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Clinical Review

Introduction
The characterization of the human oral bacterial community by 
targeted amplification and sequencing of the 16S ribosomal 
RNA gene is now well established and has been used as the 
basis for the Human Oral Microbiome Database (Dewhirst  
et al. 2010). The use of next-generation sequencing methods 
has led to a step change in the numbers of sequence reads gen-
erated, giving vastly improved depth of coverage to the analy-
sis. These methods have enabled the diversity of bacteria and 
archaea found in the human mouth to be comprehensively 
catalogued and associations made between specific taxa and 
health and disease states.

The aim of this review is to provide an overview of oral 
bacterial community profiling and discuss some practical con-
siderations, particularly where methods suitable for oral stud-
ies differ from those commonly used for investigations of other 
body sites and/or the environment. A more detailed and general 
discussion of the methodological options for microbiome stud-
ies can be found elsewhere (Pollock et al. 2018).

Value and Limitations of Community 
Profiling Analyses
Community profiling enables the comparison of the composi-
tion of the microbiota in different experimental groups, for 
example, cases of a disease versus controls, samples collected 

from different body sites, changes over time, and the effect of 
treatment. The standard methodology does not detect nonbac-
terial microorganisms. Polymerase chain reaction (PCR) prim-
ers can be modified to include detection of Archaea or designed 
specifically for that domain. Fungi and protozoa can be studied 
by using 18S rRNA genes, and internal spacer (ITS) regions 
are frequently used to identify fungi (Ghannoum et al. 2010). 
Characterization of the oral virome is an expanding area, but 
most viruses found in the mouth have yet to be classified, and 
the majority appear to be bacteriophages (Pride et al. 2012).

The major weakness of profiling methods is they do not 
quantify bacterial load. The primary output will be a table giv-
ing the number of sequences that correspond to bacterial taxa 
or operational taxonomic units (OTU) for each sample, which 
is typically presented as relative abundance. This is an impor-
tant limitation, particularly for treatment studies. Successful 
treatment of an infection may result in significant reductions in 
bacterial numbers. The proportions of taxa in the posttreatment 
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Abstract
The profiling of bacterial communities by the sequencing of housekeeping genes such as that encoding the small subunit ribosomal RNA 
has revealed the extensive diversity of bacterial life on earth. Standard protocols have been developed and are widely used for this 
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The V1-V2 region provides the best discrimination between species of the genus Streptococcus, the most common genus in the mouth 
and important in health and disease. The MiSeq platform is most commonly used for sequencing, but long-read technologies are now 
becoming available that should improve the resolution of analyses. There are a variety of well-established data analysis pipelines available, 
including mothur and QIIME, which identify sequence reads as phylotypes by comparing them to reference data sets or grouping them 
into operational taxonomic units. DADA2 has improved sequence error correction capabilities and resolves reads to unique variants. 
Two curated oral 16S rRNA databases are available: HOMD and CORE. Expert interpretation of community profiles is required, both 
to detect the presence of contaminating DNA, which is commonly present in the reagents used in analysis, and to differentiate oral and 
nonoral bacteria and determine the significance of findings. Despite advances in shotgun whole-genome metagenomic methods, oral 
bacterial community profiling via 16S rRNA sequence analysis remains a valuable technique for the characterization of oral bacterial 
populations.
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samples may therefore not be of biological relevance. Samples 
can be spiked with known amounts of a reference bacterium to 
give some measure of quantitation (Stammler et al. 2016). 
Where absolute numbers of an individual known species are 
required, quantitative PCR should be used (Maeda et al. 2003).

Oral bacterial community profiling reveals which bacteria 
are present but not how they are interacting with the host and 
other microorganisms. Techniques have been developed to 
investigate microbial function including metagenomics, 
which describes the functional genetic potential within sam-
ples (Alcaraz et al. 2012), and metatranscriptomics, which 
investigates the genes being actively transcribed at sites at 
particular times (Duran-Pinedo et al. 2014). Bacterial genomes 
can be assembled from raw shotgun metagenomic data to con-
struct metagenome-assembled genomes (Bowers et al. 2017). 
These are of value for the reconstruction of metagenomic 
pathways within organisms and the prediction of bacterial-
bacterial and bacterial-host interactions. Accurate assembly 
can be compromised, however, in complex bacterial commu-
nities that include closely related taxa, such as the mouth. For 
example, the genus Streptococcus includes a large number of 
species, many of which cluster together in closely related 
groups (Fig. 1). Many streptococci are naturally competent 
and share DNA, further confusing species boundaries (Hanage 
et al. 2005; Fraser et al. 2007). Metagenomic pathways assem-
bled from oral samples are thus likely to be composite 
genomes made up of different species (Shaiber and Eren 
2019). For this reason, community profiling allows a descrip-
tion of the species present in a sample at higher resolution 
than current metagenomic methods. Thus, although 16S rRNA 
gene community profiling is sometimes regarded as a dated 
method that has been superseded by shotgun metagenomic 
analyses, a recent comparison showed that it was a valuable 
method of bacterial community characterization (Rausch et al. 
2019) and is considerably more cost-effective.

Practical Considerations for Oral 
Bacterial Community Profiling
Figure 2 shows the stages involved in sample collection and 
processing for an oral microbiome study.

Study Design

A statistician should be consulted at the design stage. For oral 
microbiome investigations, the numbers of samples to be 
included is of particular importance. The oral microbiome is 
highly variable between individuals and is also stable and 
markedly resilient to change (Zaura et al. 2015; Rosier et al. 
2018). Thus, to demonstrate significant differences between 
individuals with differing disease states or to see the effect of a 
treatment, substantial numbers of subjects may be required. 
Power calculation methods for microbiome studies are now 
available (Kelly et al. 2015), and the stratification of subjects is 
often of value in detecting differences between groups 
(Mattiello et al. 2016).

It is critical to collect clinical metadata appropriate for the 
study. As mentioned above, the individual has the strongest 
influence on oral bacterial community composition, followed by 
oral disease status. In particular, the presence of active caries, the 
extent of gingival inflammation, and the presence and severity 
of periodontitis should be recorded. The need for appropriate 
clinical metadata is often a limiting factor in study feasibility.

Sample Collection

The prime consideration in sample collection is to ensure that 
sufficient biomass is collected to give a good bacterial DNA 
yield. Low yields can lead to the emergence of contaminating 
DNA in libraries. In practice, useable oral samples are rela-
tively easy to obtain. Just 0.25 mL of saliva or plaque collected 
from 1 or more teeth provides enough DNA for good profiling. 
The sample collected should also be appropriate to the research 
question. Saliva was once thought to represent all of the bacte-
ria found on oral surfaces, but it is actually strongly biased 
toward the tongue and palate communities (Segata et al. 2012). 
Sampling mucosal sites can be challenging because the bacte-
ria of interest may be firmly attached or within the tissues and 
present at levels lower than in the saliva bathing the site. 
Rinsing the mouth with sterile saline and drying the site with 
sterile gauze is advised, before sample collection with a swab 
or gentle scraping.

Sample Storage and Processing

If possible, DNA should be extracted from samples on the day 
of collection and stored at –80°C. However, this is not time or 
labor efficient if a study’s recruitment rate is low. It has been 
shown that samples can be stored frozen without grossly affect-
ing the proportions of OTUs detected (Lauber et al. 2010). It is 
important, however, to include a cryoprotectant to prevent 
damage done to sample DNA by the formation of ice crystals 
(McKain et al. 2013). A number of suitable storage media are 
commercially available. When samples are later used, it is 
important that they are processed at the same time because sig-
nificant batch effects have been seen in microbiome studies 
(Weiss et al. 2014).

Choice of DNA extraction method is a potential source of 
bias. Because of their thick peptidoglycan layers, gram- 
positive bacteria are more difficult to lyse than gram-negative 
bacteria, and the use of an enzymatic treatment such as lyso-
zyme or physical disruption with bead beating is recom-
mended. Comparisons of different DNA extraction methods 
for oral samples have, however, yielded equivocal results, 
with, for example, one study finding significant differences 
between methods (Abusleme et al. 2014) but another failing to 
do so (Rosenbaum et al. 2019).

Choice of Sequencing Platform

The most widely used sequencing platform for bacterial com-
munity profiling is currently the Illumina MiSeq. Although the 
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Figure 1. Phylogenetic trees based on 16S rRNA gene sequence comparisons showing relationships between oral streptococcal species for different 
regions of the gene. The trees were reconstructed using the neighbor-joining method from a distance matrix constructed from aligned sequences using 
the Jukes-Cantor correction. (A) A total of 1343 unambiguously aligned bases over the full length of the gene. (B) V4 region, 252 bases. (C) V3-V4 
region, 427 bases. (D) V1-V2 region, 326 bases.
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Illumina 600 cycle kit yields 2 × 300-bp paired reads, it is not 
advisable to use this to sequence a 500-bp fragment, for exam-
ple, the 16S rRNA V1-V3 region. This is because the quality of 
Illumina sequences declines markedly toward the ends of reads, 
and with a short overlap between paired reads, poor-quality 
assemblies will result that will manifest themselves as spurious 
diversity in the data set (Kozich et al. 2013) or, if adequate qual-
ity filtering is applied, a high proportion of assembled sequences 
will be removed, reducing the depth of coverage.

Amplicon sequencing protocols are available for 2 long-
read sequencing technologies, PacBio and Oxford Nanopore, 
which enable the full length of the 16S rRNA gene to be 
sequenced (Calus et al. 2018; Callahan et al. 2019). The rele-
vant Nanopore kit enables up to 12 barcodes, and therefore 
samples, to be sequenced. Although this is far lower than the 
MiSeq protocols, the analysis is rapid and could be useful if 
quick results are required.

Which Region of the 16S rRNA Gene?

As discussed above, the MiSeq platform generates reliable data 
of up to about 350 bp. The region of the 16S rRNA gene to use 
is therefore critically important. The most widely used proto-
cols have targeted the V4 or V3-V4 regions, which provide pro-
files representative of diverse communities at the genus level. 
The microbiota found in many habitats is poorly characterized, 
with a high proportion of unnamed species level taxa. The 
human mouth bacterial community, by comparison, is relatively 
well characterized at the species level, and even where species-
level taxa are unnamed, they have been given reference taxa 
numbers in the Human Oral Microbiome Database (www.
homd.org). The functional capability of oral bacteria is also 
well known, and different species within genera have very dif-
ferent biological properties. For example, Streptococcus mutans 
and related species are associated with dental caries (Gibbons 

Figure 2. Key steps and considerations for the design and performance of oral bacterial community profiling studies.
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and van Houte 1975), while Streptococcus salivarius is health 
associated and has been proposed for use as a probiotic (Burton 
et al. 2011) and the Streptococcus anginosus group is associated 
with a number of systemic infections (Fazili et al. 2017). Figure 
1 shows phylogenetic trees for oral streptococci prepared from 
alignments corresponding to amplicons obtained with primers 
for the V1-V2, V3-V4, V4, and the near full-length gene. It can 
be seen that the V4 and V3-V4 regions differentiate oral strep-
tococci poorly, while analysis of the V1-V2 region is capable of 
identifying most streptococci to species level and is thus at 
present recommended for the study of oral samples (Cabral  
et al. 2017). Further work should be performed, however, to 
determine the utility of different regions of the gene for differ-
entiation of all oral bacterial species. The template-specific 
primers recommended for V1-V2 are the YM modification of 
27F (Frank et al. 2008): 5′-AGAGTTTGATYMTGGCTCAG-3′ 
and 338R: 5′-TGCTGCCTCCCGTAGRAGT-3′, which can be 
incorporated into fusion primers with appropriate adapters and 
barcodes (Kozich et al. 2013). Because next-generation 
sequencing methods are prone to high sequence error rates, 
proofreading DNA polymerases should be used (Gohl et al. 
2016).

Sample Indexing

Individual PCR primers can be labeled by adding a barcode, 
but this is expensive because a different labeled primer is 
required for each sample. Dual indexing, in which the ampli-
cons from each sample are labeled at both ends, is more cost-
effective. This can be done in a single-stage process in 
microplate format in which, for each plate, 8 forward primer 
barcodes are combined with 12 reverse barcodes to give 96 
combinations. If second sets of forward and reverse barcodes 
are prepared, and all combinations are used, 384 samples can 
be amplified and indexed, giving a potential depth of coverage 
of 10,000 assembled paired reads per sample. In practice, the 
number of reads obtained from different samples is unequal, 
despite careful equimolar pooling, and 5,000 reads per sample 
is realistic and gives a good level of coverage, with Good’s 
coverage values of 98% or higher. An alternative method of 
indexing is the 2-stage method, as used in the Illumina Nextera 
kit. One set of primary PCR primers with adapters on each 
primer is used to amplify the target region in the samples. The 
amplicons are then labeled in a second PCR with primers spe-
cific for the adapters.

Purification and Pooling of Amplicons

The amplicons from each sample are purified to remove excess 
primer and incomplete amplicons. The amplicons from each 
sample are then quantified and mixed together in equal amounts 
for sequencing. The concentration of each product is then 
adjusted before pooling. Finally, if multiple plates have been 
used, the pool from each plate is quantified and concentrations 
adjusted before mixing to create a final pool that is submitted 
for sequencing.

Controls

A mixed community control should be used to demonstrate 
that the PCR conditions used yield profiles that adequately rep-
resent the community. Mixtures of genomic DNAs from differ-
ent bacterial species at known concentrations are commercially 
available.

Most DNA extraction and PCR reagents are contaminated 
with low levels of DNA (de Goffau et al. 2018). If the sample 
size is large enough, this is not a problem because the contami-
nating DNA will be present at only low levels compared with 
the DNA extracted from the sample. It has been shown that 
when DNA from a pure culture of a bacterial strain is diluted, 
the proportion of contaminants seen progressively rises (Salter 
et al. 2014). The contaminating organisms are typically those 
found in the environment, and their DNA is often present in tap 
water. Typical contaminating genera include Acinetobacter, 
Bradyrhizobium, Comamonas, Janthinobacterium, Methylo- 
bacterium, Pseudomonas, Ralstonia, Sphingomonas, Steno- 
trophomonas, and Xanthomonas (Tanner et al. 1998; Munson 
et al. 2002; Salter et al. 2014). The finding of these or related 
genera in libraries prepared from oral samples should be 
regarded as suspicious. The detection of Proteobacteria, in par-
ticular, in oral samples can be genuine, however. Patients with 
dry mouths, immunodeficiency, oral cancer, and other condi-
tions can be become colonized with nonoral bacteria, particu-
larly Enterobacteriaceae and Pseudomonas and related genera 
(Fernandes-Naglik et al. 2001). Similarly, a study of the oral 
microbiota in noma, an aggressive tissue-destructive disease, 
in Africa found high proportions of these types of bacteria 
(Paster et al. 2002). Careful interpretation of microbiomic data 
is therefore always required.

A negative control, for example, sterile DNA-free water, 
should therefore be included. The removal of major contami-
nant OTUs can be done manually through a careful inspection 
of the taxonomy table. Alternatively, the R package decontam 
can be used to identify and remove contaminants (Davis et al. 
2017).

Data Analysis
A number of user-friendly pipelines for the analysis of 16S 
rRNA gene sequence data are available. The use of default set-
tings in these pipelines will generate draft summary tables and 
figures from a data set within a day in most cases. Accurate and 
informative analysis, however, will require that settings be 
modified to suit the type of data being analyzed and the 
research questions being asked. Most genome centers now 
have bioinformaticians familiar with the standard pipelines 
who can offer useful advice or perform the analyses, but spe-
cialist interpretative advice from an experienced oral microbi-
ologist for oral samples is likely to be needed.

An overview of the analysis process is shown in Figure 3. 
Analyses can be run on desktop computers, but a fast processor 
and large amount of RAM will be valuable. For larger data 
sets, a high-performance computing cluster will be required. 
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The most commonly used analysis pipelines are QIIME 2 
(Bolyen et al. 2019) and mothur (Schloss et al. 2009). Both 
pipelines are well documented and allow the user to choose a 
variety of data-filtering and -analysis methods. The default 
options may not be suitable for all applications, and new users 
are strongly recommended to seek expert advice.

For MiSeq data, the genome center will provide 2 FASTQ 
files for each sample: the forward and reverse reads. These will 
be filtered for length and quality and assembled. Sequences 
will then either be classified by comparison to a reference data 
set, a process known as phylotyping, or grouped into OTUs 
either in a closed way by again comparing to a reference data set or 
de novo, in which sequences are grouped purely on their similarity. 
This is typically performed at a sequence identity level of 97%, 
which was considered to equate to a “species”-level identification. 

It is known, however, that many validly established related oral 
species have very different biological properties but share 
greater than 97% 16S rRNA gene sequence identity. For this 
reason, it is recommended that OTUs for oral studies be con-
structed at 98.5% or 99%. The distribution of the OTUs thus 
formed among samples is then displayed in an OTU or shared 
table.

A potential source of bias is that bacterial species vary in 
the number of copies of the ribosomal RNA operon included in 
their chromosome. Databases of rRNA operon copy number 
have been constructed (Stoddard et al. 2015), and software 
tools are available to correct data sets for copy number (Angly 
et al. 2014). The rRNA operon copy number remains unknown, 
however, for perhaps the majority of oral taxa, limiting the 
value of such corrections. In practice, however, because most 

Figure 3. Overview of computational analysis of bacterial community profiling data.
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analytical comparisons are of the relative proportions of taxa 
between samples, the effect of copy number bias is limited 
(Pollock et al. 2018).

The OTU Table

The starting point for further analysis is a table showing the 
numbers of each OTU by sample. Such a table can have hun-
dreds of rows (depending on the size of the study) and thou-
sands of columns (depending on the clustering parameters 
chosen). The most common goal of a microbiome study is to 
determine if the microbiome in 2 groups of samples differs sig-
nificantly. The microbiome in a sample is represented by the 
relative abundances of all the single OTUs (i.e., all the col-
umns in the table), each of them being a single variable. This 
goal can thus be achieved only by means of a multivariate sta-
tistical analysis, capable of taking into account many different 
variables at the same time. The distribution of the number of 
sequences of a given OTU in the samples is not normal, and 
especially for rare OTUs can contain many zeroes. To obtain a 
list of the species in the sample, a consensus identification of 
the sequences within each OTU can be obtained. While this 
method allows a straightforward comparison between classifi-
cation and beta-diversity analyses, it may be misleading. OTUs 
often include multiple species, and species can be found in 
multiple OTUs. Because of this, and the inability of partial 16S 
rRNA gene sequences to resolve to species level, many authors 
classify OTUs to genus only. An alternative is to run a parallel 
phylotyping analysis, in which each single sequence is com-
pared with the database.

Whichever analysis pipeline is chosen, the use of a curated 
database greatly improves the quality of the analysis. There are 
2 high-quality curated oral bacterial 16S rRNA databases 
available: HOMD (Chen et al. 2010) and CORE (Griffen et al. 
2011). The typical analysis starts with the estimate of the diver-
sity within each sample, or alpha diversity, using ecological 
indexes such as the Shannon index or Inverse Simpson index. 
To verify if the diversity is significantly different in given 
groups of samples, it is appropriate to compare the mean value 
of the Shannon or Inverse Simpson indexes using the Wilcoxon 
rank-sum test, which does not assume a normal distribution of 
the variable.

The core of the analysis is beta diversity comparisons: at 
this step, the whole microbiome in given groups of samples is 
compared. The traditional approach to multivariate analysis 
involves the following steps: (1) creating a dissimilarity matrix, 
compiled of values that represent the difference between each 
possible couple of samples in terms of microbiome (popular 
metrics to calculate these distance are Bray-Curtis dissimilar-
ity or theta-YC); (2) using the dissimilarity matrix to assess if 
the dissimilarity values within groups of samples are signifi-
cantly shorter than distances among groups (the most widely 
used statistical tests to achieve this are permutational analysis 
of variance; Anderson 2001) or analysis of molecular variance 
(Excoffier et al. 1992). These tests allow the researcher to con-
clude, for example, that the microbiome of case studies is or is 

not significantly different from the microbiome of controls. 
The dissimilarity matrix can also be used to represent graphi-
cally the distances between samples through an nonmetric 
multidimensional scaling or principal coordinate analysis plot.

Normalization. There is a debate about how to normalize the 
data in the OTU table prior to the analysis. Random subsam-
pling of even numbers of sequences per sample and transfor-
mation to proportions have been criticized (McMurdie and 
Holmes 2014). The arguments against the use of proportions 
are strong where the number of sequences per sample varies by 
2 or more orders of magnitude and the number of samples is 
limited, as sometimes happens with environmental studies. A 
well-designed oral study will contain hundreds of samples, and 
by paying attention to the DNA quantification and pooling 
steps, it is possible to obtain a number of sequences per sample 
within the same order of magnitude. In these conditions, the 
results will likely be consistent whether or not a transformation 
is used.

A typical feature of oral microbiome data is a highly posi-
tively skewed distribution. A few species are responsible for 
the majority of the sequences, but the majority of species are 
very rare and absent from most samples. Some of the transfor-
mations, such as random subsampling, will affect these species 
the most, as they are likely to disappear from some samples. 
Although the importance of these rare members should not be 
underestimated, and they may include species with potent bio-
logical properties, their numerical presence will be unlikely to 
influence the outcome of the main beta diversity analysis.

Alternatives to OTU Clustering

Even the most accurate sequencer introduces a certain amount 
of error in its reads, which will lead to inflated estimates of 
diversity. The most recently introduced analysis tools, how-
ever, make an attempt at correcting the error component. For 
example, the DADA2 pipeline includes an algorithm that aims 
to reconstruct the original sequence variants in the data set 
(Callahan et al. 2016). Instead of an OTU table, it will produce 
a table of amplicon sequence variants whose number is usually 
significantly lower than OTUs. The DADA2 algorithm can be 
used within the QIIME suite or as a separate R package. R 
users will find the latter solution very convenient, with the 
results that can be easily handled with the package phyloseq 
(McMurdie and Holmes 2013) or further analysed using DeSeq 
(see the following paragraph).

Biomarker Discovery

Whenever a significant difference is found between experi-
mental groups, the next step is to identify the OTUs responsi-
ble for the difference observed. LeFse can be used to find 
significant proportional differences between the groups (Segata 
et al. 2011) An alternative method is DeSeq2 (Love et al. 
2014). Originally developed to analyze transcriptomic outputs, 
this R package takes the whole untransformed OTU table, on 
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the assumption that the binomial model is more appropriate 
than any normalization (McMurdie and Holmes 2014). An 
example of the use of DeSeq with microbiome data can be 
found at https://bioconductor.org/packages/devel/bioc/vignett 
es/phyloseq/inst/doc/phyloseq-mixture-models.html.

Resolution

For some taxa, higher-resolution analysis is required. For 
example, the 16S rRNA gene sequence of the human pathogen 
Streptococcus pneumoniae is virtually identical to that of the 
oral commensal Streptococcus mitis. Careful examination of 
aligned sequences, however, revealed that a cytosine at posi-
tion 203 was present in all of 440 strains of S. pneumoniae but 
was replaced by an adenosine residue in all strains of other 
species of the mitis group streptococci (Scholz et al. 2012). 
This single base can therefore be used to identify strains of  
S. pneumoniae. The systematic analysis of sequence data to 
find small but consistent differences between strains is known 
as oligotyping. Oligotyping is based on the principle that while 
the sequencing error appears randomly in the sequence, the 
phylogenetically significant differences are found only in spe-
cific positions. Oligotyping and its automated version, called 
maximum entropy decomposition, can be used as an alterna-
tive to OTU clustering but can also be applied to single OTU-
level groups of sequences, to obtain a finer discrimination to 
species or even strain level (Eren et al. 2013, 2015). A strain-
level oligotype of Streptococcus salivarius present in saliva 
was recently shown to be specifically associated with Crohn’s 
disease and orofacial granulomatosis (Goel et al. 2019).

Concluding Comments
16S rRNA-based bacterial community profiling via next- 
generation sequencing is currently the standard procedure to 
determine the composition of complex bacterial communities. 
Sequence costs are falling all the time, and the emergence of 
long-read technologies will transform shotgun metagenomic 
methods and enable communities to be profiled to a depth 
equivalent to that now possible with amplicon-based methods. 
Determining the composition from metagenomic data, how-
ever, relies on comparison with database sequences. The 
marked variability of genome composition between strains of 
the same species means that for whole-genome fragment com-
parisons to be accurate, a sufficient number of reference 
genomes for each species needs to be available. This is particu-
larly difficult to achieve for those species that remain refrac-
tory to culture. For now, then, there will remain a place for 16S 
rRNA gene-based analyses, which are particularly effective for 
the characterization of the oral microbiota, thanks to the highly 
curated databases and extensive literature available.
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