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Abstract 

Background:  Item response theory (IRT) methods for addressing differential item functioning (DIF) can detect group 
differences in responses to individual items (e.g., bias). IRT and DIF-detection methods have been used increasingly 
often to identify bias in cognitive test performance by characteristics (DIF grouping variables) such as hearing impair‑
ment, race, and educational attainment. Previous analyses have not considered the effect of missing data on infer‑
ences, although levels of missing cognitive data can be substantial in epidemiologic studies.

Methods:  We used data from Visit 6 (2016–2017) of the Atherosclerosis Risk in Communities Neurocognitive Study 
(N = 3,580) to explicate the effect of artificially imposed missing data patterns and imputation on DIF detection.

Results:  When missing data was imposed among individuals in a specific DIF group but was unrelated to cognitive 
test performance, there was no systematic error. However, when missing data was related to cognitive test perfor‑
mance and DIF group membership, there was systematic error in DIF detection. Given this missing data pattern, the 
median DIF detection error associated with 10%, 30%, and 50% missingness was -0.03, -0.08, and -0.14 standard devia‑
tion (SD) units without imputation, but this decreased to -0.02, -0.04, and -0.08 SD units with multiple imputation.

Conclusions:  Incorrect inferences in DIF testing have downstream consequences for the use of cognitive tests in 
research. It is therefore crucial to consider the effect and reasons behind missing data when evaluating bias in cogni‑
tive testing.
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Background
Cognitive test scores from neuropsychological batteries 
are ubiquitous in studies of cognitive aging and demen-
tia. Although neuropsychological batteries are consid-
ered the gold standard measure of cognition, careful 
analysis is required in light of issues such as measure-
ment error and missing data. As an indirect reflection of 

underlying cognitive functioning, cognitive test scores 
are highly susceptible to measurement error [1, 2]. As 
compared to other commonly used methods for the 
analysis of cognitive test data (i.e., individual test scores 
or the generation of summary scores by averaging indi-
vidual test z-scores), Item Response Theory (IRT)-based 
approaches to the analysis of cognitive test data offer 
unique advantages in quantifying and accounting for 
potential group differences in test responses among per-
sons of equivalent underlying status, which can be inter-
preted as biases [3, 4].
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In particular, IRT-based methods for the detection of 
differential item functioning (DIF) allow for the quan-
tification of and adjustment for bias in cognitive tests 
[5–8]. In this framework, bias is indicated when there is 
evidence of DIF, i.e. an item on a cognitive test is easier 
or harder for a particular subgroup of individuals (those 
with hearing impairment, for example), after control-
ling for underlying cognitive ability [9, 10]. This situation 
is akin to differential measurement error in that factors 
hypothesized to impact underlying cognition may also 
differentially affect the measurement of cognition [11].

For instance, hearing impairment is hypothesized to 
be causally related to poor cognition through mecha-
nisms such as cognitive load or increased social isolation 
[12, 13]. Simultaneously, hearing impairment may lead 
to bias in cognitive testing if the completion of cognitive 
test items depends on one’s hearing ability independently 
of their cognitive capacity [14]. Similarly, factors such 
as educational attainment and race may lead to bias in 
cognitive testing through increased familiarity with test-
taking procedures or cultural components of tests [15, 
16]. When seeking to assess the association between true 
underlying cognitive functioning and hearing impair-
ment status, race, or education, a failure to account for 
bias in cognitive testing could lead to biased estimates. 
However, if DIF methods are used to identify bias in cog-
nitive testing, investigators can choose to either remove 
problematic test items or adjust the measurement of cog-
nition for the identified bias using IRT-based methods, 
which either use a concurrent scaling approach based on 
partial measurement invariance or leverage linking meth-
ods robust to the presence of DIF [17].

In addition to the highlighted challenges related to 
measurement error, missing data on cognitive tests can 
be somewhat common due to administrative proce-
dures or participant non-response associated with task 
difficulty, education level, or other cultural factors [18]. 
While missing data can affect findings from traditional 
prevalence studies or risk factor analyses, to our knowl-
edge no prior work has delineated the impact of miss-
ing data on IRT-based approaches to DIF detection and 
the identification of bias in cognitive test items [19, 20]. 
Additionally, while various imputation techniques for 
cognitive data exist and have been the focus of prior 
work, the performance of commonly used imputation 
methods for use in DIF detection under plausible miss-
ingness scenarios has not been previously studied [21, 
22]. Error in the detection of DIF due to missing data 
could lead to incorrect decisions regarding which cogni-
tive items to exclude from a neuropsychological battery 
or incorrect IRT-based model specifications, ultimately 
affecting the estimation of cognitive ability. Therefore, 
it is important to understand how missing data and the 

imputation of missing data might affect the detection of 
bias using IRT-based DIF methods.

Previous work in the education or psychometrics fields 
has explored the impact of missing data on DIF detection 
using DIF detection methods such as the Mantel–Haen-
szel or regression-based approaches [23–25]. However, 
no study we are aware of focused on DIF detection in 
cognitive testing in epidemiologic studies older adults. 
Differences in the sample sizes of studies (epidemiologic 
studies are often smaller than educational testing data-
sets), the number of items available (batteries are often 
smaller in studies of older adults), and patterns of miss-
ingness (missingness mechanisms in older adults are 
often closely related to disease status, mortality, and gen-
eral cognitive status) might lead to different conclusions. 
Additionally, prior work has not assessed the impact of 
missing data on the Multiple Indicators, Multiple Causes 
model for DIF detection, which is commonly used in the 
study of cognitive testing among older adults [6, 9].

This study aims to (1) describe the effect of differ-
ent missing data patterns on the detection of DIF in 
cognitive testing with IRT methods and (2) to evalu-
ate the effect of commonly used imputation techniques 
in reducing the observed bias in the estimation of DIF 
(DIF estimation error). For illustration, we consider DIF 
attributable to hearing impairment status, educational 
attainment, and race.

Methods
Description of data
We used data from the Atherosclerosis Risk in Commu-
nities Neurocognitive Study (ARIC-NCS) (N = 3580), 
a prospective cohort study which recruited individu-
als aged 45 to 64 years old between 1987 and 1989 [26]. 
Recruitment for the ARIC-NCS sample was based at four 
university study sites (Forsyth County, North Carolina; 
Jackson, Mississippi; the northwest suburbs of Minne-
apolis, Minnesota; and Washington County, Maryland). 
Our primary analyses used cross-sectional data from 
Visit 6 (2016–2017) of ARIC-NCS. We limited the sam-
ple to participants with data for at least one cognitive test 
item. For the assessment of DIF by race we excluded indi-
viduals who were not of white or black race (n = 11).

All participants in the studies provided written 
informed consent. Study protocols were approved by the 
Institutional Review Boards at Johns Hopkins University, 
Wake Forest Baptist Medical Center, University of Mis-
sissippi Medical Center, and the University of Missis-
sippi Medical Center. All data analysis projects, including 
this study, fall under the ARIC Data Repository Project, 
which has been approved by the Johns Hopkins Univer-
sity School of Public Health Institutional Review Board. 
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All analyses were performed in accordance with relevant 
guidelines and regulations.

Measurement of cognition
ARIC-NCS included a comprehensive neuropsychologi-
cal battery testing various cognitive domains, e.g., lan-
guage, attention, executive functioning, and memory. 
Language was assessed using the Boston Naming Test 
and semantic and phonemic fluency [27, 28]. The Trail-
Making test part A assessed attentional ability [29]. The 
Trail-Making test part B, along with the WAIS-R digits 
backwards task, and the digit symbol substitution task 
were used to capture executive functioning [30–32]. 
Finally, memory was assessed using a delayed recall test 
and the Wechsler Memory Scale Revised paragraph 
recall test, as well as a test of incidental learning from the 
previously administered digit symbol substitution task 
[33, 34].

Measurement of factors potentially causing differential 
measurement
We chose to evaluate DIF by three example grouping var-
iables known to be associated with lower scores on cogni-
tive tests and for which there exist plausible mechanisms 
for bias on cognitive testing: hearing impairment status, 
educational attainment, and race [35–37]. We used pure-
tone audiometry to measure hearing. We defined hear-
ing impairment as having a 4-frequency (0.5, 1, 2, 4 kHz) 
pure-tone average in the better hearing ear of 25 decibels 
hearing level or higher to create a dichotomous classifi-
cation [38]. Moderate to low educational attainment was 
defined as high school (or equivalent) or less. For the 
assessment of DIF by race, we compared participants of 
black race, most of whom were from the Jackson, MS site, 
to the reference category of white race (other racial cat-
egories were excluded).

Missingness scenarios
To examine the effect of missing data on the detection 
of DIF, we started with complete data and imposed two 
sets of scenarios with missing data. We then compared 
these scenarios to the reference scenario with no miss-
ing data. In both sets of scenarios, we imposed missing 
data only among participants in the subgroup of the DIF 
grouping variables more likely to have lower cognitive 
test scores based on prior literature (individuals with 
hearing impairment, with moderate to low educational 
attainment, and of black race) [36, 39, 40]. In our first 
set of scenarios (scenario set 1), missingness in a cogni-
tive test item was randomly imposed among those in the 
subgroup more likely to have lower cognitive test scores 
(Missing at Random [MAR]). In this scenario missing-
ness is related only to the DIF grouping variable. In the 

second set of scenarios (scenario set 2), missingness in a 
cognitive test item was imposed randomly among those 
in the subgroup more likely to have lower cognitive test 
scores and who scored below the median score on that 
cognitive test item (Missing Not at Random [MNAR]). 
To summarize, missingness is related only to the DIF 
grouping variable in the first set of scenarios, but in the 
second set of scenarios, missingness is related to both the 
DIF grouping variable and cognitive test score. For each 
scenario set, we imposed levels of 10%, 30%, and 50% 
missingness.

Every cognitive test item in ARIC-NCS had some 
nominal level of missingness (1% to 10%) (Table  1). We 
followed common practice whereby DIF detection is 
conducted on each cognitive test item independently: 
therefore, to maximize the available sample size for the 
detection of DIF, we created separate reference datasets 
for each cognitive test item. The dataset for the evalua-
tion of DIF in a given cognitive test item excluded records 
with missing data for the item in question, although 
missingness on other items was allowed. For this rea-
son, the actual sample size for detection of DIF varied 
slightly from item to item. Table 1 shows the percentage 

Table 1  Demographic characteristics and the percentage of 
missing data on cognitive test scores in the Atherosclerosis Risk 
in Communities Neurocognitive Study (ARIC-NCS), 2016–2017

HS High school, the sample size of each DIF analysis can be calculated by 
subtracting the number of records with missing data on a given cognitive 
test from the total sample size, as each DIF analysis started from the reference 
scenario of no missing data.

ARIC-NCS

Age—Mean (SD) 79.8 (4.7)

Sex—Female—N(%) 2142 (59.8)

Race—Black—N (%) 837 (23.4)

Hearing Impairment—Impaired—N (%) 2614 (73.0)

Vision Impairment—Impaired—N (%) 180 (17.9)

Education: Less than HS—N (%) 428 (12.0)

Education: HS or equivalent—N (%) 1475 (41.2)

Education: Beyond HS—N (%) 1673 (46.8)

Cognitive Items—% Missing in Observed Data (N)

  Boston Naming Test (30 item) 8.2% (270)

  Category Fluency (Animals) 0.5% (17)

  Delayed Word Recall 1.6% (58)

  Digit Symbol Backwards 8.8% (289)

  Digit Symbol Substitution Task 3.9% (136)

  Incidental Learning 4.5% (154)

  Logical Memory 1 9.2% (303)

  Logical Memory 2 9.3% (306)

  Phonemic Fluency (Sum of 3 Trials) 1.5% (54)

  Trail-Making Test A 3.8% (130)

  Trail-Making Test B 19.1% (573)



Page 4 of 12Nichols et al. BMC Medical Research Methodology           (2022) 22:81 

of missing data by item and the number of records with 
missing data, which were excluded in models to assess 
DIF on that specific cognitive test item.

Imputation data and methods
We evaluated commonly used imputation methods for 
minimizing the error due to missing data. To impute 
missing cognitive test scores, we used demographic vari-
ables (age, sex, race [black/white]), educational attain-
ment, hearing and vision impairment status, all other 
cognitive test scores, and cognitive test scores from the 
prior study visit. Vision impairment was defined as pre-
senting better-eye visual acuity worse than 20/40 [41]. 
Data on prior cognitive test scores was available for 
3,425/3,580 (96%) of participants. We used two different 
imputation techniques. First, we implemented a k-nearest 
neighbors hot deck imputation approach, a single impu-
tation technique that randomly samples a value from the 
k-closest records based on Gower’s similarity coefficient 
[42, 43]. For this analysis, we used k = 5, meaning the 
final donor record was selected from a pool of the five 
most similar records. Second, we used Multiple Imputa-
tion by Chained Equations (MICE) as a multiple impu-
tation technique to impute 10 datasets [44]. Continuous 
variables were imputed using predictive mean matching, 

binary variables were imputed using logistic regression 
models, and ordered categorical variables were imputed 
using a proportional odds model.

DIF testing
To evaluate DIF we used the Multiple Indicators, Multi-
ple Causes (MIMIC) confirmatory factor analysis model 
(Fig. 1) [25, 45]. While the MIMIC model is a confirma-
tory factor analysis model, the model functions simi-
larly to an IRT model, which models the relationships 
between scores of each of the cognitive tests and under-
lying cognitive functioning. The MIMIC model addi-
tionally describes both (1) the association of a grouping 
variable on underlying latent cognition and (2) the asso-
ciation of a grouping variable on the score of a specific 
cognitive item (Fig. 1), after accounting for latent cogni-
tion. A large, significant effect (p < 0.05) for relationship 
2 (between a grouping variable and a specific cognitive 
item) is an indication that the item has a relationship 
with the grouping variable, after controlling for underly-
ing level of cognition (as informed by all other test items 
in the model) that is over and above that expected by the 
effect of the grouping variable on the construct of inter-
est (relationship 1). This situation is consistent with the 
notion of bias in that specific test item. Bias can therefore 

Fig. 1  Schematic showing the relationships modeled in the Multiple Indicators, Multiple Causes (MIMIC) model. Underlying cognition leads 
to cognitive test performance on each of the items included in the cognitive battery. Group can influence underlying cognition, which is also 
influenced by some error. The dashed arrow connecting group directly to Item 1 is the primary association of interest and represents bias, or the 
relationship between group and cognitive test item performance, holding underlying cognition constant
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be defined as the existence of a relationship between the 
grouping variable and a specific test item, controlling for 
underlying cognitive functioning.

A negative DIF estimate (the association between a 
grouping variance and an indicator) indicates that a given 
test item is easier for the group of interest (i.e. those with 
hearing impairment), whereas a positive DIF estimate 
indicates that a given test item is more difficult for the 
subgroup of interest. Because the MIMIC model used 
a probit link, the DIF estimate is in the unit of probits. 
In this analysis, we scaled models to have a mean latent 
cognitive score of 0 and a variance of 1, and we therefore 
we refer to DIF estimates and the DIF estimation error 
(bias in the estimation of DIF) in terms of standard devia-
tion (SD) units. For ordinal categorical variables, MIMIC 
models evaluate the association between the grouping 
variable and performance of at least the level of each 
item threshold, where an item threshold represents the 
difficulty of scoring one category higher on a given ordi-
nal test item. Each cognitive test item with k categorical 
response options will have k-1 different thresholds.

Statistical analysis
We first summarized the ARIC-NCS sample using 
descriptive statistics. For each of the DIF grouping vari-
ables and cognitive test items analyzed, we performed the 
following 6 steps: (1) we discretized each cognitive test 
item using equal interval discretization into up to 8 dif-
ferent categories and collapsed adjoining categories if one 
category had fewer than 5% of the records, or if any test 
item had fewer than 5 records in each of the two catego-
ries defined by the DIF grouping variable, (2) we evalu-
ated DIF at each threshold of an item given the reference 
scenario of no missing data, (3) we imposed levels of 
10%, 30%, and 50% missingness according to both miss-
ing data scenario sets described earlier, (4) we evaluated 
DIF in the presence of each missing data scenario, (5) we 
conducted both hot deck single imputation and MICE to 
account for the missing data, and (6) we evaluated DIF 
in the presence of imputations. We then compared the 
difference between reference DIF estimates and DIF esti-
mates with missing data and/or imputed data across all 
cognitive test items and item thresholds considered using 
two metrics: median absolute difference and proportion 
of flipped inferences. The median absolute difference was 
calculated as the absolute value of the difference in DIF 
estimates between the reference scenario and the differ-
ent missingness scenarios. We chose to use the median 
difference so that the overall measure would not be 
affected by a small number of cases where large shifts 
could be attributed to small cell sizes. A positive differ-
ence indicates that the DIF estimate in the missingness 
scenario was larger than the DIF estimate in the reference 

scenario and a negative difference indicates that the DIF 
estimate in the missingness scenario was smaller than the 
DIF estimate in the reference scenario. The proportion of 
DIF estimates with flipped inferences was defined as the 
proportion of estimates for which the statistical signifi-
cance (at the α = 0.05 level) of the reference scenario DIF 
estimate was discrepant with the statistical significance of 
the DIF estimate in the scenario with missing or imputed 
data, or an instance when the two estimates were both 
statistically significant but in opposite directions.

In a post-hoc exploratory analysis to explore poten-
tial reasons behind differences in the performance of 
hot deck single imputation and MICE, we compared the 
median absolute difference in DIF estimates between 
the reference scenario and scenarios with missing data 
imputed with either hot deck single imputation or 
MICE to an additional scenario where missing data were 
imputed using single imputation by chained equations.

Statistical analyses were conducted in STATA 15 or 
R version 4.0.2. Hot deck single imputations were con-
ducted with the simputation R package [46] and MICE 
was conducted with the mice R package [47]. All MIMIC 
models were conducted using a maximum likelihood 
(MLR) estimator in Mplus version 8 and the MplusAuto-
mation R package [48].

Results
Study characteristics
In ARIC-NCS, participants had a mean age of 79.8 years 
(standard deviation [SD] = 4.7), and 59.8% of the sample 
was female (Table 1). We examined the effect of missing 
data on three DIF grouping variables: hearing impair-
ment (73.0% of the sample), moderate to low educational 
attainment (53.2%), and black race (23.4%). The propor-
tion of missing data on cognitive tests was mostly 1% to 
10% but ranged up to 19.1% (Trail-making test B).

Effect of missing data on DIF estimates
When examining the effect of missing data on the 
detection of DIF by hearing impairment, we found 
that when data were missing at random with respect 
to cognitive test score (scenario set 1), DIF estimation 
error was small and random. However, when missing 
data was imposed only among those with low cogni-
tive test scores (scenario set 2), there was systematic 
DIF estimation error. For example, in the phonemic 
fluency task, the median DIF estimation error due to 
random missingness across the thresholds of the item 
was 0.00, 0.04, and 0.02 SD units in the 10%, 30%, and 
50% missing data scenarios, suggesting no systematic 
error. However, the respective DIF estimation error 
due to missingness in low cognitive test scores was 
-0.03, -0.08, and -0.14 SD units, indicating worsening 
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by approximately 0.03 units per 10% additional miss-
ing data. These patterns can be seen visually for select 
items in Fig. 2, which shows the DIF estimates for the 
reference scenario of no missing data in comparison to 
the DIF estimates in each missing data scenario. For the 
random missing data scenarios (scenario set 1), the DIF 
estimates align with the reference scenario closely on 
the x-axis, indicating no systematic error, whereas for 
the scenarios with missing data related to low cognitive 
performance (scenario set 2) the DIF estimates all show 
negative error, with larger discrepancies from the refer-
ence estimate in the scenarios with a greater amount of 
missing data.

The patterns of errors attributable to both sets of 
missing data scenarios were similar across the three 
different DIF grouping variables when examining the 
distributions of estimates across all cognitive test items 
(Fig.  3). In our analysis, if the original DIF estimate 
was negative (suggesting that the test item was easier 
in the impaired group), then the error due to miss-
ingness would lead to a more extreme estimate in the 
same direction. However, if the original DIF estimate 
was positive (suggesting that the test item was harder 
in the impaired group), then the error due to missing-
ness could lead to a less extreme estimate in the same 

direction, a null estimate, or an estimate in the opposite 
direction.

Effect of imputing missing data
Because we only observed evidence of systematic DIF 
estimation error when missingness was among low cog-
nitive scores (scenario set 2), we limited our analysis on 
the effect of imputation to these missingness scenar-
ios. Both hot deck single imputation and MICE helped 
recover the reference DIF estimates and reduced the 
magnitude of the DIF estimation error in the scenarios 
with no imputation. Returning to the example of DIF by 
hearing impairment in the phonemic fluency task, where 
the DIF estimation error due to missingness among low 
cognitive scores (scenario set 2) without imputation was 
-0.03, -0.08 and -0.14 SD units with 10%, 30%, and 50% 
missingness, these errors were reduced to -0.02, -0.05, 
and -0.09 SD units with hot deck single imputation and 
-0.02, -0.05, and -0.06 SD units with MICE (Fig. 4).

When examining the effect of imputation on the mag-
nitude of DIF estimation error due to missingness among 
those with low cognition across all cognitive test items, 
the patterns observed across the three DIF grouping 
variables considered were fairly consistent (Fig.  5). In 
almost all instances, both imputation methods lowered 

Fig. 2  DIF estimates for hearing impairment in the reference scenario (No Additional Missingness) compared to the six missingness scenarios for 
select cognitive test items in the Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS). Each dot represents a difference between 
the two groups (impaired and unimpaired) for a single threshold of the ordinal test score. When the difference in thresholds is significantly different 
from zero (indicated by an unfilled circle), this indicates DIF. Differences between the reference scenario and each of the missingness scenarios 
illustrates the magnitude of error due to missingness. Estimated thresholds in the random scenarios are generally stacked vertically on top of the 
estimates with no additional missingness, indicating no systematic DIF estimation error. However, estimates for scenarios with missingness among 
lower cognitive test scores are shifted to the left, indicating systematic DIF estimation error in these scenarios
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the magnitude of the median error observed, but MICE 
consistently outperformed hot deck single imputation in 
minimizing DIF estimation error. Summarizing across all 
of the test items and DIF grouping variables considered, 
the median error due to 10%, 30%, and 50% missingness 
was -0.03, -0.08, and -0.14 SD units with no imputation, 
as opposed to -0.02, -0.06, and -0.11 SD units with hot 
deck single imputation, and -0.02, -0.04, and -0.08 SD 
units with MICE. The median error due to missingness 
for single imputation by chained equations was lower 
compared to hot deck single imputation and similar to 
MICE (Additional File 1).

In many cases, the DIF estimation error due to missing 
data among those with low cognition led to changes in 
inferences regarding the significance of DIF estimates at 
the α = 0.05 level. However, implementing MICE resulted 
in a reduction of the proportion of inferences that were 
flipped compared to reference DIF estimates (Fig. 6). As 
single imputation does not produce valid standard errors, 
hot deck single imputation had minimal effects. Overall, 
across all of the cognitive test items and DIF grouping 

variables considered, the proportion of DIF estimates 
with flipped inferences due to 10%, 30%, and 50% miss-
ing data related to cognitive test performance was 10%, 
21%, and 35% with no imputation, 10%, 18%, and 33% 
with hot deck single imputation, and 7%, 14%, and 27% 
with MICE.

Discussion
We found that missingness related to the DIF group-
ing variable but not to cognitive test scores led to ran-
dom DIF estimation error, but that missingness related 
to both the DIF grouping variable and cognitive test 
scores led to systematic DIF estimation error. Our 
results suggest the importance of evaluating missing 
data in cognitive test items when assessing bias in cog-
nitive testing using DIF methods, especially when miss-
ingness is differential by level of cognitive functioning. 
In particular, when the proportion of data missing is 
larger than 10%, we observed much larger magnitudes 
of DIF estimation error.

Fig. 3  Distributions of errors in DIF estimates for (A) hearing impairment, (B) moderate to low education, and (C) black race due to different missing 
data scenarios across all cognitive tests and thresholds in the Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS)
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Fig. 4  DIF estimates for hearing impairment in the reference scenario (No Additional Missingness) compared to low missingness scenarios with 
and without hot deck single imputation (single imputation) and Multiple Imputation by Chained Equations (MICE) (multiple imputation) for select 
cognitive test items in the Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS). Each dot represents a difference between the two 
groups (impaired and unimpaired) for a single threshold of the ordinal test score. When the difference in thresholds is significantly different from 
zero (indicated by an unfilled circle), this indicates DIF. Differences between the reference scenario and each of the missingness scenarios illustrates 
the magnitude of error due to missingness. The scenarios with no imputation are shifted to the left as compared to the reference estimates with no 
additional missingness, indicating systematic DIF estimation error. However, estimates with both single and multiple imputation more closely align 
with the reference estimates, illustrating the reduction of DIF estimation error with both imputation strategies

Fig. 5  Absolute value of the median error in DIF estimates due to missingness related to cognitive test performance for hearing impairment, 
black race and moderate to low education in the Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS). Estimates are shown for 
scenarios with no imputation, hot deck single imputation, and Multiple Imputation by Chained Equations (MICE)
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MICE performed slightly better than hot deck single 
imputation in reducing observed DIF estimation error, 
although both methods did reduce observed error com-
pared to scenarios with no imputation. Differences could 
be attributed to differences in the method of imputa-
tion rather than number of imputations. Only MICE 
prevented flipped or incorrect inferences. When the 
proportion of data missing exceeds the 10% threshold, 
we recommend MICE as a method to reduce the bias 
due to missing data when testing for DIF. However, in 
our analyses, MICE was unable to fully eliminate the 
observed error due to missing data. This stands to rea-
son considering that standard imputation methods are 
not equipped to correct missingness not at random. 
Therefore, we suggest that investigators interpret results 
cautiously even when using MICE to address missing 
cognitive data.

Assuming that individuals in the group with lower 
average cognitive test performances (e.g. those with 
hearing impairment, moderate to low educational 
attainment, and black race), were also more likely to 
have missing data, the resulting error was in the nega-
tive direction. Therefore, depending on the true DIF 
estimate, the error could be towards the null, away from 
the null, or could even lead to incorrect inferences. For 
example, if a given cognitive test item has a no bias and 
a true DIF finding of 0, in the presence of missing data, 
the DIF estimate may be negative, indicating the item is 
easier for the impaired group. Alternatively, if a given 
cognitive test item has bias and the true DIF finding is 

positive (the item is harder for the impaired group), in 
the presence of missing data the DIF estimate may be 
null or even negative in extreme cases (no bias or the 
item is easier for the impaired group). The observed 
pattern of results was consistent across all cognitive 
test items considered, and where identified, the mag-
nitude of systematic bias showed a dose–response 
relationship with the magnitude of missing data. This 
consistency increases confidence in findings despite the 
smaller sample size of our real-world dataset.

Previous work has shown that scores from an IRT-
based approach and scores from the commonly used 
approach of taking the average of cognitive test 
z-scores are highly correlated, but that despite this 
high correlation the IRT approach is less biased, has 
more power to detect changes in cognition over time, 
and has higher criterion validity [49]. Additionally, 
IRT methods allow for DIF detection and adjust-
ment for DIF, which are otherwise not possible in an 
empirical, principled manner. When DIF is present, 
DIF adjustment can sometimes lead to large changes 
in the estimated cognitive ability of individuals, but 
even small changes can be important when an individ-
ual’s score lies near a cut-point used to define impair-
ment [50]. The evaluation and adjustment for bias is 
most important and will have the greatest impact on 
the overall study conclusions for analyses that seek to 
evaluate the effect of risk factors that also lead to test-
ing bias or are also associated with factors that lead to 
biases in cognitive testing [11].

Fig. 6  Percentage of DIF estimates with flipped inferences due to missingness related to cognitive test performance for hearing impairment, 
black race and moderate to low education in the Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS). Estimates are shown for 
scenarios with no imputation and Multiple Imputation by Chained Equations (MICE). Inferences are considered flipped if the statistical significance 
of the estimate at the α = 0.05 level is discrepant with the statistical significance of the reference estimate without missing data
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In settings where potential risk factors also are associated 
with biases in cognitive testing, it is of particular importance 
that IRT-based methods are leveraged to evaluate bias, and 
that the extent of missing data and the potential effect of miss-
ing data is considered in conducting DIF analyses. When the 
proportion of missing data exceeds 10% and it is plausible that 
missing data may be related to cognitive test scores, MICE 
should be considered to reduce potential error due to missing 
data and prevent incorrect decisions regarding DIF and DIF 
adjustment. Recognizing that imputation cannot be fully effec-
tive when missing data mechanisms are informative, extreme 
caution should be exercised in deciding to include items in 
analyses whose missing data percentage is considerable. Aux-
iliary information not of interest for the primary analysis, but 
that may relate strongly to missing data mechanisms, should 
be incorporated where possible. Incorrect decisions regarding 
the presence of DIF and the need for DIF adjustment can lead 
to differences in estimated cognitive scores and differences in 
the results and inferences of epidemiologic studies. It is worth-
while to note, however, that we evaluated levels of missing 
data from 10 to 50%. These magnitudes of missing data are 
somewhat rare in well-conducted epidemiologic studies: in 
ARIC-NCS, missingness in any test item, with one exception, 
was mostly 1% to 10%. Where the magnitude of missing data 
in studies is lower than 10%, the magnitude of systematic DIF 
estimation error and the impact on inferences in DIF detec-
tion due to missing data will likely be small.

Some limitations should be considered. First, we evalu-
ated the effect of missingness on DIF detection using one 
strategy (MIMIC models) for assessing DIF, but other 
methods exist [51, 52]. While DIF detection methods are 
fairly similar, they test slightly different hypotheses and 
can lead to different conclusions at times [53, 54]. There-
fore, our results may not be generalizable to other methods 
of assessing DIF. Additionally, we implemented the most 
common DIF methodology of assessing one item at a time, 
however, the effect of missing data on less biased synthetic 
approaches to evaluating DIF in multiple items concur-
rently should be explored [55]. Second, while we evaluated 
three DIF grouping variables to illustrate multiple exam-
ples, we considered these grouping variables separately, 
whereas a substantive analysis focused on multiple, corre-
lated DIF grouping variables would likely prefer to evalu-
ate conditional DIF. Moreover, we limited this analysis to 
dichotomous DIF variables; other methods allow for more 
flexible models and can estimate DIF effects for continuous 
variables, or for multiple variables simultaneously [56].

Third, we used the same set of imputations across 
analyses, relying on a limited set of variables for imput-
ing cognitive data, including other cognitive test scores, 
prior cognitive test performance and basic demographic 
variables. It may be possible to achieve better perfor-
mance (greater reduction of the DIF estimation error) 

through the addition of other health-related variables or 
interaction terms. In particular, given a specific expo-
sure of interest, one should either use interaction-terms 
or separate imputation models by that exposure vari-
able to ensure that imputations accurately capture dif-
ferences in missingness patterns between the exposure 
groups. Fourth, we focused on commonly used imputa-
tion methods, but these methods are not designed to be 
used when data are missing not at random. Methods for 
the imputation of data missing not at random exist and 
the implementation of these methods may serve to fur-
ther reduce the observed error due to missing data [57, 
58]. Future work should focus on understanding how the 
use of these methods affects DIF estimation error due to 
missing data.

Conclusions
IRT methods allow for the quantification of and adjust-
ment for bias in cognitive testing through testing for and 
adjusting for DIF, which can be crucial when an analysis 
seeks to evaluate a risk factor that may be associated with 
bias in test scores. However, this analysis illustrated how 
missing data can affect the results of DIF detection; care 
should be taken to evaluate missing data in cognitive test 
scores before DIF analyses. Further, multiple imputation 
methods should be considered to reduce the potential DIF 
estimation error, particularly when levels of missing data 
are high and related to the cognitive outcome of interest.
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