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Recent studies have implicated the role of differential co-expression or correlation
structure in gene expression data to help explain phenotypic differences. However, few
attempts have been made to characterize the function of variants based on their role
in regulating differential co-expression. Here, we describe a statistical methodology that
identifies pairs of transcripts that display differential correlation structure conditioned
on genotypes of variants that regulate co-expression. Additionally, we present a
user-friendly, computationally efficient tool, dcVar, that can be applied to expression
quantitative trait loci (eQTL) or RNA-Seq datasets to infer differential co-expression
variants (dcVars). We apply dcVar to the HapMap3 eQTL dataset and demonstrate
the utility of this methodology at uncovering novel function of variants of interest
with examples from a height genome-wide association and cancer drug resistance.
We provide evidence that differential correlation structure is a valuable intermediate
molecular phenotype for further characterizing the function of variants identified in
GWAS and related studies.

Keywords: eQTL, molecular phenotype, genome-wide association study, microarray gene expression, common
variant, RNA-Seq

INTRODUCTION

Recent advances in DNA and RNA sequencing technology have afforded the ability to interrogate
variance in gene expression and allele frequency distributions to determine associations with
phenotypic variance, including disease. However, many of the variants uncovered in the genome-
wide association study (GWAS) era have yielded few functional characterizations for particular
phenotypic associations (Edwards et al., 2013). Moreover, as only 5% of GWAS associations code
amino acid changes in corresponding protein structures, the elucidation of the genetic architecture
leading to phenotypic variance has been broadened to search for variants that differentially affect
transcription called expression quantitative trait loci (eQTLs; Majewski and Pastinen, 2011).
Though the increased examination of eQTLs has further functionalized many variants, the function
of a large fraction of association variants has yet to be explained.

In transcriptomic analyses, a strong co-expression or correlation between a pair of expression
probes is used to infer a shared biological function or pathway. In these co-expression studies,
the correlation between pairs of genes is typically assumed to be uniform across all samples, even
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in datasets designed to examine phenotypic differences. However,
the inter-group (phenotypic) differences in correlated expression
data may provide more powerful insights into phenotypic
variance than a uniform correlation measure. For example,
Zhang et al. (2010) constructed a differential gene co-expression
network in microarray data that identified prognostic biomarkers
in identifying treatment outcomes for chronic lymphocytic
leukemia. In a recent study, we incorporated differential co-
expression in a network theory analysis to identify genetic
markers associated with phenotypic differences in microarray
data (Lareau et al., 2015). Differential co-expression analyses
compute the mean pairwise correlation difference between
groups, typically defined by the presence or absence of a disease
diagnosis (de la Fuente, 2010). While a change in an individual
gene’s expression may influence the phenotype in isolation, a
more probable explanation is that the change in one gene’s
expression will have a cascading interactive effect (Lareau et al.,
2015). Aggregating these differential co-expression effects in a
network structure, we were able to identify hub effectors in a
seasonal influenza vaccine dataset that were well-situated within
the known pathways of immune response to vaccination (Lareau
et al., 2015). However, our previous statistical approach did
not include the effect of genotypic variation on differential co-
expression.

In a recent discussion of differential correlation methods,
less than a quarter of the methods reviewed computed a
significance statistic and failed to address the need to
correct for multiple testing (Kayano et al., 2014). Of these
discussed methods, almost all were implemented in an R
package but were not designed for variants to define group
inclusion (Liu et al., 2010; Yang et al., 2013). Other reviews
of differential co-expression analyses have promoted the
use of algorithms that compute the Pearson correlation and
Fisher’s Z-test due to their simplicity and ability to elucidate
statistical relationships (de la Fuente, 2010; Fukushima, 2013).
In contrast to Wang et al. (2012), we provide a tool for
investigators to perform genome-wide characterization of
their QTL datasets, and our implementation of differential
co-expression QTL incorporates the above statistical
considerations when correcting for multiple hypotheses for
differential correlation effects modulated by variants. We
use a Bonferroni correction in this study; however, the tool
includes an FDR option for users wanting a less stringent
correction.

In the present study, we provide a novel computational
framework that uncovers variants associated with differential
correlation structures in eQTL and RNA-Seq data. Like eQTL
analyses, we hypothesize that the use of this methodology to
infer differential co-expression variants (dcVars) can potentially
functionalize variants identified in GWAS and related association
studies. To demonstrate this, we implement our methodology
in a computationally efficient tool called dcVar and apply
this tool to the HapMap3 eQTL dataset. We discuss two of
the significant results that demonstrate added functionality
to previously implicated variants in phenotypic variance. Our
results suggest that the examination of variants that induce
differential correlation structure in expression levels provides a

powerful intermediate molecular phenotype that can be readily
examined in parallel with existing eQTL as well as RNA-Seq
analyses.

MATERIALS AND METHODS

Computing Differential Co-expression
To model differential co-expression of two genes between two
groups of subjects separated by the genotype of a variant based on
a given genetic model, we use the Fisher’s Z-test discussed in the
following equations. First, the Pearson correlation of expression
E is calculated for pairs of genes i and j for subjects within each of
the two genotype groups, G = G1 or G2:

r(G)
i j = cov(Ei, Ej)

σEiσEj
(1)

The within-group correlation values are then Fisher
z-transformed for each group G1 and G2:

z(G)
i j = 1

2 In

∣∣∣∣∣
1+r(G)

i j

1−r(G)
i j

∣∣∣∣∣
(2)

The difference of the z-transformed correlation values
between groups G1 of sample size m1 and G2 of sample size m2
are computed for genes i and j:

Zi j =
|zG1

i j
− zG2

i j
|

√
1

m1−3 + 1
m2−3

(3)

The resulting statistic produced by Eq. (3) is assumed to be
normally distributed, where the p-value associated with the
difference in within-group correlation can be determined from
the Z score (Cohen and Cohen, 1983). More robust alternatives
to this approach are described in the conclusions.

In order to separate individuals into groups G1 or G2 on
the basis of genotype, we propose three different models. For
a hypothetical single nucleotide polymorphism (SNP) with a
major allele A and minor allele T, three possible separations
are implemented in our algorithm. First, a dominant encoding
model where the presence of one or more minor alleles results
in individuals with an AA genotype comprising group G1 while
group G2 is composed of individuals with either an AT or TT
genotype. Conversely, one can impose a recessive model where
individuals with either the AA or AT genotype are assigned
to G1 whereas only subjects with both minor alleles (TT)
constitute group G2. Finally, we implemented a model denoted
“homozygous,” such that group G1 is composed of only subjects
with both major alleles (AA) whereas group G2 individuals have
bothminor alleles (TT). Thus, the heterozygotes for the particular
variant (AT) are excluded from the analysis. In the conclusions,
we discuss additional genotype encodings that may be combined
with a linear model of co-expression.

Implementation of dcVar
We implemented the described statistical framework as a C++
tool called dcVar based on the PLINK source code (Purcell
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et al., 2007). To compare the performance of the C++
implementation of dcVar, we also implemented the algorithm
in R. The R implementation copies the exact methods (the
nested ‘for’ loops) of the C++ code for the comparisons.
We note that the R code could be further optimized, for
example through parallelization, but our comparison is designed
to characterize the difference between straightforward R and
C++ implementations. The C++ implementation of our
algorithm demonstrates significantly improved performance
over R (Figure 1), which is an important consideration
when developing bioinformatics software for very large data
sets (Davis et al., 2011, 2013; Lareau and McKinney, 2015).
While some existing tools can compute differential correlation
in expression data, dcVar is the first to our knowledge to
use SNP variants to define group comparison. Moreover,
virtually all tools that uncover differential co-expression are
implemented in R (Dawson et al., 2012; Fukushima, 2013),
which is markedly slower than our C++ implementation
(Figure 1). As the computational scale of a dcVar analysis
is order (Number of Transcripts2 × Number of SNPs), we
emphasize the enhanced utility of dcVar over existing tools
to efficiently compute differential correlation especially on a
genome-wide scale. The C++ and R implementation of dcVar
and a tutorial are available for download and installation at
http://insilico.utulsa.edu/dcVar.php.

Application to HapMap3 Data
To assess the utility of the proposed method in terms of biological
relevance and computational performance, we applied dcVar
to an eQTL dataset of 491 HapMap3 individuals from six

FIGURE 1 | Performance of R and C++ implementations of dcVar.
Runtime performance was computed executing dcVar on random subsets of
the HapMap 3 eQTL data (491 individuals) on a Linux desktop with an AMD
FX(tm)-4100 Quad-Core Processor with a 3.6 GHz CPU and 8 GB RAM. The
four data points representing the runtime were computed from (1) one variant
and 100 expression probes for 103 tests, (2) ten variants and 100 probes for
104 tests, (3) 100 variants and 100 probes for 105 tests, and (4) 100 variants
and 1000 expression probes for 106 tests. The average speedup of C++
against R on these four data points was 21x, noting the average speedup on
large-scale simulations is closer to 15×. The graph reflects the execution time
on the y-axis against the log10 of the number of tests performed.

different ethnicities (Altshuler et al., 2010). After performing
standard quality control on the publicly available data set (2%
SNP missingness, 2% individual missingness, Hardy–Weinberg
Equilibrium, restricting to autosomal SNPs/transcripts), we
applied the default LD pruning option in PLINK (Purcell et al.,
2007). Next, we restricted remaining SNPs such that allele
frequencies were between 0.2 and 0.8. These preprocessing steps
resulted in 70,716 SNPs and 18,392 autosomal transcripts. To
adjust for the multiple ethnicities in HapMap3, we performed
a quantile normalization of each transcript, which has been
previously described (Veyrieras et al., 2008) and implemented
in the HapMap and other eQTL datasets (Becker et al., 2012;
Banovich et al., 2014). We note that this normalization provides
sufficient correction for ancestry in our eQTL dataset (Veyrieras
et al., 2008).

The number of transcripts was filtered by selecting the
top 10,000 transcripts using a total variance filter after
quantile normalization (Veyrieras et al., 2008) was applied.
The total matrix of 10,000 transcripts and 70,716 SNPs
were analyzed to determine SNPs that significantly predicted
differential correlation structures between pairs of transcripts.
To determine significant effects, we used the dominant encoding
model and pruned results that were not significant after
correcting for multiple testing (p > 1.41 × 10−14), which was
computed by dividing 0.05 by the number of tests performed
((10,000/2) × 9,999 × 70,716). Additionally, to estimate the
type-I error of dcVar, we permuted the same HapMap3 dataset
by randomizing the genotypes for each variant while fixing
the expression values for each individual. The same dominant
model was applied as described in our regular analysis, and the
number of significant probes against our corrected threshold
were counted as false positives.

RESULTS

Benchmarking and Results of dcVar
Implementation
To assess the performance of our R and C++ implementations
of dcVar, we analyzed random subsets of the full (491 individuals,
70,716 SNPs, 10,000 transcripts) HapMap3 eQTL dataset using
the dominant encoding model. Figure 1 shows the benchmarking
results of executing dcVar on a Linux desktop with an AMD
FX(tm)-4100 Quad-Core Processor with a 3.6 GHz CPU and 8
GB RAM. Of the four example benchmarks computed, the C++
version of dcVar outperformed an identical R implementation
by an average of 21× or 15× in scenarios with larger numbers
of tests. The order of magnitude difference in performance
between these implementations becomes more pronounced
as the number of tests approaches a genome-wide analysis
(Figure 1). Our implementation of a framework to compute
differential correlation from variants in C++ provides a tool
for researchers to uncover these effects in a genome-wide eQTL
or RNA-Seq analysis. While benchmarking was performed on a
desktop machine, the analysis performed on the HapMap dataset
was executed on a computing cluster available at Oklahoma
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Medical Research Foundation. We note that similar genome-
wide analyses using dcVar would be best performed on a similar
local computing cluster or through the NIH biowulf cluster.

Case 1: GWAS Hit Characterization
While many GWAS analyses have successfully identified SNPs
associated with a variety of diseases and quantitative phenotypes,
the implicated variants are often difficult to situate in a functional
context (Edwards et al., 2013). Even if associations are validated
by the biological mechanism of the coding gene, demonstrable
functional effects of the SNP have been rarely characterized
(Edwards et al., 2013). Consequently, the use of eQTLs to
elucidate the molecular consequences of DNA variants has
become a popular method to functionalize GWAS hits (Majewski
and Pastinen, 2011; Edwards et al., 2013). However, many
GWAS associations lack any characterization of molecular effects
even after dozens of eQTL analyses. For example, rs823094,
a variant located in the gene nuclear ubiquitous casein and
cyclin-dependent kinases substrate (NUCKS1), has previously
been associated with pubertal height growth (Cousminer et al.,
2013). As NUCKS1 is involved in the proliferation of several
growth factors (Ilaria and Van Etten, 1995; D’Andrea et al.,
1998), an association with a variant in NUCKS1 with pubertal
height growth is supported biologically. However, like most other
implicated SNPs in GWAS, no functional effect of rs823094 has
been determined for the associated phenotype.

After executing dcVar on our HapMap eQTL dataset, we
observed a significant differential correlation structure between
this height-associated variant, rs823094, its corresponding gene,
NUCKS1, and the WD repeat and SOCS box containing 1
(WSB1) gene (pdom = 1.69× 10−15). AsWSB1modulates thyroid
hormone activation and parathyroid hormone-related peptide
secretion in developing growth plate (Dentice et al., 2005), a
common biological consequence of these two genes (growth)
helps explain the observed association with the variant and the
phenotype (height). Differential correlation remains statistically
significant (Figure 2) under all three models for stratifying

groups: dominant (A), homozygous (B), and recessive (C). Like
eQTL analyses that use transcriptomic markers to bridge the
gap between SNP associations and phenotypic variance, dcVar
uncovers additional transcriptomic markers that interact in the
functional network.

Though the variant modulating the differential correlation
in this example is encoded in an intron in NUCKS1, which
has a similar biological role as WSB1 in promoting growth, a
direct interaction between the products of these genes has not
been observed. However, we note two pieces of evidence that
point to a plausible connection between NUCKS1 and WSB1
and a possible biological explanation for the genotype-specific
differential correlation structure observed. First, a remarkable
number (107) of transcription factors (45.5% of factors in
EncodeQT) regulate both of these genes within 500 bp of
their transcription start sites as determined by ChIP-Seq signals
generated from the ENCODE Project (Auerbach et al., 2013).
As these two genes are joined in transcriptional activity through
these factors, a differential expression effect as we identified
could amplify the differential correlation signal in the relative
expression values. Additionally, using the Integrated Multi-
species Prediction (IMP) server (Wong et al., 2012), we note
the modulation of interactions between NUCKS1 and WSB1
by two genes, SFRS18 (splicing factor, arginine/serine-rich 18)
and TPR (translocated promoter region), as shown in Figure 3.
While a specific mechanism of activity leading to phenotypic
variance in height is unclear, the likely interaction between
NUCKS1 and WSB1 through a degree of separation as predicted
by IMP suggests a high level biological interaction. Thus, at
both the regulatory level via transcription factors and the
interaction level via intermediate genes, some interaction exists
between NUCKS1 and WSB1, demonstrating the plausibility of
a differential correlation existing between these two genes that
better characterizes the association of rs823094. We illustrate
this differential correlation process using the homozygous model
(Figure 4). The left (Figure 4) depicts the emergence of a
strong correlation structure (r = 0.715) for individuals with

FIGURE 2 | Differential correlation of NUCKS1 and WSB1 by rs823094. The plots represent differential correlation structures under all three models, dominant
(A), homozygous (B), and recessive (C), where T is the major allele and G the minor for rs823094, a variant located in the intron of NUCKS1. Each encoding yields a
statistically significant difference in correlation under each group separator (pdom = 1.69 × 10−15; phom = 0.00012; prec = 0.0031). Both NUCKS1 and WSB1 have
been implicated in pathways leading to growth while rs823094 has been associated with phenotypic variance in height.
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FIGURE 3 | Gene interaction network of NUCKS1 and WSB1. The
network was created using the IMP Server (25) using a minimum edge
confidence of 0.25 and including four additional predicted genes. The network
predicts an intermediate interaction between NUCKS1 and WSB1 separated
by alternative paths between SFRS18 and TPR genes, suggesting a potential
mechanism for this differential correlation effect.

a GG genotype for rs823094, and the right panel shows a
weaker correlation (r = 0.219) for those with both major alleles,
noting that a strong correlation (r = 0.775) is present for the
heterozygotes (GT genotype).

Case 2: Characterizing Known
Interactive Effects
A second instance of significant differential correlation was
observed between the activating transcription factor 4 (ATF4)
and circadian locomotor output cycles kaput (CLOCK) genes
regulated by rs12624829 (pdom = 8.25 × 10−19). As the protein
interactions between these two genes has been well-characterized
in the transcription regulation system, the CLOCK and ATF4
interaction has also been implicated in regulating drug resistance
in the A549 cancer cells (Igarashi et al., 2007). However, the
exact mechanism of action between these two genes and how
their interaction modulates systematic differential response to
cancer drugs remains unclear (Igarashi et al., 2007). Strong
correlation exists between CLOCK and ATF4 in individuals
with the major alleles for rs12624829 (Figure 5). However,
the minor alleles in this variant cause this correlation to
decrease. As the synergistic effect of CLOCK and ATF4 has
been implicated in multidrug resistance through glutathione-
dependent redox system, a breakdown in this correlation could
lead to differential drug response in human cancer (Igarashi et al.,
2007).

While the implicated SNP, rs12624829, represents a trans-
effect to the two implicated probes, this variant affects the binding
of a transcription factor, myc-associated factor X (MAX), in
the same A549 cell line (Boyle et al., 2012). Interestingly, MAX
also binds to both CLOCK and ATF4 near the transcription
start sites to regulate the expression of each gene (Auerbach
et al., 2013). Although altering the binding of this transcription

factor could lead to differential drug response in cancer cell lines
through the downstream effect of CLOCK and ATF4, we note
that MAX itself has been implicated in cancer drug resistance
as a prior study used the factor to distinguish cancer subtypes
that explained differential drug response (Heiser et al., 2012).
Taken together, each of the identified factors has been implicated
in differential drug response in cancer cell lines. However, the
identification of differential correlation structure provides the
first integrated hypothesis that suggestsMAX could modulate the
co-expression ofATF4 and CLOCK, leading to differential cancer
drug susceptibility.

Analysis of HapMap3 Results
Using the dominant model, our methodology computed a
significant differential correlation structure for 47.1% of the
10,000 expression probes and 13.7% of the 70,716 common
variants included for analysis using the p < 1.41 ×10−14

threshold. These results represent 3,223,172 SNP × gene × gene
trios (representing 0.00009% of computed interactions) and
1,237,788 unique gene pairs. These relatively high percentages
likely indicate inflated statistics for a few reasons. First, variants
in strong LD that fall outside the 50 kb region from the PLINK
LD pruning flag would inflate the number of observations while
representing only one true effect. In addition, transcripts that
exhibit strong covariance would also inflate the number of
positive associations.

The two cases highlighted in the manuscript were selected
based on the strength of the association (1–4 orders of
magnitude greater significance than the threshold) and biological
relevance. In particular, we used two approaches to prioritize
the hits using biological knowledge. First, we annotated
the pairs of gene expression probes with interaction scores
from STRING-DB. The ATF4-CLOCK example represented
1 of 180 gene pairs that had a STRING interaction score
>800. Second, we enriched 40 SNPs for known genome-
wide association terms from general population phenotypes
(e.g., height) using the NHGRI database. The NUCKS1-WSB1
variant (rs823094) represented one of 40 of these enriched
variants. Additionally, we note that other multiple phenotype
regression models did not uncover these effects identified by
dcVar. Notably, the two examples that we highlight in this
manuscript were not significant using the Plink.multivariate
association model (NUCKS1/WSB1: p = 0.9969; ATF4/CLOCK:
p= 0.1826) (Ferreira and Purcell, 2009). Though other significant
effects could have been characterized in the manuscript, these
would require external validation of the differential correlation
association.

Comparison to eQTL Discovery
As dcVar computes the effect of variant alleles on pairs of
expression values for genes through differential correlation, we
sought to determine if these effects were captured under standard
linear regression as used in most eQTL analyses. Using a nominal
p < 0.05 significance threshold, only 1.84% of SNP-gene pairs
significant in our dcVar computation were significant. When
further requiring both gene expression probes to be significant for
the SNP × gene × gene trios uncovered by dcVar, only 0.29% of
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FIGURE 4 | Illustration of differential correlation mechanism for NUCKS1 and WSB1. The left panel shows the generation of a correlation structure
conditioned on the minor allele (G, red) in rs823094, a variant in the intron of NUCKS1, while the right lacks a discernable correlation structure when conditioned on
the major allele (T, blue). The difference in correlation between NUCKS1 and WSB1 from individuals with two minor alleles (GG, red) and individuals with two major
alleles (TT, blue) was statistically significant (adjusted phom = 0.00012).

FIGURE 5 | Differential correlation of ATF4 and CLOCK by rs12624829. Each plot represents differential correlation conditioned by different models: dominant
(A), homozygous (B), and recessive (C), where allele A is the major and C is the minor in rs12624829, a variant located in introns in a gene-dense region of
chromosome 20 shown to affect the binding of MAX. Each encoding yields a statistically significant difference in correlation under each group separator
(pdom = 8.63 × 10−19; phom = 3.65 × 10−9; prec = 2.91 × 10−6). ATF4, CLOCK, and MAX, a transcription factor whose binding is differentially affected by
rs12624829, have been implicated in differential drug response in certain types of cancers.

our uncovered effects were significant in standard eQTL models.
In the two cases highlighted above, the univariant eQTLs were
not significant for either rs823094 (p = 0.9959 for NUCKS1;
p = 0.9408 for WSB1) or rs12624829 (p = 0.2322 for ATF4;

p = 0.3089 for CLOCK). As eQTL studies often employ more
stringent p-value thresholds for discovery, few significant results
uncovered by the dcVar approach would be represented in a
typical eQTL computation.
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Estimation of Type-I Error
To estimate the false positive rate (FPR) of dcVar, we performed a
permutation-based analysis on the HapMap3 eQTL data. While
maintaining the order of the 10,000 expression probes, we
permuted the genotypes of a given variant and applied dcVar to
test differential co-expression for all pairs of probes. We repeated
this for all 70,716 SNPs that passed the pruning process. When we
use the Bonferroni threshold based on all SNP-probe-probe trios
(0.05/(70,716∗10,000∗9,999/2) = 1.41 × 10−14), only a single trio
in the permutation simulation survived the threshold. We used
this strict threshold in the current application of dcVar to the
HapMap3 data. As a side note, if one were to use a per-variant
corrected threshold of 1x10−9 (from 0.05/(10,000∗9,999/2)),
15,699 SNP-probe-probe trio statistical tests would be significant
in the permuted data.

DISCUSSION

The methodology described is designed to uncover variants
whose minor alleles affect the correlation structures in expression
data. This can be manifested in at least two ways. First, as with
case 1, minor alleles could generate correlation through some
modulated interaction between two transcripts. The resulting
synergistic effect of the modified correlation structure could
amplify a genetic effect, in turn increasing the phenotypic
effect. For example, we suggest that the effect of a correlation
structure of two genes, NUCKS1 and WSB1, each of which
has been previously implicated in growth, could amplify the
individual effects of the genes, leading to observable phenotypic
variance in height. Conversely, minor alleles can disrupt the
correlation structure of genes, as seen in case 2. In this
example, we suggest that a perturbed correlation structure
of ATF4 and CLOCK could be the result of differential
activity of the MAX transcription factor. The differential
correlation mechanism unites multiple observations of these
three factors leading to differential drug resistance in certain
types of cancer. Ultimately, additional phenotypic data in
more specific eQTL datasets or molecular experiments will be
required to validate these hypotheses. Nevertheless, the potential
functional characterization of these variants and expression
levels using available data demonstrates the added benefit of
performing dcVar analysis alongside existing analyses. We note
that other methods for computing genotype-specific differential
correlation did not uncover the effects above (Wang et al.,
2012).

Though we applied dcVar to an eQTL dataset composed
of microarray and genotypes, this methodology could be
used to interpret results from RNA-Seq experiments. As non-
coding RNA have been implicated as genetic determining
elements of complex phenotypes (Majewski and Pastinen,
2011), we assert that a plausible mechanism for non-coding
RNA activity is through nucleic acid interactions influencing
correlation structures, and this activity could be modulated by
variants detected in RNA-Seq data. The dcVar tool described
herein can be applied to uncover these effects, noting the
sample imbalances in rare variants when computing differential

correlation and the differences in detecting transcript variation
between RNA-Seq and microarray technology (Ballouz et al.,
2015).

As our implementation of differential co-expression uses
a dichotomization of the genotype, we implemented three
models — dominant, recessive, and homozygous — to compute
differential correlation modulated by variants. While dcVar
can efficiently compute each model in a genome-wide analysis,
we used the dominant model to best balance the sample sizes
between the two groups being compared. As differential
correlation has been applied previously to case/control
microarray data with roughly equal sample sizes (Lareau
et al., 2015), the use of a dominant model and a high minor
allele frequency cutoff (20%) best balances the sample sizes in
the two groups. We note that the effects observed in our two
highlighted cases were retained in the recessive and homozygous
model when using the dominant model for discovery. While we
recommend the use of the dominant model, subsequent analysis
of positive results using the recessive and homozygous models
could elucidate the possible dominance, recessive, or dosage
behavior of the minor allele. Thus, we suggest the type of model
employed should be carefully considered by the user through
knowledge of the test at hand.

The computational efficiency of dcVar enables users to
incorporate information from variants that modulate differential
correlation structure through a variety of means. In the analysis
described in this study, we tested our approach on the HapMap
eQTL data, so there was not an a priori phenotype or disease
association to provide targets for functional characterization.
However, we hypothesized that this data would contain dcVar
effects that would provide functional information for many
phenotypic and disease associations. Thus, we considered
thousands of transcripts and variants genome-wide followed by
prioritization using biological knowledge from GWAS studies,
the STRING database, and the IMP server. A user with non-
coding disease associations from a GWAS may benefit from
a systematic integration of dcVar statistics with these other
sources of biological knowledge, for example, in a Bayesian
framework. From the pipeline used in the current study, we
chose to focus on dcVar effects on height because it is a
universal phenotype and on cancer drug resistance because
of the potential implications in pharmacogenomics. For other
phenotypes, a specific association from a GWASmay be involved
in a dcVar effect as the genotype, as one of the differentially co-
expressed transcripts, or downstream of another dcVar in the
wider co-expression network. An integrative network model of
SNPs, expression, co-expression, and differential co-expression
effects may greatly improve our understanding of biological
mechanisms in the genome. Moreover, from our characterization
of the two effects described in detail, we note that researchers
seeking to functionalize a particular variant or gene with a
variety of quantitative data (e.g., gene expression, ChIP-Seq,
epigenetic methylation, etc.) may do so with the dcVar tool.
Future applications of dcVar to genome-wide eQTL datasets
will further characterize the highly interconnected network of
possible regulatory variants involving the dcVar intermediate
molecular phenotype.
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A limitation of our approach is the modeling of changes in co-
expression between subjects conditioned on only two genotype
groups. Specifically, we compute the differential co-expression
between subjects grouped by a recessive or dominant encoding,
which may not properly model the co-expression variation in
the heterozygous group. A potentially more powerful approach
would be to estimate a linear model of the co-expression using
an additive encoding, which has been more popular in most
GWAS and other genomics studies (Cantor et al., 2010), although
this may have less power when the causal model is recessive.
A co-dominant model has been shown to have good overall
performance for simulations of a variety of inheritance models
(Lettre et al., 2007).

Another limitation of the dcVar approach is the potential for
increased type-II error. In order to limit type-I errors associated
with the very large number of dcVar hypotheses, we used a strict
Bonferroni correction. The dcVar tool includes a Benjamini–
Hochberg FDR option, which gives the user one way to decrease
the type-I error. Our use of Pearson correlation to compute co-
expression in genotype groups also increases the risk of type-II
error and sensitivity to outliers. More robust statistics such as
Spearman and bootstrapping methods may decrease sensitivity
to outliers and deviations from normality (Fisher’s z-transform
notwithstanding) and thereby decrease type-II error. Future
studies are needed to demonstrate the extent to which robust
statistics may improve dcVar effect detection. Finally, we note

that our previous study employing differential co-expression
between case-control status identified hub determinants of
phenotypic variation by integrating information from the
broader differential co-expression network (Lareau et al., 2015).
While the current study provides the first computationally
feasible tool to uncover individual variants that lead to differential
correlation genome-wide, the aggregation of multiple interactive
effects between probes and variants could further uncover
functional associations. Expanding dcVar to include network
structure may further elucidate the function of variants that affect
differential co-expression and phenotypic variation.
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