. Introducing the PCA dimensionality reduction method smoothes the gradi-

ent descent for both the LPC-PCA-DNN and MFCC-PCA-DNN models. However, the accu-

racy score calculated by the MFCC-PCA-DNN model is slightly lower than that of the

MFCC-DNN model. The performance decline of the model from 12-layers to 24-layers is

-0.3%, -0.1%, -0.2% and -1.2% in sequence. This result shows that importing the PCA method

has no obvious benefit to the MFCC feature datasets. In addition, as the number of hidden lay-

ers of the DNN increases, the accuracy score of the LPC feature datasets is reduced, while the

MFCC accuracy remains relatively stable. It can be seen that increasing the number of hidden

layers has a greater impact on the LPC model than the MFCC model.

Nevertheless, sometimes it is not necessary to expand the redundant hidden layers in a

DNN, which means that datasets of different sizes will experimentally have the best parameter

sets and appropriate structural applications. The impact of PCA implementation on

Fig 13. (a) The graph shows the performance of LPC-DNN-12-layer model; (b) The graph shows the performance of LPC-PCA-DNN-12-layer

model.

https://doi.org/10.1371/journal.pone.0259140.g013

Fig 14. (a) The graph shows the performance of LPC-DNN-16-layer model; (b) The graph shows the performance of LPC-PCA-DNN-16-layer model.

https://doi.org/10.1371/journal.pone.0259140.g014
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classification effectiveness is clearly revealed in the test results. For the LPC Feature datasets,

applying PCA not only reduces the time needed for model training, but also increases the

smoothness of the loss function performance. This is counterproductive for the MFCC feature

datasets. Moreover, for an appropriate range of neural network structures, classification effec-

tiveness increases with the number of hidden layers.

The second neural network method used in this experiment is the long short-term memory

(LSTM) algorithm. The experimental process presents different LSTM architectures, all based

on two network hidden layers, respectively using 200, 300, 500 and 700 hidden neurons, using

PCA for comparison. Table 4 lists the accuracy and training times of the four different number

of hidden neural network layers with LPC and MFCC datasets, the LSTM training model net-

work label layer = 2×200 indicates that there are 2 hidden layers containing 200 hidden neu-

rons. Figs 21(A), 22(A), 23(A) and 24(A) show the classification process with LPC datasets

while Figs 21(B), 22(B), 23(B) and 24(B) show the classification process after adding PCA

method. Similarly, Figs 25–28 respectively show the similar illustrations as Figs 21–24 but with

MFCC filtering algorithm. In addition, Figs 29 and 30 present, respectively, the two Feature

datasets of the LPC and MFCC, where the long-term prediction of the LSTM algorithm has

been added. The training set and test set occupy, respectively, 80% and 20% of the datasets.

The reduced training time highlights the impact of PCA on LSTM calculations. The loss

Fig 15. (a) The graph shows the performance of LPC-DNN-20-layer model; (b) The graph shows the performance of LPC-PCA-DNN-20-layer model.

https://doi.org/10.1371/journal.pone.0259140.g015

Fig 16. (a) The graph shows the performance of LPC-DNN-24-layer model; (b) The graph shows the performance of LPC-PCA-DNN-24-layer model.

https://doi.org/10.1371/journal.pone.0259140.g016
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function with LPC datasets can show that PCA produces a smoother gradient descent process.

In terms of time, PCA has a key impact on enhancing the advantages of LSTM algorithms. For

the LSTM model, the accuracy of the LPC feature dataset increases with the number of hidden

neurons. Introducing the PCA method increases the accuracy score and reduces the training

period time. with increases from 200 to 700 hidden neuron structures resulting in sequential

efficiency increases of 8.5%, 1.5%, 0.5%, and 0.2%. However, despite the significant decrease in

the training period for the MFCC-PCA-LSTM, the accuracy of the MFCC feature datasets is

slightly reduced, with increases from 200 to 700 hidden neurons producing sequential reduc-

tions in meta-architecture performance of -1.0%, -0.7%, -0.5%, and -0.2% in order. In other

words, the MFCC-LSTM model can achieve a considerable degree of accuracy. In addition, as

the number of hidden neurons increases, the LPC feature dataset gradually improves, while

the MFCC feature dataset remains relatively unchanged. It can also be inferred from this that

the number of hidden neurons will affect the accuracy score of the LPC model.

For the datasets constructed in this experiment, different neural network configurations

will have different effects, and PCA increases the difference in performance, especially with

LPC datasets. A significant performance improvement implies that, at the practical application

level, this feature dataset faces many unexpected external factors.

Fig 17. (a) The graph shows the performance of MFCC-DNN-12-layer model; (b) The graph shows the performance of MFCC-PCA-DNN-12-layer model.

https://doi.org/10.1371/journal.pone.0259140.g017

Fig 18. (a) The graph shows the performance of MFCC-DNN-16-layer model; (b) The graph shows the performance of MFCC-PCA-DNN-16-layer model.

https://doi.org/10.1371/journal.pone.0259140.g018
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This article specifically discusses the efficiency and calculation time through several models,

and further analyzes the best algorithm combination. Table 5 shows the average score of the k-

fold cross validation. Figs 31–34 present the feature datasets of the LPC and MFCC along with

the obtained results of the confusion matrix from, respectively, the DNN and PCA-DNN. Figs

35–38 show the feature datasets of the LPC and MFCC, where the results of the confusion

matrix are obtained by means of the LSTM and PCA-LSTM, respectively. Table 6 lists the four

specific algorithm combinations. In terms of accuracy, all provide high-precision recognition

effects. Different deep learning algorithms have different configuration architectures, along

with different accuracy score presentations and training periods. In addition, Fig 39 shows

that, compared with the DNN model, the LSTM model produces very fast gradient descent

convergence within 300 epochs and the fastest gradient descent is found in the MFCC-LSTM

model, which can converge within 200 epochs.

This study is inspired from the feature classification experiments in [16]. The methods in

[16] are to use the MFCC digital filtering algorithm to extract features from the original acous-

tic signals every single specy of the amphibian. The methods in [16] adjust the pre-emphasis

coefficients to create multiple filtering effects, collect the feature spectral values, and construct

the training datasets. Two widely used deep learning algorithms (DNN and LSTM) are applied

to the classification model. The feature DSP in [16] is MFCC, where this study investigates

Fig 19. (a) The graph shows the performance of MFCC-DNN-20-layer model; (b) The graph shows the performance of MFCC-PCA-DNN-20-layer model.

https://doi.org/10.1371/journal.pone.0259140.g019

Fig 20. (a) The graph shows the performance of MFCC-DNN-24-layer model; (b) The graph shows the performance of MFCC-PCA-DNN-24-layer model.

https://doi.org/10.1371/journal.pone.0259140.g020
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LPC and MFCC. The platform is also different. In [16], Matlab is used, where Python Pytorch

has been chosen for this study. With regards to the classification, MLP and SVM are used for

the work in [16], as the title, where DNN and LSTM are used in this study. Moreover, this

work possesses 20 more types of sound samples.

4. Conclusions

This research applies two algorithm architectures, DNN and LSTM, for feature classification

of amphibian sounds through the bioacoustic spectrum. The machine learning structure used

Table 4. Training results of LSTM models and PCA-LSTM models.

Training model LPC-LSTM LPC-PCA-LSTM MFCC-LSTM MFCC-PCA-LSTM

layer = 2×200 layer = 2×200 layer = 2×200 layer = 2×200

Accuracy score 0.921 1.000 0.998 0.988

Accuracy difference ratio 8.5% -1.0%

Training period (sec.) 70.077 51.536 75.785 49.681

Training period difference ratio -26.5% -34.5%

Training model LPC-LSTM LPC-PCA-LSTM MFCC-LSTM MFCC-PCA-LSTM

layer = 2×300 layer = 2×300 layer = 2×300 layer = 2×300

Accuracy score 0.986 1.000 1.000 0.993

Accuracy difference ratio 1.5% -0.7%

Training period (sec.) 101.016 69.059 106.693 70.926

Training period difference ratio -31.6% -33.5%

Training model LPC-LSTM LPC-PCA-LSTM MFCC-LSTM MFCC-PCA-LSTM

layer = 2×500 layer = 2×500 layer = 2×500 layer = 2×500

Accuracy score 0.995 1.000 1.000 0.995

Accuracy difference ratio 0.5% -0.5%

Training period (sec.) 173.457 120.370 182.007 124.238

Training period difference ratio -30.6% -31.7%

Training model LPC-LSTM LPC-PCA-LSTM MFCC-LSTM MFCC-PCA-LSTM

layer = 2×700 layer = 2×700 layer = 2×700 layer = 2×700

Accuracy score 0.998 1.000 0.998 0.995

Accuracy difference ratio 0.2% -0.2%

Training period (sec.) 285.477 210.860 293.631 212.291

Training period difference ratio -26.1% -27.7%

https://doi.org/10.1371/journal.pone.0259140.t004

Fig 21. (a) The graph shows the performance of LPC-LSTM-2×200 model; (b) The graph shows the performance of LPC-PCA-LSTM-2×200 model.

https://doi.org/10.1371/journal.pone.0259140.g021
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is the key to determining feature extraction and classification recognition performance. Avail-

able sound data is first collected for analysis by applying the LPC and MFCC algorithms for

digital filtering of the data. The characteristic acoustic spectrum values obtained from filtering

are then collected and respectively aggregated to construct synthetic datasets. The DNN as well

as LSTM are the classifiers that use the number of hidden layers, different parameters, and

function settings to analyze the effect and determine the optimal algorithm combination. The

experimental results are presented in graphs and tables. Strikingly different classification

results are obtained using the GPU with adaptive moment estimation algorithm (Adam) opti-

mizer function. Results clearly show that the PCA algorithm can effectively reduce dataset

dimensionality to achieve better classification and identification results for LPC datasets, indi-

cating that this PCA algorithm provides improved recognition performance with LPC datasets.

However, for MFCC datasets, there is no obvious benefit to importing the PCA method. This

result shows that PCA has a greater impact on LPC datasets, but no impact on MFCC. In

short, in the training of machine learning models, deep learning neural networks have been

shown to be applicable for the processing and analysis of big data models and can achieve rea-

sonable classification results through the use of effective classifier algorithms and training

models with reasonable characteristics to identify specific species. Based on the research data

Fig 22. (a) The graph shows the performance of LPC-LSTM-2×300 model; (b) The graph shows the performance of LPC-PCA-LSTM-2×300 model.

https://doi.org/10.1371/journal.pone.0259140.g022

Fig 23. (a) The graph shows the performance of LPC-LSTM-2×500 model; (b) The graph shows the performance of LPC-PCA-LSTM-2×500 model.

https://doi.org/10.1371/journal.pone.0259140.g023
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Fig 24. (a) The graph shows the performance of LPC-LSTM-2×700 model; (b) The graph shows the performance of LPC-PCA-LSTM-2×700 model.

https://doi.org/10.1371/journal.pone.0259140.g024

Fig 25. (a) The graph shows the performance of MFCC-LSTM-2×200 model; (b) The graph shows the performance of MFCC-PCA-LSTM-2×200 model.

https://doi.org/10.1371/journal.pone.0259140.g025

Fig 26. (a) The graph shows the performance of MFCC-LSTM-2×300 model; (b) The graph shows the performance of MFCC-PCA-LSTM-2×300 model.

https://doi.org/10.1371/journal.pone.0259140.g026
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Fig 27. (a) The graph shows the performance of MFCC-LSTM-2×500 model; (b) The graph shows the performance of MFCC-PCA-LSTM-2×500 model.

https://doi.org/10.1371/journal.pone.0259140.g027

Fig 28. (a) The graph shows the performance of MFCC-LSTM-2×700 model; (b) The graph shows the performance of MFCC-PCA-LSTM-2×700 model.

https://doi.org/10.1371/journal.pone.0259140.g028

Fig 29. (a) It shows the predictive coefficient in the LPC feature datasets is 50 of the long-term prediction; (b) It shows the predictive coefficient in the LPC

feature datasets is 90 of the long-term prediction.

https://doi.org/10.1371/journal.pone.0259140.g029
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Fig 30. (a) It shows the pre-emphasis coefficient in the MFCC feature datasets is 0.5 of the long-term prediction; (b) It shows the pre-emphasis coefficient

in the MFCC feature datasets is 0.9 of the long-term prediction.

https://doi.org/10.1371/journal.pone.0259140.g030

Table 5. Average score of 5-fold cross validation results of proposed models.

5-fold cross validation LPC datasets PCA-LPC datasets MFCC datasets PCA-MFCC datasets

DNN-12-layer 0.9007 0.9993 0.9700 0.9643

DNN-16-layer 0.8636 0.9964 0.9529 0.9500

DNN-20-layer 0.7350 0.9843 0.9464 0.9329

DNN-24-layer 0.4593 0.9900 0.9436 0.9029

LSTM-200�2 layer 0.9486 0.9629 0.9979 0.9643

LSTM-300�2 layer 0.9886 0.9764 0.9943 0.9750

LSTM-500�2 layer 0.9714 0.9793 0.9929 0.9729

LSTM-700�2 layer 0.9936 0.9864 0.9921 0.9821

https://doi.org/10.1371/journal.pone.0259140.t005

Fig 31. The confusion matrix of DNN-12-layer model with LPC datasets.

https://doi.org/10.1371/journal.pone.0259140.g031
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and analytical results in this study, it is concluded that MFCC-LSTM not only possess high

precision, but also have more benefit in reducing time during training models.

Future research can focus on applying other modern machine learning methods and algo-

rithms. The widespread use of acoustic features would establish a key milestone in the

Fig 32. The confusion matrix of PCA-DNN-12-layer model with LPC datasets.

https://doi.org/10.1371/journal.pone.0259140.g032

Fig 33. The confusion matrix of DNN-12-layer model with MFCC datasets.

https://doi.org/10.1371/journal.pone.0259140.g033
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improvement of modern technologies. The experiments presented here focus on the classifica-

tion of animal acoustic features, but these techniques can be further used in the detection of

abnormal sounds in human physiology, which would present a significant development in the

use of sound analysis for medical diagnosis [50, 51].

Fig 34. The confusion matrix of PCA-DNN-12-layer model with MFCC datasets.

https://doi.org/10.1371/journal.pone.0259140.g034

Fig 35. The confusion matrix of LSTM-2×200 model with LPC datasets.

https://doi.org/10.1371/journal.pone.0259140.g035
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Fig 36. The confusion matrix of PCA-LSTM-2×200 model with LPC datasets.

https://doi.org/10.1371/journal.pone.0259140.g036

Fig 37. The confusion matrix of LSTM-2×200 model with MFCC datasets.

https://doi.org/10.1371/journal.pone.0259140.g037
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Table 6. Loss functions between PCA-DNN model and PCA-LSTM model.

Network structure LPC-PCA-DNN LPC-PCA-LSTM MFCC-PCA-DNN MFCC-PCA-LSTM

Accuracy score Great Great Great Great

Training period (for 1000 epoch) Short Medium Short Medium

Gradient decay of loss function Relatively slow Relatively fast Relatively slow Relatively fast

https://doi.org/10.1371/journal.pone.0259140.t006

Fig 39. The loss function of network structures, LPC-DNN, LPC-PCA-DNN, LPC-LSTM, LPC-PCA-LSTM,

MFCC-DNN, MFCC-PCA-DNN, MFCC-LSTM and MFCC-PCA-LSTM, as the epoch increases. 20-layer structure

is selected in DNN while 1200-hidden neurons with 2 layers is set in LSTM. It seems that MFCC-LSTM model needs

only 100 epochs to let the loss function converge completely, which can also save the training period.

https://doi.org/10.1371/journal.pone.0259140.g039

Fig 38. The confusion matrix of PCA-LSTM-2×200 model with MFCC datasets.

https://doi.org/10.1371/journal.pone.0259140.g038
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