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Abstract

Motivation: Expert-labeled data are essential to train phenotyping algorithms for cohort identification. However ex-
pert labeling is time and labor intensive, and the costs remain prohibitive for scaling phenotyping to wider use-
cases.

Results: We present an approach referred to as polar labeling (PL), to create silver standard for training machine
learning (ML) for disease classification. We test the hypothesis that ML models trained on the silver standard created
by applying PL on unlabeled patient records, are comparable in performance to the ML models trained on gold
standard, created by clinical experts through manual review of patient records. We perform experimental validation
using health records of 38 023 patients spanning six diseases. Our results demonstrate the superior performance of
the proposed approach.

Availability and implementation: We provide a Python implementation of the algorithm and the Python code devel-
oped for this study on Github.

Contact: kwagholikar@mgh.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Phenotyping forms the basis of utilizing statistical or machine learn-
ing (ML) for research and clinical workflows (Shivade et al., 2014;
Xu et al., 2015). However, data in electronic health records (EHR)
are considered noisy for training ML algorithms (Hripcsak and
Albers, 2013). To address this gap, expert labeling of the data is
widely used to train phenotyping algorithms (see Fig. 1; Geraci
et al., 2017; Kagawa et al., 2017; Wood et al., 2015). However ex-
pert labeling is time and labor intensive, and the costs are prohibi-
tive for scaling phenotyping to wider use-cases (Richesson et al.,
2013, 2017) The lack of data quality is considered as the primary
obstacle for utilization of AI in healthcare (Hripcsak and Albers,
2013; Jason, The Mitre Corporation, 2017).

Several approaches have been investigated to avert the high costs
of expert labeling. Methods to discover optimal inference algo-
rithms, as well as feature selection and feature engineering techni-
ques to combine different data modalities have been shown to
improve performance of supervised ML (Carroll et al., 2011; Huang
et al., 2004; Teixeira et al., 2017). These approaches serve to minim-
ize the size of required expert labels. Active learning has been
observed to be similarly useful in reducing the labeling effort (Chen
et al., 2013). Unsupervised learning-based tensor factorization

techniques called Limestone and Marble are able to generate pheno-
type clusters with no predefined phenotype definitions but require
manual validation by experts (Ho et al., 2014a, b).

On the other hand, several weakly supervised learning
approaches have been investigated. Yu et al. (2015) described an
automated feature-selection algorithm (AFEP) that uses medical
knowledge sources. For rheumatoid arthritis and coronary artery
disease cohorts, models trained using the features selected by AFEP
achieved comparable or slightly higher accuracy than those trained
with exper-curated features. Yu et al. improved upon AFEP to de-
velop Surrogate-assisted feature extraction (SAFE). SAFE refined the
feature selection using high coefficients of variables generated in ML
models trained on a silver standard that was derived from frequency
distribution of diagnostic codes (Yu et al., 2017). The performance
of algorithms trained using features identified by SAFE was signifi-
cantly higher than that of those trained on expert curated features
for four disease cohorts. However, this approach is complex to im-
plement in contrast to the XPRESS framework developed by
Aggarwal et al. (2016), in which the silver standard labels are gener-
ated by searching disease-related anchor terms in clinical notes.
Models trained on this silver standard were reported to be compar-
able to rule-based models for heart attack and type 2 diabetes melli-
tus. Furthermore, the XPRESS framework has been implemented as
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a R software (R Foundation for Statistical Computing, Vienna,
Austria) package by Banda and is widely used in the Observational
Medical Outcomes Partnership (OMOP) consortium. Deriving from
XPRESS, Yu et al. (2017) developed Phenorm, which includes SAFE
for feature selection but trains ML directly on silver standard labels
from frequency distribution of diagnoses, and applies self-regression
to incorporate related features for refining the silver standard.
However, a downside of this approach is that it involves multiple
steps and parameters, and is not available as an opensource imple-
mentation. Consequently Phenorm is difficult to implement or repli-
cate by other researchers.

In this paper, we detail our approach for creating a silver stand-
ard to bypass the effort for creating human annotation for training
ML models. Ours is a weakly supervised learning approach, (Zhou,
2018) that leverages the intuitive concept that even though health
data are noisy, patients who are repeatedly ascribed to particular
categories are more likely to have true membership of that category.
For example, patients with a large number of visits with documenta-
tion of codes for asthma are more likely to truly have asthma than
those patients who have a lesser number of such codes in compari-
son. In other words, patients near the high pole of asthma distribu-
tion counts will tend to truly suffer from asthma. Our main
contribution is that we describe an algorithm implementing this no-
tion, which we refer to as polar labeling (PL) algorithm.
Furthermore, we perform experimental validation using expert
annotations on patient records for six diseases. Specifically, we test
the hypothesis that ML models trained on silver standard (created
by applying PL on unlabeled patient records), are comparable in per-
formance to the ML models trained on gold standard, created by
clinical experts through manual review of patient records.

We provide a Python implementation of the algorithm and the
Python code developed for this study on Github. We hope that our
results and source code will enable the research community to fur-
ther study and use the proposed approach.

2 Materials and methods

The experiment described in this paper was carried out on health
records of 38 023 patients at Partners Healthcare in Boston who
had consented for inclusion of their health records into the institu-
tional biobank. The study was approved by the institutional review
board. The patient records were obtained by querying the institu-
tional research patient data repository (Nalichowski et al., 2006;
Wattanasin et al., 2008). For conducting this study, we selected six
diseases of varying prevalence including asthma, breast cancer,
chronic obstructive pulmonary disease (COPD), depression, epilepsy

and hypertension. See Supplementary Appendix B for details on dis-
ease prevalence.

2.1 Experimental design
Figure 1 outlines the experimental design. For each of the chosen
diseases, we selected patients from the study dataset, to create a
gold-standard set labeled by a clinical expert. The unselected
patients formed the unlabeled set (Step 1 in Fig. 1). The gold-
standard set was further split randomly and equally into a develop-
ment set and a validation set (Step 2). A silver-standard set was cre-
ated by applying the PL algorithm to the unlabeled set.

Development set (Step 3), and the silver-standard set (Step 6)
were used to train ML models. To facilitate readability, we hence-
forth refer to the models as gold-ML and silver-ML, respectively.
The validation set was used to measure the performance of both of
these models (Steps 4, 7 and 8).

Creation of the validation set was repeated 15 times. In each of
the runs, new gold-ML and silver-ML models were trained on the
development set and silver-standard set respectively, and then scored
on the validation set. These multiple runs were essential to average
the performance scores.

What follows is the detailed methodology for (i) creation of gold
standard, (ii) creation of silver standard, (iii) PL algorithm, (iv) fea-
ture extraction, (v) training of ML models on the development-set
and silver standards and (vi) comparison of the performance of the
models on the validation set.

2.2 Gold standard creation
Samples of 540 patients were drawn from the study dataset for each
of the six diseases. Each of the sample consisted of 540 randomly
selected patients, such that 100 of these patients had an
International Classification of Diseases, ninth revision (ICD-9) code
for the disease in question and 365 had at least one other disease.
The remaining 75 patients were selected completely at random. For
each of these samples, a single clinical expert (nurse practitioner)
performed a chart review to annotate the presence of the disease.
This expert labeled the patients with one of four classes: Y: present,
N: Absent, P: possible, U: unknown/can’t say. The criteria for the
disease annotations are provided in Supplementary Appendix A. For
our experiments we included only the Y and N labels, which pro-
vided more certainty (Table 1).

2.3 Silver-standard creation
The silver-standard is generated from the unlabeled set (Step 5) by
applying the PL algorithm.

Fig. 1. Experimental design
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2.4 PL algorithm
The steps are elaborated as follows (see Fig. 2):

1. Obtain diagnostic billing counts: The total number of ICD-9

counts that each patient has forms the input for the algorithm.

2. Distribution of log normalized counts: As the distribution shows

logarithmic distribution the counts are normalized to log normal

form log (x þ 1). Note that the addition of 1 to the count obvi-

ates computation of log for zero counts.

3. Identify ‘potential silver positives’: Patients with log(countþ1) >

0 i.e. count > ¼1 are potential silver positives.

4. Cut-off (alpha) for delineating high pole: The mean and stand-

ard deviation for the log normal distribution for ‘potential silver

positives’ is computed, and for an arbitrary factor alpha, the

‘high pole cut-off’ is computed as mean þ (cut-off parameter x

standard deviation). The lower pole cut-off is always at 1.0.

5. Silver set: Patients on and to the right of the high pole cut-off are

labeled as ‘silver positive’, and patients on and to left of ‘low

pole cut-off’ are labeled as ‘silver negative’. Note that all patient

with log(count þ 1) ¼ 0 i.e. count ¼ 0 are silver negatives.

6. Balance negative silver set: The ‘silver negative’ set is reduced to

a smaller subset of randomly selected y patients, where y is the

size of silver set x (size of silver positive/size of potential silver

positive). This step ensures that relative distribution of positive

and negative cases in the ‘balanced silver set’ is close to that in

the entire dataset.

7. Create ‘balanced silver’ set as a union of the ‘positive silver’ set

and the ‘balanced negative silver’ set.

8. Output a random sample of the balanced silver set, by creating a

random subset of a specified ‘train size’ parameter.

Hence, there are two parameters for the PL algorithm: cut-off
parameter (Step 4) and train size parameter (Step 8).

2.5 Feature extraction
For applying ML to the dataset, we transformed the health records
for each patient to a feature vector, as follows. Clinical experts
hand-picked concepts that are relevant for the six diseases, including
diagnosis, medications, laboratory results and procedures
(Supplementary Appendix C). We computed the total number of
times each of these concepts occurs in the health record of a patient,
to construct a count vector of the features (n¼175) for the patient.
For example, PRC_ERVisit and DX_COPD indicate the number of
emergency room visits and number of times the diagnosis of COPD
was made in the patients record, respectively. The feature vectors
were then used for training and scoring the ML algorithm.

2.6 ML model training
The gold and silver ML models were trained on the development set
(part of gold standard) and silver-standard, respectively. We trained
two types of ML models—random forest (RF) and logistic regres-
sion (LR). The RF classifiers were trained using 1000 estimators,
using the Gini score to split the trees. The LR model was fit with L2
regularization, with maximum threshold of 10 000 iterations for op-
timization. The coefficient of regularization was selected by per-
forming 5-fold cross-validation using the area under the receiver
operating characteristics (AUROC) curve for scoring. The developed
models were output in Steps 3 and 6 in Figure 1.

2.7 Performance comparison
We compared the AUROC of the gold and silver ML models (Fig. 4
and Table 2). T-test was used to determine the significance of the
difference in P-values, with a P-value of 0.05 acting as a cut-off for
statistical significance. For baseline, we measured the AUROC for

Table 1. Distribution of expert annotations for the six disease cohorts

Human/expert annotations Estimated prevalence

in USA (%)
Cohort N P U Y Total

Asthma 446 10 3 81 540 7.9

Breast cancer 463 10 3 64 540 0.5

COPD 468 30 3 39 540 4 – 9

Depression 383 9 5 143 540 8.1

Epilepsy 479 5 4 52 540 1.2

Hypertension 222 8 3 307 540 29

Y, present; N, absent; P, possible; U, unknown/can’t say.

Fig. 2. (a) Counts of ICD-9 codes follow a log normal distribution. (b) Patients to left-side of low-pole are silver negatives and right-side of high pole are silver positives
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the simple rule of predicting a disease for a patient if the diagnosis
code for the disease is present in the patient’s health record.

2.8 Opensource code
We have included a Github link to our Python implementation of
the PL algorithm, along with the code for carrying out the experi-
ment described in this paper, which includes a dummy dataset. In

addition, a live Jupyter-python notebook for conducting the experi-
ment is available as mybinder link.

3 Results

The PL algorithm for the creation of silver standard leverages the in-
tuitive concept that even though medical data are noisy, patients

that are repeatedly ascribed to particular categories are more likely
to hold true membership of that category. Figure 3 demonstrates
this concept on the labeled dataset.

Figure 4 and Table 2 show that RF model trained on silver stand-
ard is superior or equivalent in performance to the RF model trained
on the gold standard for five of the six diseases (i.e. not depression).
Similarly, the LR model trained on the silver standard is superior or
equivalent in performance to the LR model trained on gold standard
for five of the six diseases (i.e. not breast cancer).

4 Discussion

Our results show that the performance of ML models trained on sil-
ver standard created using PL are superior or equivalent to those
trained on gold standard created by clinical experts in five of the six
cohorts, for both RF and LR classifiers. The reason for the superior
performance is likely due to the large size of training sets (n¼8000)
yielded by PL, as compared to the training set of size approximately
263 from human labeling.

The latter size of 263 is because the size of the gold standard for
each cohort has average size 525 (range 507–536), after excluding

Fig. 3. Log-normal distribution of counts of billing codes, using the labeled dataset, shows distinct but overlapping log-normal distribution for both true-positive and true-

negative patients. The poles of the distributions show areas of enriched true-positive (blue colored bars)/true-negative (red colored bars) patients. The y-axis is the count of

patients and the x-axis is the log of diagnostic ICD-9 count. (Color version of this figure is available at Bioinformatics online.)
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the uncertain categories (Table 1). As 50% of this set was used for
generating the test set, the development set was restricted to (50%
of 525=) 263 patients. In contrast, a total of 37 763 patients (38 026
total � 263 human labeled) were available for PL, from which train-
ing set of size 8000 could be consistently constructed for all cohorts
using a polar cut-off parameter of 0.5.

The advantage of PL is that it is an intuitive approach that is
easy to implement. It can be easily applied to coded data to gen-
erate silver standard. Moreover, the use of billing codes is perva-
sive throughout the healthcare systems across the world.
However, a potential downside to PL is that the developed mod-
els maybe insensitive to newly diagnosed patients, as the polar
set is inherently biased towards patients that have large number
of repeated encounters with the same diagnosis. In our dataset,
the count of events per patient averaged at 1330 with standard
deviation of 1902. Further research is necessary to investigate
the effect of data density on performance of PL. Our implemen-
tation code in the Github repository will facilitate the applica-
tion of the algorithm on other datasets by the research
community. To ensure reproducibility of the study, we applied
PL to identify stroke patients as described in Supplementary
Appendix D.

PL may be applied in situations where data points have been
labeled multiple times in a noisy/biased manner. For example, in the
case of healthcare data, one or more care providers evaluate a pa-
tient multiple times for presence of a disease, with each instance
recorded indirectly in form of the billing codes. Hence, crowd sourc-
ing experiments that have multiple but biased or noisy reviewers for
each data point may be able to utilize PL.

The PL approach requires two parameters: the size of training
set and the cut-off factor. Higher cut-off factor restricts the size of
possible training set. This is because the higher cut-off pole is shifted
more to the right with higher cut-off values, so there are lesser sam-
ples left available to choose from as the right-side tail diminishes.

We carried out the following experiment to examine the sensitiv-
ity of the algorithm to different parameter values. We varied the
training size from 300 to 8000, and the cut-off factor from �3.0 to
þ3.0 in 0.5 increments to generate silver standard using the un-
labeled data. LR models were trained on the silver standard. The
performance of the models was measured by computing AUC_ROC
for predictions made on the labeled data. Figure 5 shows the vari-
ation in AUROC for the different combinations of the PL parame-
ters (averaged over five runs). Generally higher training size
improved performance of resulting ML models. The optimal cut-off

Fig. 4. AUROC for the phenotyping models on the validation sets. The suffix of gold-ML refers to the ML models trained on the ‘gold-standard development set’, and silver-

ML refers to the ML models trained on the silver standard set. The Dx-code-count refers to the rule of predicting the disease if the diagnosis code for the disease is present in

the health record

Table 2. Table of the AUROC algorithm

aIndicates that the value is significantly different from that in the column to the immediate left. Background green shading indicates the algorithm with the high-

est AUROC for the cohort.
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parameter lies between �0.5 and 0.5, for most of the disease
cohorts.

4.1 Limitations
A major limitation of our study is that the features selected for our
datasets were based on expert judgment, which limits the generaliza-
tion of our results. For high-throughput phenotyping, it is desirable
to have complete automation for phenotyping and the need to en-
gage with clinical experts for feature selection is a limitation.

In future work, we plan to expand our study dataset to include
all the EHR data and to leverage automated methods for feature
selection.

A second limitation of our study is that only a single clinical ex-
pert performed the annotations. In the absence of additional annota-
tors, the reliability of the clinical expert could not be assessed.

The third limitation of the study is that we only experimented
with LR and RF models and did not utilize other ML algorithms like
naı̈ve Bayes, support vector machines, neural networks, etc. Such a
comparison is necessary to establish the use of PL to augmenting
other ML approaches. One challenge in using the other ML algo-
rithms is their sensitivity to data normalization. As our current PL

implementation requires absolute ICD counts, we could not normal-
ize/scale the data to evaluate other ML approaches. In future work,
we will modify our implementation to allow the use of normalized
datasets.

5 Conclusion

We have described a PL approach to create silver standard labels for
training ML algorithms for disease classification. Our results dem-
onstrate that ML models trained on silver standard created using PL
are similar in performance to those trained on expert labeled data.
Directions for future work include replication of the results on other
cohorts and using a diversity of other ML approaches.
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Fig. 5. Sensitivity analysis was performed by varying ‘train size’ and ‘cut-off/alpha’ parameters for PL to create silver standard. LR models were trained on the silver standard

and the performance of the models was measured by computing AUC_ROC on labeled data. The plots show that performance of ML models trained on the silver standard

generally increases with higher train size
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