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Introduction
Intraductal papillary mucinous neoplasms (IPMNs) are cystic 
lesions that are potential forerunners of pancreatic ductal ade-
nocarcinoma (PDAC).1 Histologically, IPMNs are character-
ized by mucin-filled cysts that grow in the ductal system of the 
pancreas (main duct and/or branches) and are covered by tall, 
columnar papillary neoplastic epithelium with variable mucin 
secretion and various degrees of dysplasia; the sub-epithelial 
stroma lacks the ovarian-type stroma found in mucinous cystic 
neoplasms.2 Noninvasive IPMNs are classified using a 2-tier 
system: IPMNs with low-grade dysplasia (low to intermediate 
dysplasia) and IPMNs with high-grade dysplasia based on 
the highest degree of cytological and architectural atypia.3 
Compared with noninvasive IPMNs, IPMNs with associated 
PDAC have a worse prognosis, with 5-year overall survival 
rates ranging from 24% to 40%.4,5

Pancreatic adenocarcinoma has been shown to have a highly 
immune-suppressive microenvironment with low densities of 
intratumor T-cell infiltration and cytotoxic T cells; several 
studies have shown that this immunosuppression is complex 
and some of the key players identified are the presence of 
tumor-associated macrophages and the expression of immune 
checkpoint biomarkers, such as programmed cell death protein 
1 (PD-1) in T cells (antigen-experienced T cells) and pro-
grammed death-ligand 1 (PD-L1) in tumor cells as well as in 
immune cells especially in macrophages.6–8 We have selected 
these relevant biomarkers, and spatial interactions between 
them, to determine the immune landscape of IPMN lesions 
and its association with progression.

Currently, broad morphological features serve as the only 
guidelines available to decide whether a patient diagnosed with 
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an IPMN should undergo a surgical intervention.9,10 Resection is 
recommended for patients with either high-grade dysplasia or an 
IPMN that has progressed to PDAC, which necessitates accurate 
grading of dysplasia.11 Presently, gold standard prognosticators 
for assessing cancer risk in patients with IPMNs are lacking.12 
However, researchers have shown that patients with high-grade 
dysplasia tend to be at greater risk for subsequent development of 
PDAC after resection than are patients with low-grade dyspla-
sia.13 Also, authors recently reported that the role of the tumor 
microenvironment, specifically, the spatial interactions between 
tumor cells and various immune cells, is important in predicting 
survival in PDAC14 and breast cancer.15,16

Given the previous findings described above, our goal in this 
study was to analyze the cell-cell spatial interactions in IPMNs 
that correlate with dysplasia grade and predict the risk of transi-
tion from low-grade to high-grade cysts. In this study, we adopt 
ideas from spatial statistics (the G-function17) and functional 
analysis18 to quantify the spatial tumor environment as observed 
using multiplex immunofluorescent (mIF) images of IPMN 
cysts. Researchers have previously used the G-function in ecol-
ogy to quantify distance-based relationships between predators 
and their prey19,20 and used functional analysis to efficiently 
encode information in structured data, such as time series data 
(temporal structure)21,22 and images (spatial structure).23,24 Very 
recently, authors have shown that G-functions representing 
spatial interactions between tumor cells and regulatory T cells 
predict poor overall survival in patients with non–small-cell 
lung cancer (NSCLC).25 They compute a single metric (“area 
under curve”) from the G-function, thus omitting a significant 
amount of the rich information contained in the G-function. 
As an extension to this approach, we derived multiple spatial 
metrics from the G-function to build ensemble learning models 
that perform very well in (1) classification of IPMN dysplasia 
grade and (2) predicting risk of progression from low-grade to 
high-grade IPMN cysts by examining mIF images of low-grade 
cysts alone. We observed high classification areas under the 
curve (AUCs) of 0.81 (95% confidence interval [CI]: 0.71-0.9) 
for task 1 and 0.81 (95% CI: 0.7-0.94) for task 2.

Materials and Methods
Case selection, staining, and analysis

Formalin-fixed, paraffin-embedded (FFPE) histological 
IPMN sections were prospectively taken from surgically 
resected specimens that were obtained from 31 patients who 
had undergone surgery with curative intent at The University 
of Texas MD Anderson Cancer Center. Of these patients, 12 
had IPMNs with low-grade dysplasia, 17 had IPMNs with 
high-grade dysplasia, and 2 had invasive carcinoma. In all, 16 
of the high-grade IPMN patients also had low-grade dysplasia. 
Because our subsequent prediction tasks related to only low-
grade and high-grade dysplasia, the 2 patients with invasive 
carcinoma were omitted, leaving a total of 29 patients. The 
cases were reviewed by 2 pathologists who are experts in 

assessment of pancreatic lesions (H.W. and A.M.) and classi-
fied according to guidelines presented by Raimondo et al.4

Manual mIF staining as described previously26 was per-
formed with 4-µm-thick sequential histological tumor sections 
obtained from a representative FFPE tumor block using  
the Opal 7-Color Kit (PerkinElmer, Waltham, MA, USA)  
and scanning using a Vectra multispectral microscope 
(PerkinElmer). The IF markers used were grouped into a 
6-antibody panel, consisting of pancytokeratin AE1/AE3 (epi-
thelial cell positivity; dilution, 1:300; Dako, Carpinteria, CA, 
USA), programmed death-ligand 1 (PD-L1; clone E1L3N; 
dilution, 1:100; Cell Signaling Technology, Beverly, MA, 
USA), CD3 (T-cell lymphocytes; dilution, 1:100; Dako), CD8 
(cytotoxic T cells; clone C8/144B; dilution, 1:20; Thermo 
Fisher Scientific, Waltham, MA, USA), programmed cell death 
protein 1 (PD-1; clone EPR4877-2; dilution, 1:250; Abcam, 
Cambridge, MA, USA), and CD68 (macrophages; clone 
PG-M1; dilution, 1:450; Dako). The methodology of the mul-
tiplex immunofluorescence staining has been reported before,26 
specifically, the staining of the antibodies was performed con-
secutively using the Opal 7 multiplexed assay. The validation of 
the assay included the optimization of the antibodies using 
bright field immunohistochemistry, assessment of the uniplex 
immunofluorescence, and optimization of the multiplex immu-
nofluorescence staining to ensure that the antibodies stain cor-
rectly. The use of the Vectra multispectral microscope 
(PerkinElmer) and the inForm 2.1.0 software program 
(PerkinElmer) allows a robust identification of the fluores-
cence signal and the co-localization of the biomarkers.

A total of 219 mIF IPMN images containing the different 
markers were analyzed using the inForm 2.1.0 software program 
(PerkinElmer). For every patient, about 5 images (total physical 
dimensions: 2.1 mm × 1.6 mm, with a 1.57-µm/pixel resolution) 
were captured for each low-grade and high-grade region. 
Example mIF images of IPMN with high-grade dysplasia are 
shown in Figure 1. In the images, individual cells were identified 
using nuclear (4′,6-diamidino-2-phenylindole) staining, and a 
phenotyping pattern recognition learning algorithm tool was 
used to characterize co-localization of the various cell popula-
tions (Table 1) and create a comprehensive cell-by-cell identifi-
cation report using the antibody markers in the epithelial and 
stromal compartments of the lesions. The individual cell report 
created by inForm, including the spatial location (X- and 
Y-coordinates) of each cell, was finally processed using the 
Spotfire software program (TIBCO Software, Palo Alto, CA, 
USA; PerkinElmer) to create a final data report for every image. 
The pairwise combinations whose spatial interactions we inves-
tigated are listed in Table 2.

Functional spatial analysis

G-function: basic idea.  The spatial G-function is used to quan-
tify infiltration of cells of one type into another.17 Specifically, 
the G-function computed a nearest neighbor distribution 
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function for cells of type “j” with respect to cells of type “i.” As 
shown in Figure 2, the G-function computed as a function of 
distance “r” informed us of the probability of a cell of type “i” 
having at least one cell of type “j” within a distance r from it. 
Different levels of infiltration clearly had signature G( )r  curves.

G-function: summary metrics.  To design efficient machine learning 
schemes, the entire G-function was summarized by formulating 
the following 3 different metrics as shown in Figure 3:

1.	 Simple AUC: a clinically meaningful maximum value of 
the cell-to-cell distance r, which we call rmax , was chosen, 
and the area under the G-function for 0 ≤ r ≤ rmax was 
computed as shown in Figure 3(a). This simple AUC met-
ric, used recently in quantifying spatial interactions in 
NSCLC,25 is thus one simple number; however, the shape 
information of the curve is ignored.

2.	 K-bins AUC: the G-function was partitioned into K-bins, 
and AUCs for each bin were computed separately as 
shown in Figure 3(b). This metric better preserves shape 

information than the simple AUC while still being a 
compact representation.

3.	 K-bins multivariate functional principal component anal-
ysis (MFPCA): our intention is to query spatial interac-
tions for the P pairwise combinations listed in Table 2 
(P = 12 for the current study). A naïve way of representing 
each mIF image would be to simply concatenate the 
K-length metric from step 2 for each of the P interactions. 
However, because these P interactions are correlated (for 
example, all macrophages vs cytotoxic T-cell and mac-
rophages PD-L1+ vs cytotoxic T-cell interactions are 
expected to have similar G-functions as seen in Figure 

Figure 1.  The mIF images of IPMN. (A) Hematoxylin-eosin, (B) multiplexed immunofluorescence, and (C) phenotyped mIF images of an IPMN with 

high-grade dysplasia. The cell types of interest are highlighted in C using different colors as indicated. IPMN indicates intraductal papillary mucinous 

neoplasm; mIF, multiplex immunofluorescent. The hematoxylin-eosin image (A) was acquired at 20x magnification.

Table 1.  Cell types of interest: the cell types whose spatial locations 
were quantified in mIF images.

Cell type

Epithelial cells (AE1/AE3+)

Epithelial cells PD-L1+ (AE1/AE3+PD-L1+)

T-cell lymphocytes (CD3+)

Antigen-experienced T cells (CD3+PD-1+)

Cytotoxic T cells (CD3+CD8+)

All macrophages (CD68+)

Macrophages PD-L1+ (CD68+PD-L1+)

Table 2.  Spatial interactions of interest: the various pairwise 
combinations of cell types interrogated in our spatial analysis 
framework.

Spatial interactions of interest

  1.	 All epithelial cells vs all T-cell lymphocytes

  2.	 All epithelial cells vs cytotoxic T cells

  3.	 All epithelial cells vs antigen-experienced T cells

  4.	 Epithelial cells (PD-L1+) vs all T-cell lymphocytes

  5.	 Epithelial cells (PD-L1+) vs cytotoxic T cells

  6.	 Epithelial cells (PD-L1+) vs antigen-experienced T cells

  7.	 All macrophages vs all T-cell lymphocytes

  8.	 All macrophages vs cytotoxic T cells

  9.	 All macrophages vs antigen-experienced T cells

10.	 Macrophages (PD-L1+) vs all T-cell lymphocytes

11.	 Macrophages (PD-L1+) vs cytotoxic T cells

12.	 Macrophages (PD-L1+) vs antigen-experienced T cells
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3(c)), the ( )P*K  number of AUC values from the previ-
ous step can be more efficiently summarized using 
MFPCA.18,27 The MFPCA algorithm proceeds in two 
steps: first, an FPCA step that reduces the correlations 
across bins, and second, a multivariate eigen-value decom-
position step that decreases correlations across multiple 
interactions. The FPCA step computes principal compo-
nent scores for each of the P G-functions, while the mul-
tivariate eigen-value decomposition condenses the 
information in these scores to even fewer components. 
The algorithm is designed such that these top compo-
nents are generated using only a few selected spatial inter-
actions, thus providing insight into which interactions are 
critical. Overall, MFPCA reduces the length of the met-
ric from ( )P*K  to a smaller number k while explaining 
95% of the variation in the ( )P*K  AUC values.

The G-function computations were performed using the R 
language “spatstat” package.28 The simple and K-bins AUC 
metrics were calculated using MATLAB (MathWorks, Natick, 
MA, USA). The K-bins MFPCA metric was computed using 
the “MFPCA” package in R.29 A random forest prediction 
model for each of the different metrics was built using the “ran-
domForest” package in R.30

Results
The 219 mIF images we used in this study were composed of 
129 low-grade and 90 high-grade IPMN images. Of the low-
grade images, 59 were from patients with low-grade cysts only, 
whereas 70 were from patients who also had high-grade cysts. 
We compared our spatial interaction metrics with 2 other met-
rics: a simple count of cells exhibiting each phenotype listed in 
Table 1 and the Morisita-Horn index,31 a spatial co-localization 
metric that has been shown to be prognostic for breast cancer.16

We built a random forest prediction model using 500 deci-
sion trees.32 The random forest method has been shown to be 
robust to overfitting and among the most effective of the widely 
used classifiers. We then cross-validated our prediction results 
using a leave-one-out approach.33 We built ensemble learning 
models by combining the predictions from the different spatial 
interaction models and a counts-only model, as these 2 models 
capture complementary information about the data (spatial 
proximity between cells and cell abundance, respectively). For 
the G-function AUC computations, we experimented with 
multiple values of the parameter rmax  between 10 µm (6 pixels) 
and 100 µm (60 pixels) so as to capture spatial interactions 
over a wide range of distances. We observed that the best per-
formance for task 1 was obtained by setting rmax = 32 µm  
(20 pixels) for the G-function AUC model, K = 7 for the 

Figure 2.  G-function explanation: we provide here a visual description of our G-function analysis. Epithelial cells are shown in blue, and cytotoxic T cells 

are shown in yellow. The G-function was compared for 2 scenarios: low cytotoxic T-cell infiltration (left) and high cytotoxic T-cell infiltration (right). In the 

low infiltration image, the G-function rises slowly, going upto a value of about only 0.25 at r =100 pixels. However, the G-function rises rapidly in the case 

of the high infiltration image, reaching a value of about 0.9 at r =100 pixels (1 pixel = 1.57 microns). The G-function is a signature of the nature and extent 

of infiltration of cells of one type into the other.

Figure 3.  G-function summary metrics. (a) Simple AUC. The G-function curve is summarized using one number, the AUC, for 0 ≤ r ≤ rmax. The simple 

AUC, while compact, lacks information about the shape of the curve. (b) K-bins AUC. The range of r over which the G-function is computed is split into 

K-bins ( )max0 1 2 1≤ ≤ ≤…≤ ≤−r r r rK  and the area under the G-function is computed for each bin. Thus, each curve is represented by K numbers.  

(c) K-bins MFPCA. To analyze P spatial interactions, the number of bins becomes P*K. To account for interbin relationships for a given spatial interaction 

and the correlations among various spatial interactions, such as the pair of interactions shown, an MFPCA approach is used. The information contained in 

the P*K numbers required for the K-bins metric can be almost entirely preserved using only a few “k” numbers, which are the principal component scores 

generated by MFPCA. AUC indicates area under the curve; MFPCA, multivariate functional principal component analysis.
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G-function K-bins model, and k = 7 for the G-function K-bins 
MFPCA model. For task 2, we obtained the best results  
by setting rmax = 24 µm (15 pixels) for the G-function AUC 
model, K = 14 for the G-function K-bins model, and k = 8 for 
the G-function K-bins MFPCA model.

Classif ication of low-grade vs high-grade dysplasia

We show the receiver operating characteristic (ROC) curves, 
classification AUCs, and respective CIs for each classification 
method in Figure 4. The ROC curves are all significantly better 
(p < 0.05) than an ROC curve resulting from random chance 
(AUC 0.5), which is the 45° straight line in Figure 4. We 
observed that an ensemble model built using the predictions 
from the G-function K-bins MFPCA model and counts-only 
model had the best classification performance, with an AUC of 
0.81 (95% CI: 0.71-0.9).

Classif ication of low-grade dysplasia mIF images 
in patients with only low-grade cysts vs. those with 
concurrent low- and high-grade cysts

The ROC curves, classification AUCs, and respective CIs for 
each of the classification methods are shown in Figure 5. Just as 
the previous task, all the approaches performed significantly 
better ( p < 0 05. ) than random chance. Once again, we obtained 
the best performance using an ensemble classifier built by com-
bining the predictions from the G-function K-bins MFPCA 
model and a counts-only model. It achieved a classification 
AUC of 0.81 (95% CI: 0.7-0.94).

Important spatial interactions

The top 3 spatial interactions ranked according to the mean 
decrease in classification accuracy (%) criterion are listed in 
Table 3. This criterion represents the amount by which the 
classification performance of our learned ensemble model 
drops if a particular spatial interaction is removed. We noticed 
that the spatial interaction of epithelial cells with T-cell lym-
phocytes was by far the most important correlate of dysplasia 
grade in IPMNs, as removing it would lower classification per-
formance by 17%. Interactions between Macrophages PD-L1+ 
and all T-cell lymphocytes and between epithelial cells and 
cytotoxic T cells, were also quite significant (7.9% and 7% 
decrease in accuracy). However, the spatial interaction between 
Macrophages PD-L1+ and cytotoxic T cells, epithelial cells and 
all T-cell lymphocytes, and between Macrophages PD-L1+ 
and cytotoxic T cells were identified by our models as the most 
important interactions in predicting the likelihood of a con-
current high-grade cyst in a patient with a low-grade cyst (9%, 
7.5%, and 5% decrease in accuracy, respectively).

Discussion
A comprehensive understanding of the tumor immune envi-
ronment is essential to understand the causes of progression of 
IPMNs, particularly in the era of immunotherapy. In this 
work, we quantified the precise spatial relationships among 
various cells in IPMNs, rather than performing simple cell 
counts, as an essential step in gaining insight into why low-
grade IPMN cysts progress to high-grade ones. To that end, 
we adopted the G-function, used historically to 

Method AUC (95% CI)

Counts only 0.72 (0.62-0.84)

Morisita-Horn 0.6 (0.49-0.73)

G-function simple AUC 0.72 (0.62-0.85)

G-function simple AUC + Counts 0.75 (0.66-0.88)

G-function K-bins AUC 0.67 (0.56-0.8)

G-function K-bins MFPCA 0.77 (0.66-0.87)

G-function K-bins MFPCA +Counts 0.81 (0.71-0.9)

Figure 4.  Low-grade vs high-grade classification: performance analysis of various methods used to classify low- and high-grade dysplasia in IPMN 

patients. The best classifier was obtained using an ensemble of the G-function K-bins MFPCA model and a counts-only model, with an AUC of 0.81  

(95% CI: 0.71-0.9). (Note: The term Gcross in the figure legend denotes the G-function simple AUC metric, while Gcross K-bins denotes G-function K-bins 

AUC metric). AUC indicates area under the curve; IPMN, intraductal papillary mucinous neoplasm; MFPCA, multivariate functional principal component 

analysis.
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study predator-prey interactions in ecology, as a quantitative 
descriptor of the spatial distribution of specific cells of inter-
est. We summarized the G-function information in 3 ways. 
The first, called the simple AUC, is simply computation of the 
area under the G-function curve upto a given distance of 
interest. The second, called the K-bins AUC, splits the 
G-function curve into K segments and then computes their 
corresponding K AUCs. This method can capture the cell-to-
cell distances at which key spatial interactions happen more 
precisely than the simple AUC. Because we investigate several 
(say N) correlated spatial interactions, we encoded the 
G-function in a third way, called the K-bins MFPCA, which 
efficiently represents the large, correlated set of N*K numbers 
with only a small set of k uncorrelated numbers. Each patient 
is thus represented by N, N*K, and k numbers, respectively, for 
the 3 G-function summary metrics we computed. We then 
used them as inputs in a random forest model for 2 tasks of 
interest: (1) identifying low-grade cysts and high-grade IPMN 

cysts and (2) predicting the risk of a low-grade cyst progress-
ing to a high-grade cyst. We also compared the performance 
of our G-function metrics with a simple cell counts-only 
model and another spatial co-localization metric called the 
Morisita-Horn index. We observed that a model that com-
bines the information from the G-function K-bins MFPCA 
model and the counts-only model achieved the best prediction 
performance in task 1, with an AUC of 0.81 (95% CI: 0.71-
0.9). In task 2, we similarly saw that a model that combines 
information from the G-function K-bins MFPCA model and 
the counts-only model achieved the highest prediction perfor-
mance, with an AUC of 0.81 (95% CI: 0.7-0.94).

The mIF imaging methods that can facilitate the simulta-
neous identification of proteins can increase our ability to study 
individual cells and their spatial distribution in several types of 
tissue. Although cell counts have been traditionally used to 
understand immune context,34 an added incorporation of spa-
tial measures of infiltration demonstrates an improved 

Table 3.  Important spatial interactions: listed here are the 3 most important spatial interactions for the 2 classification tasks.

Low-grade vs high-grade Low-grade only vs mixed low-grade/high-grade

Spatial interaction Mean decrease in 
classification accuracy (%)

Spatial interaction Mean decrease in 
classification accuracy (%)

Epithelial cells and All T-cell lymphocytes 17.1 All macrophages and 
cytotoxic T cells

9.0

Macrophages PD-L1+ and all T-cell 
lymphocytes

7.9 Epithelial cells and all 
T-cell lymphocytes

7.5

Epithelial cells and cytotoxic T cells 7.0 Macrophages PD-L1+ 
and cytotoxic T cells

4.9

The interactions are ordered according to mean decrease in classification accuracy (%), which quantifies the drop in classification performance if the effect of that spatial 
interaction is removed from the analysis.

Method AUC (95% CI)

Counts only 0.7 (0.54-0.85)

Morisita-Horn 0.75 (0.62-0.9)

Morisita-Horn + Counts 0.76 (0.63-0.91)

G-function simple AUC 0.68 (0.52-0.85)

G-function simple AUC + Counts 0.7 (0.56-0.87)

G-function K-bins AUC 0.64 (0.49-0.8)

G-function K-bins MFPCA 0.79 (0.67-0.93)

G-function K-bins MFPCA + Counts 0.81 (0.7-0.94)

Figure 5.  Low-grade only vs mixed low-grade/high-grade classification task: Performance analysis of various methods used to classify low-grade mIF 

images for IPMN patients with only low-grade dysplasia vs patients with both low- and high-grade dysplasia. The best approach was an ensemble of the 

G-function K-bins MFPCA model and a simple counts-only model, with an AUC of 0.81 (95% CI: 0.7-0.94). (Note: The term Gcross in the figure legend 

denotes the G-function simple AUC metric, while Gcross K-bins denotes G-function K-bins AUC metric). AUC indicates area under the curve; CI, 

confidence interval; IPMN, intraductal papillary mucinous neoplasm; mIF, multiplex immunofluorescent.
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performance in these classification tasks. By combining the 
capabilities of image analysis software and current spatial analy-
sis algorithms, our mIF-based functional spatial analysis plat-
form can improve the performance of high-throughput immune 
profiling and spatial distribution assays in studying premalig-
nant progressive tumor specimens. The identification of prog-
nostic spatial patterns of cell populations in the 
microenvironment of premalignant tissue can help increase 
understanding of disease progression, identifying new treat-
ments, and personalizing treatment and prevention strategies.

This study demonstrated that the spatial proximities 
between epithelial cells and T-cell lymphocytes, specifically, 
cytotoxic T cells, are predictive of the dysplasia grade for an 
IPMN cyst. The dissimilar spatial landscapes of low-grade and 
high-grade cysts indicate that in high-grade cysts, immune-
suppressive mechanisms in epithelial IPMN cells lead to sup-
pression of cytotoxic activity and may lead to progression to 
PDAC. The finding that the spatial distribution of both 
Macrophages PD-L1+ and all macrophages with respect to 
cytotoxic T-cell lymphocytes in low-grade IPMN can predict 
the presence of simultaneous low- and high-grade dysplasia, 
which indicates that macrophages may suppress cytotoxic 
T-cell activity early in the development of PDAC. This agrees 
with in vivo studies of pancreatic adenocarcinoma mouse mod-
els suggesting that tumor-associated macrophages suppress 
cytotoxic T-cell activity to regulate tumor development.35–37 
The role of macrophages in development of preneoplastic pan-
creatic lesions such as IPMNs has not been well established, so 
our findings warrant further investigation. The results suggest 
that overall, interactions between epithelial cells and lympho-
cytes, and between macrophages and lymphocytes, are most 
relevant in these tasks. Thus, there is a strong similarity in the 
nature of these top-ranking spatial interactions for the 2 tasks. 
The reasons behind the important interactions being not iden-
tical need to be studied on a larger cohort.

This study has limitations that must be addressed in the 
future. First, we expect our ensemble learning model to perform 
more robustly with sample sizes greater than those used in this 
study; thus, follow-up validation studies on larger cohorts are 
essential. Second, we acquired the patient cohort under carefully 
controlled sample processing, staining, and imaging protocols; 
hence, observing the generalizability of these derived prediction 
models to images acquired under different conditions, for exam-
ple, across different hospitals, would be important to establish 
the generalizability of our approach. Third, we only investigated 
a small set of 12 potentially important spatial interactions of 
interest. However, analyzing other spatial interactions, poten-
tially with new markers such as granzyme B and CD45RO, is 
possible, which can shed more light on the poorly understood 
progression of IPMNs. Fourth, from the clinical standpoint, our 
study did not include follow-up data or have a sample size suf-
ficient to fully characterize the immune profiles of patients with 
invasive pancreatic adenocarcinoma, who have markedly worse 

outcomes than patients diagnosed with IPMN. Finally, it is 
important to find out whether our proposed G-function metrics 
are associated with IPMN progression independently of rele-
vant clinical and radiologic predictors. We aim to investigate 
this in an upcoming study.

Conclusions
We developed a prediction model based on spatial statistics 
and functional data analysis to distinguish the spatial microen-
vironments of low- and high-grade dysplasia in IPMNs. Our 
model identified the spatial interactions in IPMNs that can 
predict grade of dysplasia and the likelihood of a low-grade 
dysplasia transitioning to a high-grade one. Based on a spatial 
statistical algorithm, the G-function, we derived multiple met-
rics to summarize the extent of infiltration between multiple 
cell types of interest as seen in mIF images. For classification of 
low-grade vs high-grade dysplasia, we achieved the best AUC 
of 0.81 by combining a simple counts-only model with a model 
built by summarizing the G-function using MFPCA. To dis-
tinguish low-grade cysts belonging to a patient with only low-
grade cysts, as opposed to a patient with concurrent low- and 
high-grade cysts, we obtained the best AUC of 0.81 using an 
ensemble of a counts-only model with a model that summa-
rizes the G-function using MFPCA. The G-function K-bins 
MFPCA model is implemented using the fast and open-source 
R software package MFPCA29 and so consequently can be 
introduced in a clinical setting with minimal cost and effort. 
Our prediction model is an objective risk assessment tool for 
patients diagnosed with IPMNs and can potentially be used as 
a guideline for designing treatment. Furthermore, the key spa-
tial interactions identified in our study can be studied and 
characterized further from a tumor microenvironment 
standpoint.
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