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Simple Summary: Triple-negative breast cancer (TNBC) is an intractable subset of breast cancer
without an efficient therapeutic strategy due to the lack of tractable targets, such as the estrogen
receptor, progesterone receptor, and human epidermal growth factor receptor 2. Activation and/or
amplification of epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K)/v-akt
murine thymoma viral oncogene homolog (AKT), and MAPK/ERK kinase (MEK)/ extracellular
signal-regulated kinase (ERK) pathways is known in TNBC; however, interventions for these targets
have not been successful to date. To explore a combinatorial strategy with existing clinical/preclinical
protein kinase inhibitors (PKIs) in TNBC cells, we performed a series of cytotoxicity (cell viability)
screenings with various PKIs in the presence figure of an EGFR inhibitor, gefitinib. The dual inhibition
of AKT and MEK with gefitinib reduced the proliferation and colony formation of TNBC cells by
inducing apoptosis. Our finding suggests a new approach for treating TNBC with a multiplex
combination of PKIs.

Abstract: There is an unmet medical need for the development of new targeted therapeutic strategies
for triple-negative breast cancer (TNBC). With drug combination screenings, we found that the triple
combination of the protein kinase inhibitors (PKIs) of the epidermal growth factor receptor (EGFR),
v-akt murine thymoma viral oncogene homolog (AKT), and MAPK/ERK kinase (MEK) is effective in
inducing apoptosis in TNBC cells. A set of PKIs were first screened in combination with gefitinib in
the TNBC cell line, MDA-MB-231. The AKT inhibitor, AT7867, was identified and further analyzed in
two mesenchymal stem-like (MSL) subtype TNBC cells, MDA-MB-231 and HS578T. A combination of
gefitinib and AT7867 reduced the proliferation and long-term survival of MSL TNBC cells. However,
gefitinib and AT7867 induced the activation of the rat sarcoma (RAS)/ v-raf-1 murine leukemia viral
oncogene homolog (RAF)/MEK/ extracellular signal-regulated kinase (ERK) pathway. To inhibit
this pathway, MEK/ERK inhibitors were further screened in MDA-MB-231 cells in the presence of
gefitinib and AT7867. As a result, we identified that the MEK inhibitor, PD-0325901, further enhanced
the anti-proliferative and anti-clonogenic effects of gefitinib and AT7867 by inducing apoptosis. Our
results suggest that the dual inhibition of the AKT and MEK pathways is a novel potential therapeutic
strategy for targeting EGFR in TNBC cells.

Keywords: AKT; anti-cancer; combination; EGFR resistance; MEK; protein kinase inhibitor (PKI);
synergism; triple-negative breast cancer (TNBC)
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1. Introduction

Triple-negative breast cancer (TNBC) is defined clinically as being negative for both
the estrogen receptor (ER) and progesterone receptor (PR) and having no amplification
of human epidermal growth factor receptor 2 (HER2) [1,2]. Therefore, the therapeutic
options that feature drugs targeting these proteins are not available for TNBC patients.
TNBC accounts for approximately 15–20% of breast cancers and is known as the most
aggressive breast cancer [1–6]. Although TNBCs respond well to conventional adjuvant
chemotherapies, including taxanes, anthracyclines, capecitabines, and/or platins, resistance
to these agents and distant metastasis diminish overall prognosis [7–10]. Experimental
therapeutics against specific targets, such as acetylated signal transducer and activator of
transcription 3 (STAT3) and mutant p53 in TNBC cells, have been developed [11–13]. Up to
date, four targeted therapies have been approved by the US Food and Drug Administration
(FDA). These therapies include the poly [adenosine diphosphate (ADP)-ribose] polymerase
1 (PARP1) inhibitors, olaparib and talazoparib; the programmed cell death ligand 1 (PD-L)
inhibitor, atezolizumab; and antibody drug conjugates (ADCs), sacituzumab govitecan [2].
However, most treatments exhibit limited durable clinical responses [2].

The epidermal growth factor receptor (EGFR) is a member of the human epidermal
growth factor receptor (HER) family, which consists of four receptor tyrosine kinases
that are important for the proliferation and survival of normal cells [14–16]. EGFR is
activated via epidermal growth factor (EGF) binding, which then promotes intracellu-
lar signaling pathways, such as rat sarcoma (RAS)/v-raf-1 murine leukemia viral onco-
gene homolog (RAF)/MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase
(ERK), phosphoinositide 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homolog
(AKT)/mammalian target of rapamycin (mTOR), and v-src avian sarcoma (Schmidt-Ruppin
A-2) viral oncogene homolog (SRC)/signal transducer and activator of transcription
(STAT) [17–19]. Activation of EGFR, that caused by EGFR gene amplification or mu-
tations, or protein overexpression, or point mutations has been reported in many cancer
types. EGFR is a well-established therapeutic target; many small-molecule kinase inhibitors
and monoclonal antibodies have been approved for treating several human cancers by
the US FDA [15,16]. High EGFR expression has been reported in >50% of TNBC, which
is associated with a poor prognosis [1,3,14,15,20]. Lehmann et al. have classified TNBC
into six subtypes and shown that two of them have the active EGFR pathway: basal-like
2 (BL2) and mesenchymal stem-like (MSL) subtypes [5]. However, TNBC has displayed
intrinsic resistance to anti-EGFR therapeutics [3,20]. One possible explanation is that most
TNBCs are not solely dependent on the EGFR pathway for their survival because of rare
EGFR-activating mutations [3]. Most anti-EGFR therapeutics are effective in cancers that
have activated mutations in EGFR.

Combining existing therapeutics is a promising way to treat intractable cancers, such
as pancreatic cancer or TNBC [2,21–34]. For example, blocking the PI3K/AKT pathway [25],
MET [30], or mammalian target of rapamycin complex 1 (mTORC1) [33] sensitized TNBC
cells to EGFR inhibitors (EGFRis). A combination of EGFRi, gefitinib, or erlotinib with
PI3K/AKT inhibitors resulted in the synergism of an anti-proliferative effect in the cell
lines of the BL subtype [25]. However, these combinations have no synergism in the MSL
subtype cell lines. Additionally, we determined that co-treatment with the MET inhibitor
(METi), SU11274, and EGFRis has a synthetic lethality in MSL TNBC cells though the
downregulation of ribosomal protein S6 (RPS6) [30]. Additionally, inhibiting the mTORC1
pathway via the AKT inhibitor, MK2206, or blocking the regulatory-associated protein of
mTOR (RPTOR) with small interfering RNA (siRNA) potentiated gefitinib toxicity in TNBC
cells [33]. Recently, more efficacious treatments for TNBC have been suggested that use a
triple combination of drugs targeting multiple pathways simultaneously, such as redox
homeostasis, DNA synthesis, DNA damage, histone deacetylase, and multiple protein
kinases [35–37]. A drug combination discovery involving 33 FDA-approved PKIs revealed
that the triple combination of dasatinib, afatinib (BIBW-2992), and trametinib (GSK1120212)
was anti-proliferative in TNBC cells by inhibiting SRC, HER2/EGFR, and MEK [37–40].
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In this paper, we showed that the dual blocking of the AKT and MEK pathways
sensitized TNBC cells to the EGFRi, gefitinib. A set of small-molecule PKIs were screened
in combination with gefitinib for the MSL subtype cell, MDA-MB-231. An AKT inhibitor
(AKTi), AT7867, was identified as the most potent inhibitor, which we further analyzed
using two MSL subtype TNBC cells, MDA-MB-231 and HS578T. A combination of gefitinib
and AT7867 reduced the proliferation and long-term survival of MSL TNBC cells. However,
gefitinib and AT7867 (hereafter referred to as Gefi+AT7867) induced the activation of the
MEK/ERK pathway. Blocking this pathway with the MEK inhibitor (MEKi), PD-0325901,
further enhanced the anti-cancer effect of Gefi+AT7867. Our results suggest that the dual
inhibition of the AKT and MEK pathways is a potential therapeutic strategy for targeting
EGFR in TNBC cells.

2. Materials and Methods
2.1. Cell Culture and Reagents

The MDA-MB-231 and HS578T cell lines were obtained from the American Type Cul-
ture Collection (ATCC; Manassas, VA, USA). Cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM; HyClone, Logan, UT, USA) supplemented with 10% fetal bovine
serum (FBS; Corning, Manassas, VA, USA) and 100 units/mL penicillin/streptomycin
(Thermo Fisher Scientific, Waltham, MA, USA). The viability of cultured cells were mon-
itored by the Trypan Blue dye exclusion method using an automated cell counter, as
described previously [41]. The PKIs used in this study were reported in Table 1.

Table 1. Protein kinase inhibitors (PKIs) used in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) screening.

PKI Other Name Known Targets (IC50 Value in nM) Source Ref

A-769662 AMPK (800; EC50) LC Laboratories
(Woburn, MA, USA) [42]

AT7867 AKT2 (17), PKA (20), AKT1 (32),
AKT3 (47), p70S6K (85)

Selleck Chemicals
(Houston, TX, USA)

[43]

AT9283 JAK3 (1.1), JAK2 (1.2), AURKA (~3.0),
AURKB (~3.0), ABL1T315I (4) [44]

AZD1152-HQPA Barasertib, AZD2811 AURKB (0.37) [45]

AZD1480 JAK2 (0.26) [46]

BI 2536 PLK1 (0.83), PLK2 (3.5) [47,48]

BIX 02189 MEK5 (1.5) [49]

BML-275 Dorsomorphin,
Compound C AMPK (109; Ki) Tocris Bioscience

(Bristol, UK) [50]

Bosutinib SKI-606 ABL (1), SRC (1.2)
LC Laboratories

[51,52]

Chelerythrine PKC (660) [53]

CHIR-99021 CT99021 GSK3β (6.7), GSK3α (10)
Selleck Chemicals

[54]

CI-1040 PD184352 MEK1 (17), MEK2 (17) [55]

CP690550 Tofacitinib JAK3 (1), JAK2 (20) LC Laboratories [56]

CYC116 AURKA (8; Ki), AURKB (9; Ki),
VEGFR2 (44; Ki), FLT3 (44; Ki)

Selleck Chemicals

[57]

Danusertib PHA-739358
AURKA (13), ABL (25), RET (31),

TRKA (31), FGFR1 (47), AURKC (61),
AURKB (79)

[58]

Enzastaurin LY317615 PKCβ (6), PKCα (39), PKCγ (83),
PKCε (110) [59]
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Table 1. Cont.

PKI Other Name Known Targets (IC50 Value in nM) Source Ref

Fasudil HA-1077 ROCK2 (330) LC Laboratories [60]

FR 180204 ERK2 (140), ERK1 (310) Tocris Bioscience [61]

GDC-0879 AR-00341677 BRAF (0.13) Selleck Chemicals [62]

GW 843682X PLK1 (2.2), PLK3 (9.1) Tocris Bioscience [63]

I3M GSK3β (190) Calbiochem (San Diego,
CA, USA) [64]

IKK 16 IKK Inhibitor VII IKK2 (40), IKK complex (70),
IKK1 (200) Tocris Bioscience [65]

Imatinib STI571, CGP057148B,
Gleevec PDGFR (100), c-KIT (100), v-ABL (600) LC Laboratories [66]

INCB018424 Ruxolitinib JAK2 (2.8), JAK1 (3.3)

Selleck Chemicals

[67]

JNJ-7706621
CDK2/Cyclin E (3), CDK2/Cyclin A
(4), CDK1/Cyclin B (9), AURKA (11),

AURKB (15)
[68]

KU-55933 ATM (12.9) [69]

LY2228820 Ralimetinib P38α (7) [70]

MLN8237 Alisertib AURKA (1.2) [71]

Nilotinib AMN-107 Bcr-Abl (<30) LC Laboratories [72]

NSC 109555 CHK2 (200)
Tocris Bioscience

[73]

NU 7441 KU-57788 DNA-PK (14) [74]

PD-0325901 Mirdametinib MEK (0.33) Selleck Chemicals [75]

PD407824 CHK1 (47), WEE1 (97) Tocris Bioscience [76]

PF-4708671 p70S6K1 (160) Selleck Chemicals [77]

PF 573228 FAK (4) Tocris Bioscience [78]

PKC412 Midostaurin, CGP
41251

PKCα (22), PKCγ (24), PKCβ1 (30),
PKCβ2 (31), PPK (38) LC Laboratories [79]

PLX-4032 Vemurafenib SRMS (18), ACK (19), BRAF (31),
C-RAF (48), MAP4K5 (51)

Selleck Chemicals
[80]

PLX-4720 BRAFV600E (13),
C-RAF1Y340D/Y341D (6.7)

[81]

Ro-31-8220 Bisindolylmaleimide IX PKCα (5), PKCβ2 (14), PKCβ1 (24),
PKCε (24), PKCγ (27) Calbiochem [82]

Roscovitine Seliciclib, CYC202 CDK5/P35 (160) LC Laboratories [83]

SB216763 GSK3α (34.3), GSK3β (~34.3) Selleck Chemicals [84]

SB 218078 CHK1 (15) Tocris Bioscience [85]

SNS-032 BMS-387032 CDK9/Cyclin T (4)

Selleck Chemicals

[86]

SNS-314 AURKC (3), AURKA (9), AURKB (31) [87]

SP600125 NSC75890 JNK1 (40), JNK2 (40), AURKA (60),
TRKA (70) [88]

TBCA CK2 (110) Millipore (Burlington,
MA, USA) [89]

TCS 2312 CHK1 (60; EC50)

Tocris Bioscience

[90]

TC PIM-1-1 SC 204330 PIM (50) [91]

TCS PIM-1-4a SMI-4a PIM1 (17) [92]
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Table 1. Cont.

PKI Other Name Known Targets (IC50 Value in nM) Source Ref

Tozasertib VX-680, MK-0457
AURKA (0.6; Ki), AURKC (4.6; Ki),

AURKB (18; Ki), FLT3 (30; Ki),
BCL-ABL (30; Ki)

LC Laboratories [93,94]

TPCA-1 GW683965 IKK2 (17.9) Tocris Bioscience [95]

U0126 MEK2 (60), MEK1 (70) Promega (Madison, WI,
USA) [96]

VX-702 P38α (4–20)

Selleck Chemicals

[97]

Y-27632 ROCK1 (140; Ki); ROCK2 (300; Ki) [98,99]

ZM-447439 AURKA (110), AURKB (130) [100]

2.2. PKI Screening

A synthetic lethality screening of PKIs was performed, as described previously [30,33].
Briefly, MDA-MB-231 cells were plated at 1000 cells/well in 96-well plates and incubated for
24 h. The cells were treated with increasing concentrations of gefitinib and PKIs in duplicate
in a 6 × 5 matrix that included a dimethyl sulfoxide (DMSO) vehicle control. The viability
of cells was determined at 72 h after treatment with 4 mg/mL of 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT), as described previously [11,25,101]. The
classification index (CI) was calculated to determine synergism of the combination, as
described previously [30,33]: CI = (viability with gefitinib)× (viability with PKI) / (viability
with the gefitinib and PKI combo). CI > 1, supra-additivity; CI = 1, additivity; and
CI < 1, sub-additivity. The numbers of combination points with CI > 1.3 were assigned as
quantitative indices of synergism.

2.3. Clonogenic Survival Assay

Cells were seeded and cultured in 6-well plates, as described previously [33]. Cells in
each well were treated with indicated drugs, and the colonies were stained with crystal
violet solution as previously described [30]. After washing the colonies with distilled water,
they were imaged with an image scanner.

2.4. Western Blot Analysis

For the treatment of PKI, the cells were plated at 2 × 105 cells/60-mm dish and
incubated for approximately 24 h. Next, cells were treated with PKIs for 2 h or 24 h
in normal growth media supplemented with FBS. Following treatment, the cells were
lysed with a radioimmunoprecipitation assay (RIPA) buffer containing a protease and
phosphatase inhibitor cocktail (ThermoFisher Scientific, Waltham, MA, USA). The protein
concentration was measured via bicinchoninic acid (BCA) assay (Thermo Fisher Scientific,
Waltham, MA, USA). The antibodies used in this study as follows: mTOR, p-mTOR (S2448),
ERK1/2, p-ERK1/2 (T202/Y204), RPS6, p-RPS6 (S235/236), AKT, p-AKT (S473), glycogen
synthase kinase-3 beta (GSK3β), p-GSK3β (S9), p-p90 ribosomal S6 kinase (RSK) (S380),
p90RSK, p-STAT3 (T705), STAT3, cleaved caspase-3, and peroxidase-conjugated secondary
antibodies (anti-rabbit IgG and anti-mouse IgG) from Cell Signaling Technology (Denver,
MA, USA); XIAP from BD Sciences (San Jose, CA, USA); β-actin from Bethyl Laboratories
(Montgomery, TX, USA); and β-tubulin from Sigma-Aldrich (St. Louis, MI, USA).

2.5. Cell Cycle Analysis

Cells were plated at 1× 105 cells in 60-mm dishes one day before treatment. Following
the drug treatment, both adherent and floating cells were collected and fixed using 70%
ethanol, as described previously [33]. The nuclei were stained with propidium iodide
(PI) (Sigma-Aldrich; St. Louis, MI, USA), and the DNA contents were determined using
a FACSCalibur Flow Cytometer (BD Sciences; Franklin Lakes, NJ, USA). The data were
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analyzed using CellQuest Pro (BD Sciences; Franklin Lakes, NJ, USA) and the ModFit
LTTM program (Verity Software House; Topsham, ME, USA).

2.6. Antibody Array

An antibody array analysis was performed by Fullmoon Biosystems (Sunnyvale,
CA, USA) through ebiogen (Seoul, Korea). In brief, the protein extracts were purified
by a gel matrix column. The protein extract quality was accessed via BCA protein assay
with wavelength scanning using a spectrophotometer Model 680 (Bio-Rad Laboratories,
Hercules, CA, USA). Fifty micrograms of each protein extract were used to label and
probe the antibody array. Fluorescence signals were captured using the GenePix 4000B
Microarray Scanner (Molecular Devices; San Jose, CA, USA). The signal intensity of each
spot was normalized using global normalization.

2.7. Statistical Analysis

All experiments were performed at least three times in triplicate. Representative data
are presented as means ± standard deviation (SD). The differences between groups were
determined by the One-way analysis of variance (ANOVA) with a post-hoc Tukey’s honest
significance difference (HSD) test. Data were considered statistically significant when p < 0.05.

3. Results
3.1. Identification of AT7867 as a Potentiator of Gefitinib in MDA-MB-231 Cells

Previously, we identified a series of PKIs that potentiate TNBC cells’ sensitivity to
EGFRis [25,30,33]. Our studies also revealed the differential susceptibility of EGFRis and
PKI combinations in subtypes of TNBC cells in vitro; MSL subtype cells are more resistant
to PI3K/AKTi and EGFRi combinations than BL subtype cells [25]. This may be due to
alternative survival pathways [102–107]. To further identify synergistic anti-cancer effects
in MSL TNBC cells that overcome EGFRi resistance, we performed a synthetic lethality MTT
screening with a new set of PKIs in combination with the EGFRi, gefitinib, in MDA-MB-231
cells. Among 55 PKIs tested, AT7867 was identified as the most promising PKI with a CI
larger than 1.3, in 8 combination points from the 6 × 5 combination matrix (Figure 1A,B).
In addition, its mean CI was relatively high (1.95; Figure 1A). AT7867 is an adenosine
triphosphate (ATP)-competitive small-molecule PKI of AKT and its downstream kinase,
p70 S6 kinase (p70S6K), as well as of protein kinase A (PKA) [43]. The synergistic effect of
AT7867 and gefitinib was observed in a series of concentrations at different combination
ratios in MDA-MB-231 cells (Figure 1C). The synthetic lethal effect of AT7867 with gefitinib
was also confirmed in an additional MSL cell, HS578T (Figure 1C).

3.2. Induction of Tetraploid Cells by AT7867

The effect of the Gefi+AT7867 treatment for 72 h on cell cycle distribution was deter-
mined in MDA-MB-231 cells. The cell cycle distribution was determined by flow cytometric
analysis (Figure 2). Gefitinib treatment alone did not alter cell cycle progression in MDA-
MD-231 cells; however, AT7867 induced an increase in the population of tetraploid cells
(Figure 2A). Gefi+AT7867 further induced an increase of the gap 1 (G1) population with a
concomitant reduction of the synthesis (S) and gap 2 (G2) populations in tetraploid cells
(Figure 2B). Failures in spindle assembly, chromosome segregation, or cytokinesis followed
by mitosis cause tetraploidy [108].
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Figure 1. Treatment with AT7867 induced triple-negative breast cancer (TNBC) cells’ sensitivity to gefitinib. (A) PKI + gefitinib
screening results in MDA-MB-231 cells. The numbers of combination points with CI > 1.3 was indexed (see the Materials and
Methods). The numbers on the right of each bar are the mean CI values of indicated drugs. (B) MTT screening results for
AT7867 with gefitinib. MDA-MB-231 cells were treated with an increasing concentrations of AT7867 and gefitinib for 72 hr. The
viable cells was measured by MTT assay. (C) The combination effect of gefitinib with AT7867 in two MSL TNBC cells. Data
represent mean ± SD from at least three independent experiments performed in triplicate. * p < 0.05 and ** p < 0.01.
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Figure 2. A combination of AT7867 and gefitinib-induced tetraploid gap 1 (G1) arrest in MDA-MB-
231 cells. (A) Representative histograms of cell cycle analysis in MDA-MB-231 cells in the presence of
each drug or gefitinib and AT7867 (Gefi+AT7867). (B) Relative distribution of cell cycle phases.

3.3. Gefitinib and AT7867 Reduced TNBC Cell Survival

The clonogenic long-term survival of cancer cells was determined to analyze the effect
of Gefi+AT7867 treatment. MDA-MB-231 and HS578T cells were subcultured in 6-well
plates and treated with drug combinations for 24 h. After washing, the cells were cultivated
in normal growth media to form surviving colonies. As expected, gefitinib alone did
not suppress the formation of colonies of MDA-MB-231 and HS578T cells (Figure 3A). In
contrast to the MTT assay results, AT7867 alone markedly reduced the formation of colonies
in both cell types, leading to <40% colony formation when compared with vehicle-treated
control cells (Figure 3B). Gefi+AT7867 treatment further reduced the number of colonies
in both cells, reaching a statistically significant difference compared with AT7867 alone
in MDA-MB-231 cells, but not in HS578T cells. Unfortunately, the complete abolition of
colony formation was not achieved by Gefi+AT7867 in either cell type under this condition.
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Figure 3. Gefitinib and AT7867 reduced the survival of MSL subtype TNBC cells. (A) MDA-MB-231
and HS578T cells were treated with 10 µM Gefitinib, 5 µM AT7867, or 10 µM Gefitinib + 5 µM AT7867
(Gefi+AT) for 24 h in normal growth media. Then, cells were washed and cultivated for additional
10–14 days in normal growth media. The colonies were stained as described in the Materials and
Methods. Representative images are shown from three independent experiments performed in
triplicate (B) The relative colony number was determined and presented as mean ± SEM from three
independent experiments performed in triplicate. * p < 0.05 and ** p < 0.01.

3.4. Regulation of Signaling Pathways in TNBC Cells by Gefitinib and AT7867 Treatment

Next, we analyzed the signaling pathways modulated by the Gefi+AT7867 treatment
in TNBC cells. As expected, a 2 h treatment of gefitinib was not sufficient to down-
regulate the AKT pathway, as evident by no significant reduction in the levels of phos-
pho (p)-AKT [25], p-mTOR, and p-GSK3β in MDA-MB-231 and HS578T cells (Figure 4,
left). However, the levels of p-RPS6 were reduced by gefitinib alone. Serine 235/236
residues of RPS6 are phosphorylated by multiple protein kinases, including S6 kinase
(S6K), ribosomal S6 kinase (RSK), casein kinase 1 (CK1), and protein kinase A (PKA) [109].
The key signaling pathways of p-RPS6 (S235/236) are PI3K/AKT/mTORC1/S6K and
RAS/RAF/MEK/ERK/RSK [109]; therefore, gefitinib-induced downregulation of p-RPS6
might be mediated by the RAS/RAF/MEK/ERK/RSK pathway. However, the levels
of p-ERK1/2 were increased by gefitinib treatment in MDA-MD-231 and HS578T cells.
Additionally, gefitinib did not suppress the levels of p-STAT3 and p-p90RSK in these cells
after a 2 h treatment.



Cancers 2021, 13, 1205 10 of 25Cancers 2021, 13, x FOR PEER REVIEW 10 of 25 
 

 

 

Figure 4. Cell signaling in Gefi+AT7867-treated TNBC cells. Cells were treated with different drug 

combinations for indicated times. Cell lysates were subjected to Western blot (Figure S1) analysis 

with antibodies for indicated proteins. 

AT7867 reduced the levels of p-mTOR, p-GSK3β, and p-RPS6 in these cells after 2 h 

of treatment. This suggests downregulation of the PI3K/AKT/mTOR/S6K pathway by 

AT7867. There were no significant effects on the levels of p-ERK1/2 and p-STAT3. Taken 

together, these results support the specificity of AT7867 and the anti-proliferative and 

anti-clonogenic effects of AT7867 on MSL TNBC cells (Figures 1 and 2). Surprisingly, the 

levels of p-AKT and p-p90RSK were upregulated by AT7867 in the cells treated for 2 h. 

The reactivation of the PI3K or ERK pathway through the relief of the negative feedback 

loops in cancer cell lines, when treated with PI3K and/or mTOR inhibitors, has been well 

established [110–113]. A similar increase in p-AKT (S473) was reported in the glioblastoma 

cell line U87MG [43]. 

The Gefi+AT7867 treatment induced further changes in these cells, including the sup-

pression of p-AKT (which was induced by AT7867), the near-complete suppression of p-

GSK3β and p-RPS6, and the suppression of p-STAT3 (Figure 4, left). Most of these 

changes, except for the recurrence of p-AKT, were sustained after 24 h of treatment (Figure 

4, right). In addition, the levels of p-ERK1/2 were increased. The levels of p-RPS6, a major 

regulator of protein synthesis during cell cycle progression, were further reduced by 24 h 

Figure 4. Cell signaling in Gefi+AT7867-treated TNBC cells. Cells were treated with different drug
combinations for indicated times. Cell lysates were subjected to Western blot (Figure S1) analysis
with antibodies for indicated proteins.

AT7867 reduced the levels of p-mTOR, p-GSK3β, and p-RPS6 in these cells after 2 h
of treatment. This suggests downregulation of the PI3K/AKT/mTOR/S6K pathway by
AT7867. There were no significant effects on the levels of p-ERK1/2 and p-STAT3. Taken
together, these results support the specificity of AT7867 and the anti-proliferative and
anti-clonogenic effects of AT7867 on MSL TNBC cells (Figures 1 and 2). Surprisingly, the
levels of p-AKT and p-p90RSK were upregulated by AT7867 in the cells treated for 2 h.
The reactivation of the PI3K or ERK pathway through the relief of the negative feedback
loops in cancer cell lines, when treated with PI3K and/or mTOR inhibitors, has been well
established [110–113]. A similar increase in p-AKT (S473) was reported in the glioblastoma
cell line U87MG [43].

The Gefi+AT7867 treatment induced further changes in these cells, including the
suppression of p-AKT (which was induced by AT7867), the near-complete suppression
of p-GSK3β and p-RPS6, and the suppression of p-STAT3 (Figure 4, left). Most of these
changes, except for the recurrence of p-AKT, were sustained after 24 h of treatment (Figure 4,
right). In addition, the levels of p-ERK1/2 were increased. The levels of p-RPS6, a major
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regulator of protein synthesis during cell cycle progression, were further reduced by 24 h
of Gefi+AT7867 treatment; however, the reactivation of p-AKT and p-p90RSK, and the
unregulated maintenance of p-ERK1/2, may contribute to the residual survival of TNBC
cells under these conditions.

3.5. Upregulation of the MEK/ERK Pathway by Gefitinib and AT7867

Gefi+AT7867 enhanced the anti-proliferative and anti-clonogenic effects in MSL sub-
type TNBC cells; however, we hypothesized that additional signaling pathways may
contribute to the residual survival of TNBC cells in the presence of Gefi+AT7867. For
example, the levels of p-AKT were elevated in cells after a 2 h Gefi+AT7867 treatment,
and were sustained to 24 h (Figure 4). In addition, p-p90RSK, a downstream target of the
RAS/RAF/MEK/ERK pathway, was upregulated by AT7867 and Gefi+AT7867. No signifi-
cant downregulation was observed in the levels of p-ERK1/2. Interestingly, the levels of
p-ERK1/2 were slightly increased by Gefi+AT7867 in cells treated for 24 h (Figure 4, right).

To decipher the pathways that were upregulated in MSL type TNBC cells by Gefi+AT7867,
we conducted an antibody microarray analysis. A proteomic expression analysis, comparing
gefitinib alone and Gefi+AT7867, was further performed in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways database. As a result, we identified that the MEK/ERK
pathway was activated by Gefi+AT7867 when compared to gefitinib alone (Figure 5).
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Figure 5. Antibody array analysis. (A) Fluorescence images of the antibody arrays. (B) Scatter plots of fluorescence signals; intensities
of the control sample were plotted on the x-axis, and intensities of the test sample were plotted on the y-axis. Red and green lines
indicate a 1.5-fold increase and decrease in fluorescence intensities, respectively, compared with the control sample. (C) The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway map for MAPK/ERK kinase (MEK)/extracellular signal-regulated kinase
(ERK) pathway identified by antibody array analysis. Blue color indicates upregulated molecules. The KEGG pathway map was
kindly provided by Kanehisa Laboratories (Kyoto University, Kyoto, Japan).

3.6. Synergistic Enhancement of the Anti-Proliferative Effect of Gefitinib and AT7867 via the
Inhibition of the MEK Pathway

The antibody array analysis indicated activation of the MEK/ERK pathway by
Gefi+AT7867; therefore, we performed a MTT screening with five MEK/ERK inhibitors
(Table 1) in the presence of Gefi+AT7867 in MDA-MB-231 cells. These inhibitors included:
(1) CI-1040 (PD184352), an ATP non-competitive MEK1/2 inhibitor (MEK1/2i) with an
IC50 of 17 nM in cell-based assays [55]; (2) U0126, a selective MEK1/2i with an IC50 of
70 nM and 60 nM in biochemical assays [96]; (3) BIX 02189, a potent MEK5 inhibitor with
an IC50 of 1.5 nM, which also inhibits ERK5 (IC50 = 59 nM) in biochemical assays and does
not inhibit MEK1/2, ERK2, and c-Jun N-terminal kinase 2 (JNK2) [49]; (4) FR 180204, an
ATP-competitive ERK inhibitor with an inhibitory constant (Ki) of 0.31 and 0.14 µM for
ERK1 and ERK2, respectively, in cell-free assays [61]; and (5) PD-0325901 (Mirdametinib), a
selective non-ATP-competitive MEK1/2i (IC50 = 0.33 nM in cell-free assays) [75].

As shown in Figure 6A, PD-0325901 was the most potent MEKi to induce strong
synergism with Gefi+AT7867 in MDA-MB-231 cells. Furthermore, the triple combina-
tion of gefitinib and AT7867 and PD-0325901 reduced MDA-MB-231 and HS578T cell
viability (Figure 6B).



Cancers 2021, 13, 1205 13 of 25

Cancers 2021, 13, x FOR PEER REVIEW 13 of 25 
 

 

gefitinib and AT7867 and PD-0325901 reduced MDA-MB-231 and HS578T cell viability 

(Figure 6B). 

 

Figure 6. Synergistic anti-proliferative effect in TNBC cells via additional inhibition of the 

MEK/ERK pathway in the presence of Gefi+A7867. (A) Results of the MEK/ERK inhibitor screen-

ing with Gefi+AT7867 in MDA-MB-231 cells. The numbers of combination points with a CI > 1.3 

are depicted, and the numbers on the top of each bar are the mean CI values of the indicated 

drugs. (B) The combination effects of PD-0325901 in the presence of Gefi+AT7867 in two TNBC 

cells. Cells were treated with serially diluted concentrations of PD-0325901 in the presence of 

Gefi+AT7867 for 72 h. Data represent mean ± SD from at least three independent experiments per-

formed in triplicate. ** p < 0.01. 

3.7. Induction of Cell Death by Gefitinib and AT7867 and PD-0325901 

Treatment with Gefi+AT7867 for 72 h induced G1 arrest, but not cell death, in MDA-

MB-231 cells (Figure 2). Therefore, cell cycle distribution was analyzed in MDA-MB-231 

cells treated with the triple drug combination for 24 h (Figure 7). Treatment with PD-

0325901 alone increased and reduced the G1 and S phase, respectively, when compared 

with the DMSO control (Figure 7C). There was no significant increase in the G1 phase 

with gefitinib (Figure 7B) or AT7867 (Figure 7E) treatment alone; however, the effects of 

PD-0325901 were sustained in the presence of gefitinib (Figure 7D). By contrast, the effects 

of PD-0325901 were limited in the presence of AT7867 (Figure 7G). However, the addition 

of PD-0325901 in the presence of Gefi+AT7867 produced a marked increase in the sub-G1 

population (34.94%; Figure 7H). This increase is the result of an increase in apoptotic cells 

containing fractional DNA content [114–119]. Taken together, PD-0325901 induced apop-

tosis in the presence of Gefi+AT7867 after 24 h, while no significant apoptosis was ob-

served in the absence of PD-0325901 after 72 h treatment (Figure 2). 

Figure 6. Synergistic anti-proliferative effect in TNBC cells via additional inhibition of the MEK/ERK pathway in the
presence of Gefi+A7867. (A) Results of the MEK/ERK inhibitor screening with Gefi+AT7867 in MDA-MB-231 cells. The
numbers of combination points with a CI > 1.3 are depicted, and the numbers on the top of each bar are the mean CI values
of the indicated drugs. (B) The combination effects of PD-0325901 in the presence of Gefi+AT7867 in two TNBC cells. Cells
were treated with serially diluted concentrations of PD-0325901 in the presence of Gefi+AT7867 for 72 h. Data represent
mean ± SD from at least three independent experiments performed in triplicate. ** p < 0.01.

3.7. Induction of Cell Death by Gefitinib and AT7867 and PD-0325901

Treatment with Gefi+AT7867 for 72 h induced G1 arrest, but not cell death, in MDA-
MB-231 cells (Figure 2). Therefore, cell cycle distribution was analyzed in MDA-MB-231
cells treated with the triple drug combination for 24 h (Figure 7). Treatment with PD-
0325901 alone increased and reduced the G1 and S phase, respectively, when compared
with the DMSO control (Figure 7C). There was no significant increase in the G1 phase
with gefitinib (Figure 7B) or AT7867 (Figure 7E) treatment alone; however, the effects
of PD-0325901 were sustained in the presence of gefitinib (Figure 7D). By contrast, the
effects of PD-0325901 were limited in the presence of AT7867 (Figure 7G). However, the
addition of PD-0325901 in the presence of Gefi+AT7867 produced a marked increase in
the sub-G1 population (34.94%; Figure 7H). This increase is the result of an increase in
apoptotic cells containing fractional DNA content [114–119]. Taken together, PD-0325901
induced apoptosis in the presence of Gefi+AT7867 after 24 h, while no significant apoptosis
was observed in the absence of PD-0325901 after 72 h treatment (Figure 2).
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Figure 7. Cell cycle analysis of MDA-MB-231 cells treated with a triple combination of gefitinib and AT7867 and PD-
0326901(A–H). Representative histograms of cell cycle analysis in MDA-MB-231 cells in the presence of each drug or
combinations of drugs as indicated. Abbreviations: AT, AT7867; Gefi, gefitinib; and PD-0325901.

3.8. Blocking Long-Term Survival of TNBC Cells Using Gefitinib and AT7867 and PD-0326901

The inhibition of the MEK/ERK pathway by PD-0325901 in MSL TNBC cells was
analyzed by long-term colony formation assay. As a single agent, 10 µM of gefitinib had
little or no effect on MDA-MB-231 and HS578T colony formation (Figure 8). Treatment
with 2.5 µM of AT7867 differentially reduced the number of colonies in MDA-MB-231 and
HS578T cells. Interestingly, HS578T cells were relatively more resistant to AT7867 than
MDA-MB-231 cells (Figure 8B). PD-0325901 (10 µM) alone markedly reduced the long-term
survival of both MDA-MB-231 and HS578T cells; however, no significant synergism was
observed following the gefitinib and PD-0325901 treatment. Contrarily, PD-0325901 further
potentiated the effects of AT7867 in both cells. Moreover, the addition of PD-0325901
resulted in the near-complete inhibition of colony formation of both MSL type cells in
the presence of gefitinib and AT7867 (Figure 8). These results suggest that this triple
combination could further reduce the survival of residual cancer cells.
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Figure 8. Reduced colony formation of MSL TNBC cells treated with gefitinib andAT7867 and PD-0326901. (A) Represen-
tative images of the colonies; cells were treated with 10 µM of gefitinib, 2.5 µM of AT7867, and 10 µM of PD-0325901, or
other drug combinations (as indicated) for 24 h and further cultivated for 10–14 days to form colonies in normal growth
media. The surviving colonies were stained and scanned using an image scanner. Three independent experiments were
performed in triplicate and representative images are shown. (B) Relative colony numbers were determined and presented
as mean ± SEM. ** p < 0.01.

3.9. Regulation of Signaling Pathways in TNBC Cells by Gefitinib and AT7867 and PD-0326901

The effects of this triple combination on the signaling pathways were determined by
Western blot analysis. MDA-MB-231 and HS578T cells were treated with drug combinations
for 24 h, and the cell lysates were analyzed (Figure 9). As expected, the addition of PD-
0325901 abolished the levels of p-ERK1/2 (lanes 3 and 4 in MDA-MB-231 and HS578T).
The levels of p-RPS6 were further reduced by PD-0325901 in the presence of Gefi+AT7867.
RPS6 was phosphorylated by S6K and RSK [109]; these results support that the inhibition of
MEK by PD-0325901 reduces the residual phosphorylation of RPS6 via the MEK/ERK/RSK
pathway. Importantly, PD-0325901 induced the cleavage of caspase-3. Inversely, the levels
of the X-linked inhibitor of apoptosis protein (XIAP) were reduced by the gefitinib and
AT7867 and PD-0326901 treatment. Previously, XIAP was reported as a causative protein
in the acquired resistance of TNBC cells to the EGFR/HER2 inhibitor, GW583340 [120]. All
these results are consistent with the cell cycle analysis results (Figure 7). Collectively, the
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addition of PD-0325901 induced the apoptotic cell death of MSL TNBC cells in the presence
of Gefi+AT7867.
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SDS-PAGE and proved with antibodies for indicated proteins.

4. Discussion

High levels of EGFR expression in TNBC patients induces activation of the PI3K/AKT,
MEK/ERK, and JAK/STAT3 pathways [17,121,122]. The MSL subtype of TNBC is associ-
ated with activated EGFR signaling [5] and exhibits greater intrinsic resistance to EGFRis
than the BL TNBC cells [25,30]. Inhibition of EGFR alone does not suppress the prolifer-
ation of TNBC cells in preclinical cell line models; however, growing evidence supports
EGFR as a potential therapeutic target for TNBC treatments, especially in combination
with other targeted drugs [3,25,30,33,37,123–127]. Therefore, the identification of targets
in combination with EGFRis provides an alternative strategy for developing an effective
TNBC therapy because EGFR-targeting drugs have been approved [15,16]. Previously,
our group reported that the inhibition of the PI3K/AKT [25], MET [30], or mTORC1 [33]
pathways by small-molecule inhibitors induced the sensitization of TNBC cells to EGFRis.

Additional screening with small molecule PKIs in MDA-MB-231 cells identified
AT7867 as a combination partner with gefitinib for MSL type TNBC cells. AT7867 is
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an ATP-competitive inhibitor of AKT1/2/3 (IC50 = 32, 17, 47 nM, respectively), p70S6K
(IC50 = 85 nM), and PKA (IC50 = 20 nM) [43]. Interestingly, the PI3K/AKT/mTOR pathway
is activated in 10–21% of TNBCs [128]. Here, we showed that AT7867 potentiated the
anti-proliferative effect of gefitinib and further reduced the colony formation of TNBC cells
in the presence of gefitinib. However, Gefi+AT7867 did not induce apoptotic cell death in
TNBC cells. Additionally, Gefi+AT7867 increased the activity of the MEK/ERK pathway.
Therefore, we hypothesized that MEK/ERK activation may contribute to the survival of
TNBC cells, even in the presence of Gefi+AT7867. In line with this, mutations of Kristen
rat sarcoma viral oncogene homolog (KRAS), an upstream regulator of the MEK/ERK
pathway, confer EGFRi resistance in lung adenocarcinoma [129].

Additional combination screening identified that PD-0325901 (Mirdametinib) induced
apoptotic cell death in TNBC cells in the presence of Gefi+AT7867. The inhibition of
Gefi+AT7867-induced p-ERK resulted in the induction of cleaved caspase-3 and reduc-
tion in the expression of XIAP. Functionally, gefitinib + AT7867 + PD-0325901 markedly
diminished the number of surviving colonies. Taken together, attenuating the Gefi+AT7867-
induced activation of the MEK/ERK pathway via MEKi overcame resistance to EGFRi
(Figure 10). This reduced the survival of residual TNBC cells.

The expression of ERK1/2 is associated with that of EGFR in TNBC tissues [130], and
high-level expression of ERK2 is correlated with shorter survival in TNBC patients [131,132].
The RAS/RAF/MEK/ERK pathway is activated by amplification in TNBC, providing po-
tential therapeutic targets [133,134]. Potential anti-proliferative effects of ERK inhibition
in TNBC cells have been suggested [135–137]. Additionally, kinome analysis has revealed
that MEK1/2 inhibition by selumentinib (AZD6244) causes acute loss of ERK activity, lead-
ing to the time-dependent reprogramming of receptor tyrosine kinases (RTKs) including
platelet-derived growth factor receptor beta (PDGFRβ), discoidin domain receptor tyrosine
kinase 1/2 (DDR1/2), and AXL receptor tyrosine kinase (AXL), through ERK-dependent
cellular myelocytomatosis (c-Myc) degradation in TNBC cell lines, SUM159 and MDA-
MB-231 [138]. These RTK stimulations overcame MEK2 inhibition and reactivated the
RAF/MEK2/ERK1/RSK1 pathway, which eventually circumvented MEK inhibition. Dual
inhibition strategies have been evaluated for MEKi with other kinase inhibitors to treat
TNBC in preclinical models, including EGFRi [32], PI3Ki, PDGFRi [139], and dasatinib [140].
However, phase 2 clinical trials with combination treatments involving the MEKi, trame-
tinib (GSK120212), and the AKTi, uprosertib (GSK2141795), have shown limited efficacy in
50 patients with advanced TNBC [141].

In this report, we found that the triple combination of EGFRi + AKTi + MEKi is
more effective at inducing apoptosis and eliminating residual colonies of MSL subtype
TNBC cells in vitro. Previous studies suggested that blocking single- or double-signaling
pathways was not sufficient to inhibit and induce TNBC cell proliferation and apoptosis,
respectively [25,30,33]. This might be because multiple compensatory pathways support
the survival of TNBC. In addition, drug-induced reprograming of survival pathways is
required to circumvent drug resistance. Further explorations into multiplex drug combina-
tions may provide new insights on treating intractable TNBC.
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Figure 10. Putative Pathways affected by small-molecule inhibitors in this study. The PI3K/AKT/mTORC1 and
RAS/RAF/MEK/ERK pathways cross-talk each other. Small-molecule PKIs used in this study would inhibit their target
molecules, which results in synergistic anti-cancer effects. Abbreviations: 4E-BP1, eukaryotic initiation factor 4E-binding
protein 1; AKT, v-akt murine thymoma viral oncogene homolog; c-Myc, cellular myelocytomatosis; CREB, cAMP respon-
sive element-binding protein; EGFR, epidermal growth factor receptor; eIF4E, eukaryotic translation initiation factor 4E;
ELK-1, E twenty-six (ETS) like-1; ERK, extracellular signal-regulated kinase; GF, growth factor; MEK, MAPK/ERK kinase;
mTORC1/2, mammalian target of rapamycin complex 1/2; PDK1, 3-phosphoinositide-dependent protein kinase-1; PI3K,
phosphoinositide 3-kinase; PKA, protein kinase A; PKC, protein kinase C; RAF, v-raf-1 murine leukemia viral oncogene
homolog; RAS, rat sarcoma; RPS6, ribosomal protein S6; RSK, ribosomal S6 kinase; RTK, receptor tyrosine kinase; S6K, S6
kinase; TSC1/2, Tuberous sclerosis 1/2.

5. Conclusions

In this report, we found that the triple combination of EGFRi + AKTi + MEKi is more
effective at inducing apoptosis and eliminating residual colonies of MSL subtype TNBC
cells in vitro. Previous studies have suggested that blocking single- or double-signaling
pathways is not sufficient to inhibit and induce TNBC cell proliferation and apoptosis,
respectively [25,30,33]. This might be because multiple compensatory pathways support
the survival of TNBC. In addition, drug-induced reprograming of survival pathways is
required to circumvent drug resistance. Further explorations.
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