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Optical coherence tomography 
and visual evoked potentials 
in evaluation of optic chiasm 
decompression
Pavel Poczos1,2*, Tomáš Česák1, Naďa Jirásková3, Markéta Macháčková3, Petr Čelakovský4, 
Jaroslav Adamkov1, Filip Gabalec5, Jiří Soukup6 & Jan Kremláček7,8

Chiasmal compression is a known cause of visual impairment, often leading to surgical decompression 
of the optic chiasm (OC). A prospective study was held at University Hospital in Hradec Králové to 
explore sensitivity of optical coherence tomography (OCT) and visual evoked potentials (VEPs) to 
OC compression and eventual changes after a decompression. 16 patients with OC compression, 
caused by different sellar pathologies, were included. The main inclusion criterion was the indication 
for decompressive surgery. Visual acuity (VA), visual field (VF), retinal nerve fibre layer (RNFL) and 
ganglion cell layer (GCL) thickness, and peak time and amplitude of pattern-reversal (P-VEPs) and 
motion-onset VEPs (M-VEPs) were measured pre- and postoperatively. The degree of OC compression 
was determined on preoperative magnetic resonance imaging. For M-VEPs, there was a significant 
postoperative shortening of the peak time (N160) (p < 0.05). P100 peak time and its amplitude did not 
change significantly. The M-VEPs N160 amplitude showed a close relationship to the VF improvement. 
Thinner preoperative RNFL does not present a statistically important limiting factor for better 
functional outcomes. The morphological status of the sellar region should be taken into consideration 
when one evaluates the chiasmal syndrome. M-VEPs enable detection of functional changes in the 
visual pathway better than P-VEPs.

Decompression of the optic chiasm (OC) with subsequent improvement of visual complaints represents one of 
the main goals of neurosurgical procedures in the treatment of pathologies of the sellar region1–5. It is known 
from practice that surgery is sometimes postponed in asymptomatic incidental small tumoral findings arising 
in the sellar region and compressing the OC. The “wait-and-see” approach may be chosen especially in such 
definitive pathologies as pituitary adenomas. A reconsideration of the therapeutic strategy is necessary when 
visual impairments occur, mainly VF defects6–9. But standard automatic perimetry results do not always offer 
enough information for a surgery indication10–12. Hence another tool has been sought to evaluate the functional 
condition of the visual pathway. Promising data has been reported following the implementation of optical 
coherence tomography (OCT). In OC compressions, the retinal nerve fiber layer (RNFL) in the peripapillary 
region is thinner in the temporal and nasal sectors. While some studies point out the importance of measuring 
the thickness of the RNFL13,14, others emphasize the role of gauging of the thickness of the ganglion cell layer 
(GCL) in the macular region12,15–19. Monteiro also found a parallel thickening of the inner nuclear layer (INL)13. 
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The Congress of neurological surgeons (2016) gave a recommendation to evaluate the GCL in the macular region 
to assess a patient’s chances of postoperative vision improvement21.

Recent developments in visual evoked potentials (VEPs) including non-standard tests are not yet widespread 
for the monitoring of visual functions in compression of the OC by tumors. Stimulation of the retina is often 
achieved by an alternation of black/white checkerboards (pattern-reversal VEPs [P-VEPs]). When the visual 
stimulation covers symmetrically the left and right visual field (“full field”), the recorded VEPs result from a 
spatial summation of responses from both brain hemispheres. Stimulation by hemifields is helpful for the moni-
toring of OC compression. Some works favor the so-called multifocal VEPs (mf-VEPs)22–25.

The motion-onset VEPs (M-VEPs) are able to test even more peripheral parts of VF than mf-VEPs (up to 
50° excentricity)26. This is due to the optimally tuned spatial characteristic of the stimulus for better activation 
of the magnocellular input of the visual pathway. The receptive fields of the retina for magnocellular inputs are 
located mainly in the extrafoveal part of the retina.

To the best of our knowledge, no study has been published that would use M-VEPs to evaluate the functional 
state of the visual pathway in patients with compression of the OC. The main aim of this prospective study is to 
contribute to the discussion as to whether or not the use of OCT and VEPs has an important role in the plan-
ning of treatment and in the preoperative prediction of visual outcomes. Hence, we do offer here an analysis of 
VEP results and our previously published data subjugated to complementation and revision27. Because VF field 
examination presents the gold standard in visual functions evaluation in a chiasmal syndrome we related the 
results from OCT and VEPs mainly to VF results.

Methods
Patients.  All 16 participants (32 eyes) signed an informed consent to procedures conducted in accordance 
with the Declaration of Helsinki. Participants were recruited from the Department of Neurosurgery and the 
Department of Ophthalmology of the University Hospital Hradec Králové. The median age of the entire cohort, 
comprising 8 women and 8 men, was 54  years with an interquartile range (IQR) of 45 to 63  years. Patients 
underwent four ophthalmological with respective electrophysiological examinations: once preoperatively, and 
postoperatively at 1 week, 3 months and 6 months. The inclusion criterion was the presence of a tumor in the 
sellar region and subsequent indication for its surgical removal. The study included patients who underwent 
surgery from October 2016 to August 2018 at the above-mentioned neurosurgical department. The exclusion 
criterion was any another disease of the eyes or visual pathway which could have an impact on results obtained 
by automated perimetry, OCT or VEPs.

Ophthalmological examination.  Landolt circles were used for the examination of distant visual acuity 
(VA). The visual field was examined using a Humphrey Field Analyzer II (Carl Zeiss, Meditec, Dublin, CA, USA; 
Test: SITA Strategy—FAT, Central 30-2 Threshold Test). For the purposes of statistical evaluation, the mean 
deviation (MD), giving an overall value of the total amount of VF loss, was monitored. The measurements of 
thickness of RNFL and GCL were performed on a Spectralis OCT system (Heidelberg Engineering, Heidelberg, 
Germany; Heidelberg Eye Explorer 1.10.2 software). Given the very purpose of the study, retinal areas related 
to crossing fibers of the OC were mainly evaluated. The thickness of RNFL centered on the optic nerve disc was 
measured along a 3.4 mm diameter circle and the temporal segment (± 45°) was selected for subsequent data pro-
cessing (Fig. 1a). The ganglion cell layer (GCL) thickness was quantified from the nasal half of a 3.45 × 4.15 mm 
rectangle centered on the fovea. The central area (1.73 × 2.08 mm) was excluded from evaluation (Fig. 2a).

Electrophysiological examination.  Visual evoked potentials were recorded on a Synergy Medelec 
device (VIASYS Healthcare, Inc., USA). Pattern-reversal and motion-onset stimuli were used for stimulation 
of photoreceptor cells. In each eye, the nasal and temporal half of the retina were repeatedly stimulated (2 × 100 
stimulations), separately for P-VEPs and M-VEPs. To evoke the P-VEPs and M-VEPs, the stimuli consisted 
respectively of alternation of black and white squares of checkerboards (Fig. 3a), and of gray concentric circles 
that expanded and contracted (Fig. 4a).

The stimuli parameters for P-VEPs were 2 Hz reversal frequency, 85% contrast, average luminance 40 cd/
m2, lateral hemifield stimulation (11° × 14°), and check element size of 60’. Different parameters were used for 
M-VEPs: low contrast of 14%, average luminance 40 cd/m2, temporal frequency constant over the whole area of 
5 cycles per second, stimulus duration 100 ms, and interstimulation interval 400 ms. The stimulation area was 
the same as for P-VEPs.

The record of monocular P-VEPs was obtained from three channels relative to a reference electrode placed 
in the Fz position according to the 10–20 electroencephalographic system28. Active electrodes were then placed 
in positions O1, Oz and O2. Derivations in positions O1, O2, Oz and Pz were used for monocular M-VEPs. 
The unipolar record had a reference electrode on the right earlobe (Fig. 3a and 4a). The grounding electrode 
was always on the right wrist. Due to paradoxical lateralization, the P-VEPs were evaluated from the ipsilateral 
electrode (Fig. 3a)29. Motion VEPs were assessed from the Pz electrode30 because their lateralization is not 
uniform with respect to the stimulated part of the VF26, and in adults is asymmetric irrespective of hemifield 
stimulated (Fig. 4a)31. Given the very purpose of the study, results obtained by stimulating the nasal halves of 
the retina were evaluated.

VEPs filtering, extraction of the parameters of interest, and data plotting were conducted in MATLAB Release 
2019b (MathWorks, USA). For the VEP assessments, authors (PP and JK) overlapped single-patient VEPs from 
all visits and marked appropriate peaks for the group of curves (Fig. 3a and 4a). Subsequently, peaks for a par-
ticular visit were automatically identified as a local extreme within an interval ± 25 ms from the location the 
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markers were placed. This semiautomatic process ensured that the authors were blind to the visit order and their 
bias was minimized.

Analysis of preoperative MR.  The degree of OC compression, the so-called grade, was determined on 
coronal sequences of T1-weighted images of preoperative MR (magnetic resonance imaging) based on criteria 
proposed by Fujimoto32. In grade 0 there was no contact between the tumor and the OC. Minimal contact with-
out upper OC surface deformity characterized grade 1. Grade 2 indicated contact with upper surface deformity 
of OC and visible chiasmatic cistern. Grade 3 demonstrated the same as grade 2, but the cistern was invisible, but 
nevertheless with no cerebral deformity. In the case of grade 4 the contact was so severe that cerebral deformity 
was clearly noted.
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Figure 1.   Example from a preoperative OCT examination of patient #8. In the upper panel, the circular 
scanning trajectory of 3.4 mm diameter centered on the optic nerve disc is depicted on the scanning laser 
ophthalmoscopy image. The green circular slice represents the temporal part of peripapillary RNFL. In 
the bottom panel, the green area marks the evaluated temporal RNFL thickness delineated by the internal 
limiting membrane (ILM) and the interface between the axonal fibers and the bodies of the ganglion cells 
(a). Distribution of the temporal RNFL thickness in preoperative and three postoperative visits separately for 
patients with a grade of compression 0–1 and 2–4. The grade factor was statistically significant (p = 0.180 × 10–6). 
The lower and upper hinges of the boxplots represent the 25th and 75th percentiles, respectively; the whiskers 
extend to an outlier but not farther than 1.5 times the interquartile range. The boxplot overlays the individual 
values represented as gray circles spread along the horizontal dimension to avoid overlapping (b).
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Figure 2.   Example from a preoperative OCT examination of patient #8. The limited field (inside the green line) 
represents the nasal half of the fovea used for the quantification of the ganglion cell layer (GCL) thickness. The 
GCL thickness is color-coded and clearly shows hemifield asymmetry related to the chiasmatic syndrome (a). 
The distribution of GCL thickness was significantly different between patients with the grade of compression 
0–1 and 2–4 (p = 0.024 × 10–6). For the description of the boxplot parameters, see the legend of Fig. 1b (b).
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Surgery.  The same operating team performed all decompressive procedures. Transcranial surgery was 
elected in two (12.5%) patients. In the remaining 14 surgeries, decompression was achieved via the transnasal 
transsphenoidal route, in which a microscope was used in five of the cases and an endoscope in nine.

Statistical analysis.  Statistical analysis was performed using the software R 3.5.133. Using the Anderson–
Darling test (“nortest” package), we tested the normality of the data distribution. Data evaluation and interpre-
tation is related to eyes and not to patients, mainly because the lesions do not symmetrically compress the OC 
or the respective optic nerves. Another reason is that crossing fibers are compressed mostly just anterior to the 

0 100 200 300

Time [ms]

-5

0

5

Preop 1w 2m 6m

O2 - FZ P100

PZ

FZO1

OZ

O2 A2

80

100

120

140

P1
00

 p
ea

k 
tim

e 
(m

s)

Preop

Grade 0-1

1w 2m 6m Preop

Grade 2-4

1w 2m 6m

Grade and Visit

ba

A
m

pl
itu

de
 [

V]

Figure 3.   Schema illustrating the recording of pattern-reversal visual evoked potentials (P-VEPs) from the 
right eye fixating the red cross (left from the checkerboard) in patient #8. Such was the way the crossed fibers 
were examined. Active electrodes (O1, Oz and O2) and the reference electrode (Fz) were placed according to the 
10–20 electroencephalographic system. The different waveforms represent preoperative (red line) and different 
postoperative (at 1 week, 3 months and 6 months) P-VEPs in O2–FZ derivation (the paradoxical lateralization 
taken into consideration) (a). Distribution of the P100 amplitude in P-VEPs between patients with the grade of 
compression 0–1 and 2–4. The grade was not a significant factor (p = 0.195). For the description of the boxplot 
parameters, see the legend of Fig. 1b (b).
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Figure 4.   Schema illustrating the recording of motion-onset visual evoked potentials (M-VEPs) from the 
right eye fixating the red cross (left from the pattern) in patient #8. Such was the way the crossed fibers were 
examined. Active electrodes (O1, Oz, O2 and Pz) and the reference electrode (A2) were placed according to the 
10–20 electroencephalographic system. The different wave forms represent preoperative (red line) and different 
postoperative (at 1 week, 3 months and 6 months) M-VEPs in PZ–A2 (a). Distribution of the N160 amplitude 
in M-VEPs between patients with grade of compression 0–1 and 2–4. The grade was not a significant factor 
(p = 0.696). For the description of the boxplot parameters, see the legend of Fig. 1b (b).
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OC34. Analysis of results from individual eyes rather from the combined results from a patient helps to achieve 
statistically more robust conclusions. We present descriptive results as the median and interquartile range. To 
compare values pre- and post-surgery, we used the Wilcoxon signed rank test or paired t test for data with 
respectively a non-normal or a normal distribution. Relationships between continuous markers of interest were 
calculated using Pearson’s correlation coefficient or Spearman’s rank correlation, depending on the normality of 
the data distribution. The level of statistical significance was preset to p < 0.05.

For post-hoc analysis of the results, patients were divided into two groups, either with no or minimal OC 
pressure (grades 0–1) or with unambiguous OC pressure (grades 2–4), and a variability analysis was performed. 
Kruskal–Wallis nonparametric test was used to assess differences among the groups and visits in cases where 
data were found to have non-normal distribution by Anderson–Darling test or inhomogeneity of variances by 
Bartlett test, while ANOVA was used for normally-distributed data with homogeneous variances.

Ethics approval.  This project was approved by the Ethics Committee of the University Hospital Hradec 
Králové (reference number 201702 S14P).

Results
Tumor types.  Pathological analysis revealed a non-functioning pituitary adenoma in 5 cases (31.25%), 
meningioma in two cases (12.5%), both prolactin and growth hormone-producing adenoma twice (12.5%), and 
a single case each of somatotropic adenoma (6.25%), corticotropic adenoma (6.25%), granular cell tumor of the 
infundibulum (6.25%), and spindle-cell oncocytoma (6.25%). A single case each of post-infectious cyst (6.25%), 
tension arachnoid cyst (6.25%), and pituitary apoplexy (6.25%) were also present.

Visual acuity and visual field.  Preoperative and postoperative medians and IQR of VA (logMAR) and VF 
(mean deviation—MD) are shown in Table 1. The results clearly indicate a tendency of continuous improvement 
in VA and VF in the postoperative period. To note that 8 patients did not have subjective visual impairment 
preoperatively.

OCT.  The median preoperative and postoperative thicknesses of temporal RNFL and nasal GCL in all eyes 
and their IQR are listed in Table 1. At the second and third postoperative examination the temporal RNFL and 
likewise the nasal GCL clearly became significantly thinner. Figures 1a and 2a show the areas of analysis for the 
temporal RNFL and nasal GCL (in patient #8).

VEP.  Data are related to the crossed fibers. Table 1 offers the median and IQR of preoperative and postopera-
tive peak times (also known as implicit peak time or latency) and amplitudes for P100 and N160. P100 peak 
time tended to be shorter only at the third follow-up when comparing with preoperative data (p = 0.179, Wil-
coxon signed-rank test). All postoperative examinations showed a higher amplitude of P100 without statistical 
significance. In the case of M-VEPs (N160), there was a statistically significant shortening of the peak time at all 
postoperative follow-ups and increasing of the amplitude at the second follow up.

Bitemporal hemianopia.  Eight patients (50%) presented bitemporal hemianopia. Visual acuity and VF 
were significantly better in cases without bitemporal hemianopia (p = 0.001 × 10–3 and p = 0.034 × 10–3, Wilcoxon 
rank sum exact test). Temporal RNFL and nasal GCL thickness were statistically significantly lower in patients 
with bitemporal hemianopia (p = 0.180 × 10–6 and p = 0.002 × 10–3) in all 4 examinations. Also, there were more 
eyes with thinner GCL in the group of patients with bitemporal hemianopia preoperatively (p = 0.679 × 10–3). No 
statistically significant difference was found when comparing patients with and without bitemporal hemianopia 

Table 1.   Summary of the medians and interquartile ranges of measured parameters (VA, VF, OCT, VEPs) 
preoperatively and postoperatively. VA visual acuity, VF visual field, GCL ganglion cell layer, RNFL retinal 
nerve fiber layer, L latency (peak time), A amplitude, Preop preoperatively, w week (postoperatively), m month 
(postoperatively), #p < 0.05, ##p < 0.01, ###p < 0.001 (Wilcoxon signed-rank test), *p < 0.05, **p < 0.01, ***p < 0.001 
(paired t test). For more detailed statistical analysis see Supplementary Information.

Preop 1w 3m 6m

VA [logMAR] 0.4 [0.1; 0.72] n = 32 0.3 [0.1; 0.63]# n = 32 0.3 [0.0; 0.4]### n = 30 0.24 [0.1; 0.25]*** n = 28

VF [MD] − 4.82 [− 14.25; − 1.84] n = 28 − 2.68 [− 6.06; 0,79]### n = 28 − 0.99 [− 3.4; − 0.37]### n = 30 − 1.17 [− 2.93; − 2.07]### 
n = 30

RNFL [µm] 65.0 [56.25; 73.0] n = 30 65.5 [56.75; 73.75] n = 30 65.0 [46.75; 74]** n = 28 61.5 [44; 73] *** n = 28

GCL [µm] 43.45 [35.47; 46.65] n = 30 42.3 [35.98; 45.95] n = 30 41.35 [30.45; 46.5]## n = 28 42.15 [30.18; 45.92]# n = 28

P100 L [ms] 104.55 [98.18; 117.98] n = 32 105.6 [99.22; 115.72] n = 32 107.7 [100.88; 114.15] n = 30 105.15 [99.9; 111.52] n = 30

P100 A [µV] 1.94 [1.24; 3.04] n = 32 2.12 [1.76; 3.06] n = 32 2.46 [1.77; 3.28] n = 30 2.3 [1.75; 3.03] n = 30

N160 L [ms] 172.8 [156.98; 184.57] n = 30 163.35 [150.52; 173.85]* 
n = 30

168.3 [156.75; 175.35]** 
n = 28

166.35 [156.68; 176.85]* 
n = 28

N160 A [µs] 4.01 [2.7; 5.05] n = 30 4.42 [3.77; 5.22] n = 30 4.26 [2.93; 5.11]* n = 28 3.91 [2.98; 5.12] n = 28
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in any of the P-VEP and M-VEP parameters (no intergroup difference using Kruskal–Wallis nonparametric 
ANOVA, p > 0.195).

Grade.  In two patients there was no visible OC compression on preoperative imaging (12.5%). Grades 1, 2, 3 
and 4 were present in three (18.75%), three (18.75%), two (12.5%), and six (37.5%) cases, respectively.

The preoperative median of VA was significantly better in the group of patients with compression grade 0–1 
(logMAR 0.048) in comparison to patients with grade 2–4 (logMAR 0.602). Also, the extent of preoperative VF 
was better in group 0–1 (median of MD − 1.535) than in group 2–4 (− 8.885).

Patients with no or minimal compression (grade 0–1) presented a preoperatively higher median of temporal 
RNFL (76.5 µm) and nasal GCL (46.3 µm) than the cohort with grade 2–4 (61.0 µm and 39.3 µm) (p = 0.180 × 10–6 
and p = 0.024 × 10–6, paired t test) (Fig. 1b and 2b). Measurements did not reveal any statistically important 
preoperative differences in peak time for P-VEPs and M-VEPs when comparing the groups grade 0–1 (102 and 
176 ms, respectively) and grade 2–4 (106 (p = 0.210) and 167 ms (p = 0.579), respectively). No intergroup differ-
ence was observed when amplitudes of P-VEPs and M-VEPs were compared (2.9 µV and 4.1 µV versus 1.7 µV 
(p = 0.195) and 3.9 µV (p = 0.696)) (Figs. 3b, 4b).

Correlation analysis.  The correlation analysis illustrates a clear negative dependency between preopera-
tive thickness of the temporal RNFL and improvement of VA and VF (Fig. 5a) at the time of the third follow-up 
(Spearman rho = 0.542; p = 0.004 and Spearman rho = − 0.462; p = 0.013). Similar dependency was noted for GCL 
with p = 0.008 (Spearman rho = 0.505) and p = 0.293 × 10–3 (Spearman rho = − 0.639) (Fig. 5b).

Correlation analysis indicates a relationship between preoperative P-VEPs (Fig. 5c)/M-VEPs parameters and 
the VA and VF improvement calculated as the difference between the last and the preoperative value. There was 
a statistically significant relationship only between the improvement of MD and N160 amplitudes (Spearman 
rho = − 0.392; p = 0.038) (Fig. 5d).

Discussion
Authors have attributed the preoperative extent of the VF deficit as the major influence on its recovery13–35. 
However, the VF examination is burdened by an element of subjectivity and has not always been sufficiently 
sensitive to identify VF defects10–12. This led us to the idea of evaluating the potential of OCT and VEPs, mainly 
the M-VEPs, in the management of OC compression.

Earlier studies have affirmed that preoperative average RNFL thickness below 70–85 µm is a negative prog-
nostic factor for both immediate and long-term visual improvement36–38. However, Loo et al. admitted that visual 
recovery may occur even with average peripapillary RNFL of less than 70 µm38. Based on the negative correlation 
between preoperative thickness of RNFL, either temporal or average, and improvement in VA/VF (Fig. 5a), our 
results tend to show that lower average preoperative RNFL thickness (< 85 µm; to note the absence of a clear-cut) 
is related to a greater postoperative visual improvement. In general, the observed dependencies were more obvi-
ous when the temporal RNFL was taken into consideration. It reflects better the effort to evaluate the crossing 
fibers of the OC. The preoperative temporal RNFL thicknesses of our patients were scattered around the lower 
values (median 65 µm), and we did not observe an RNFL threshold limiting the functional improvement.

More recent studies have accentuated the role of the GCL, or GCC (Ganglion Cell Layer Complex). Some 
works have highlighted that binasal thinning of the GCC often corresponds with a bitemporal depression in the 
VF12,16–18,20,39,40. Paradoxically, Yoneoka presented a result of a stronger correlation with the RNFL41. An analysis 
of our results shows a more significant concordance between preoperative nasal GCL and VF defects (Spearman 
rho = 0.678; p = 0.039 × 10–5) in comparison to temporal RNFL (Spearman rho = 0.559; p = 0.001). This could be 
explained by less precise relationship between deficits on standard automated perimetry and RNFL loss, than 
in the GCL loss. The negative correlation between preoperative nasal GCL and VF improvement (Fig. 5b) is 
stronger in contrast with the temporal RNFL. Nasal GCL thickness less than 40 µm (without a clear-cut) tends 
to have a bigger functional benefit for postoperative visual functions. Given the complex structure underlying 
visual perception, RNFL or GCL thickness might not fully correspond to the visual impairment. For a more 
accurate assessment of the impact of the preoperative RNFL or GCL thickness on postoperative visual changes, 
a group of patients with similar visual deficit should be examined.

A progressive thinning of RNFL and GCL, with interindividual differences, is documented by our data despite 
a significant improvement in the VF. An ongoing process of nerve fiber degeneration serves as an explanation. 
Neither should be excluded manipulation of the optic nerves (during tumor resection) as a plausible exogenic 
determinant for axonal degeneration.

The use of VEPs to monitor visual functions in the case of optic nerve or OC compressions has not been as 
widespread as for optic neuritis or glaucoma22,24,25,42–45. The low sensitivity of standard VEPs to OC compression/
decompression was enhanced by sequential stimulation of smaller parts of the visual field (mf-VEP) at the cost 
of prolonging the examination, which increased the demands on the patient’s attention. Two teams showed a 
statistically significant and strong correlation between depressions in the temporal half of the VF and mf-VEP 
parameters22,25.

Conventional VEPs (e.g., P-VEPs) are able to harvest responses from approximately the central 15° of the 
VF46. This means that those protocols are not able accurately to display the spatial details and peripheral affections 
of the perimeter. A more objective evaluation of the functional integrity of the visual pathway is achieved with mf-
VEPs that encompass 25°–32° of the VF47,48. M-VEPs, under certain stimulation conditions, offer the possibility 
for testing even more peripheral parts of the VF (up to 50° eccentricity)26. Using low spatial frequency stimula-
tion in the periphery of the VF activates predominantly magnocellular visual input, which helps to achieve such 
a wide range. Activation of this part of the visual pathway may provide a different sensitivity than the P-VEPs. 
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Figure 5.   Plots illustrating the relationship between VF improvement and selected OCT (a,b) and VEPs (c,d) 
parameters. Higher is better for VF improvement, which was calculated as the difference between the last and 
the preoperative value of mean deviation (MD). The single dot represents one eye; the thick linear regression 
line is surrounded by dashed 99.9% and dotted 95.0% confidence intervals. A negative dependency between 
the VF improvement and preoperative state is evident in all plots. Such relationship illustrates a situation where 
the more affected initial state of the visual system is related to a higher benefit from the treatment. To note a 
statistically significant relationship between the improvement of and N160 amplitudes.
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The receptive fields of the retina for magnocellular input information (parasol ganglion cells) are found mainly 
in the extrafoveal part of the retina. This suggests that the M-VEPs might be more helpful and accurate in testing 
patients with minimal peripheral VF abnormalities. The same applies for mf-VEPs. It has not been possible to 
compare our M-VEPs results with those from other works. To the best of our knowledge, no publication has yet 
described the use of M-VEPs to assess the functional state of the visual pathway in OC compression. In all three 
postoperative examinations, in most cases M-VEPs showed statistically significant shortening of peak time and 
increasing of amplitude (Table 1). Such evident results were not obtained in P-VEPs, supporting the fact that 
M-VEPs have a higher sensitivity to stimulation in the peripheral areas of the retina.

Correlation analysis has demonstrated only few relationships between preoperative and postoperative param-
eters of P-VEPs/M-VEPs and VA or MD improvement (Fig. 5c,d). A statistically significant relationship was 
observed only between improvement of MD and N160 amplitudes (Spearman rho = − 0.392; p = 0.038) (Fig. 5d). 
No statistically significant differences were found in any of the P-VEPs and M-VEPs parameters when comparing 
patients with or without bitemporal hemianopia. Four of those 8 patients without preoperative subjective visual 
impairment had a normal VF examination. In one case, M-VEPs reflected an obvious pathological finding of 
the crossed fibers of the right eye (patient #8). Preoperatively, an increase in the N160 peak time was apparent 
on the right eye. This was subsequently improved in the postoperative period.

Results from a perimeter or OCT do not present unequivocal prognostic parameters. The little-discussed 
preoperative variable, the degree of OC compression, has a strong impact on the indication for surgery and 
the postoperative visual outcome49. Our results show that the mean thickness of the RNFL (Fig. 1b) as well as 
of the GCL (Fig. 2b) was statistically significantly greater in grade 0–1 than in grade 2–4. However, it must be 
emphasized that there were patients with a significant OC compression but who had a satisfactory thickness of 
RNFL and GCL. This underlines the concept of multifactorial cause of chiasmal syndrome (direct forces acting 
on OC and/or disturbed blood supply leading to local ischemia at the level of the OC)11,50.

When comparing patients with grade of compression 0–1 with those with grade 2–4, the median preoperative 
latencies were not statistically significantly different for P-VEPs and M-VEPs. In other words, there was no peak 
time prolongation in patients with greater OC compression. In both groups, there was a shortening of N160 peak 
time in the first postoperative control. However, for other follow-up controls, the peak time values were close 
to preoperative values. We attribute the improvement at the first postoperative control mainly to the effect of 
decompression. Conversely, subsequent progressive mild “deterioration” of the parameters could be explained by 
slow postoperative changing of traction forces (as a component of scarring) acting on the OC, or by continued 
antero- and retrograde degeneration51,52. Although less probably, it could be attributed to the manipulation of 
the optic nerves (during tumor resection). In summary there were no important preoperative pathological VEP 
changes in the case of the higher grades. Again, it indicates that the etiology of chiasmal syndrome has more 
components than solely morphology.

Our unique findings with radial motion stimulation in patients with OC compression suggest that M-VEPs are 
able to detect functional changes resulting from compression of those optic nerve fibers that carry information 
from the peripheral parts of the retina. Radial movement tends to be the most effective way of stimulation53. This 
is mainly because the stimulus design respects the cortical magnification factor, and probably also because this 
type of motion resembles the optic flow, which is present during observer self-motion through an environment.

The study has several limitations. Assuming the greatest impact of a tumor compression is on crossed fibers, 
as seen in the nasal GCL, we chose the temporal RNFL segment for preferential evaluation. However, the average 
(global) RNFL appeared to have a strongest link to changes in VF and VA. As already mentioned, probably it is 
due to the poorer retinotopic mapping of the RNFL. VEP examination generally has a high sensitivity to factors 
influencing the test results (pupil diameter, refractive error, age, sex, electrode position, anatomical variations, 
cortical excitability, etc.). So we expected a high VEP response to the OC compression/decompression; however, 
we did not observe this in our sample. This decreased sensitivity is likely due to the suboptimal stimulation, 
where stimulation patterns were projected only in a small field (11° × 14°) laterally from the center of the fovea. 
This weakens the outcome, mainly of P-VEPs. The VEPs examination, which requires systematic attentive coop-
eration from patients, may contribute to possible bias of the results, because patients may become tired during 
the examination. While all patients were cooperative in our group, in less cooperative patients, mf-VEPs were 
considered more reliable than the VF examination54. The group of 32 eyes represents a relatively small cohort. 
In addition, some patients lacked a complete series of all three follow-up postoperative controls.

Conclusions
Our results and the available literature sources show that VF, OCT and the respective VEP examinations should 
be viewed as complementary methods for providing essential information about the morphological and func-
tional state of the visual pathway, rather than as competitive. VEPs reveal visual impairment in patients without 
subjective complaints and with minimal OC compression. This is the first prospective study of the use of M-VEPs 
in addition to P-VEPs to detect functional changes in the visual pathway in the follow-up of patients with OC 
compression. The presented results favour morphological data about the retinal status (from OCT) as having 
greater potential for predicting postoperative development than an alteration of the visual function measured 
by VEPs.

Data availability
All data collected are available upon request to the corresponding author.
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