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Doping-induced perturbation and 
percolation in the two-dimensional 
Anderson lattice
Lan-ying Wei1,2 & Yi-feng Yang1,2,3

We examine the doping effects in the two-dimensional periodic Anderson model using the determinant 
Quantum Monte Carlo (DQMC) method. We observe bound states around the Kondo hole site and 
find that the heavy electron states are destroyed at the nearest-neighbor sites. Our results show no 
clear sign of hybridization oscillation predicted in previous mean-field calculations. We further study 
the electron transport with increasing doping and as a function of temperature and obtain a critical 
doping xc ≈ 0.6 that marks a transition from the Kondo insulator regime to the single-ion Kondo regime. 
The value of xc is in good agreement with the predicted threshold for the site percolation. Our results 
confirm the percolative nature of the insulator-metal transition widely observed in doped Kondo 
insulators.

Chemical substitution or doping of the magnetic ions (Ce, Yb, U, …​) by its nonmagnetic counterpart element 
(La, Th, Y, …​) gives rise to local vacancies of the magnetic f-moments (called the Kondo holes) and could 
cause dramatic changes in the ground state properties of heavy fermion compounds. In Kondo insulators such 
as CeNiSn1,2,3, CeRhSb2,3, and Ce3Bi4Pt3

4, interesting new physics has been proposed such as the bound states 
near the Kondo holes5–9. With increasing concentrations of doping, an insulator-to-metal transition has been 
widely observed, accompanying with the change from the dense Kondo lattice regime to the single-ion Kondo 
regime. This transition has been generally speculated to be of percolative nature10. Many work, mostly based on 
mean-field calculations, have been carried out in order to clarify the relevant physics7,11. To the best of our knowl-
edge, no exact numerical calculations has been done. In particular, it is not clear how Kondo holes may destroy 
the many-body heavy electron state and, with increasing doping, drive the system from the Kondo lattice physics 
to the single-ion Kondo physics.

In this work, we use the determinant Quantum Monte Carlo (DQMC) method to study the electronic and 
transport properties of the doped two-dimensional periodic Anderson lattice. DQMC is an exact numerical 
method for a finite lattice but often suffers from severe sign problem away from the half filling. We therefore focus 
on the vicinity of the half filing case and study the doping effect in a Kondo insulator simply by tuning the energy 
levels of a selected number of local f-electron sites. For sufficiently depleted (or doubly occupied) local f-levels, 
this is equivalent to replace the local magnetic ions by the nonmagnetic conterparts. We find no severe sign 
problem in the considered temperature and tuning range. This allows us to study the evolution of the electronic 
states with arbitrary number of Kondo holes. We are able to reproduce the predicted bound states around the 
Kondo hole site obtained in previous mean-field calculations and find that the hybridized heavy electron states 
are destroyed in the neareast-neighbor sites. We further study the electronic transport with increasing doping 
and confirm the percolation transition from the Kondo insulator state in the dense Kondo lattice to the single-ion 
Kondo behavior in the diluted limit.
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Results
We start with the following modified Hamiltonian for the periodic Anderson lattice,
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where σ
†ci  ( σ

†fi ) and ciσ (fiσ) are the creation and annihilation operators for the conduction and f-electrons, respec-
tively.  =σ σ σ

†n c ci
c

i i  and =σ σ σ
†n f fi

f
i i  are the corresponding number operators for the spin-σ component on the i-th 

site, t is the hopping parameter of the conduction electrons between the nearest-neighbor sites, V describes the 
local hybridization between the conduction and f-electrons, and U is the local Coulomb interaction on the local 
f-site. εf

I represents the f-electron energy at the impurity sites I, which is tuned away from zero to resemble the 
effect of chemical substitution. The sum ∑​′​ in the last term is only over the impurity sites. We have modified the 
DQMC code implemented in QUantum Electron Simulation Toolbox12 for the tuning and carried out numerical 
simulations on a 12 ×​ 12 square lattice with a discretization of the imaginary time, Δ​τ =​ 0.25. For ε = 0f

I , the 
model reduces to a clean Kondo lattice, which has no sign problem due to the particle-hole symmetry. For large 
εf

I , the local f-electron occupation is effectively empty or full, so the f-electron degree of freedom at the impurity 
site plays essentially no role in the simulation and we also find no severe sign problem. The magnetic and elec-
tronic properties of the the f-electrons can be obtained through the equal-time spin correlation function13,14,
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and the imaginary time Green’s function,
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†G T f f( ) ( ) (0) (3)f i i i;

The local density of states of the f-electrons, ρf;iσ(ω), can be obtained from Gf;iσ(τ) using the maximum entropy 
method,
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The same can be done for the conduction electrons. For simplicity, we set t =​ 1 and U/t =​ 6 in the numerical cal-
culations and use the natural units with the Boltzmann constant kB =​ 1. The large value of U is chosen for typical 
Kondo lattice systems15,16.

Figure 1.  Perturbation of a single Kondo hole to the charge density of the conduction electrons. (a–c) 
Contour plots of the occupation number of the conduction electrons, 〈​nc〉​, with a single Kondo hole for 
V/t =​ 1.0, 1.5 and 2.5, respectively. (d) The perturbation, 〈​nc〉​ −​ 1.0, along rx across the Kondo hole site as shown 
in (a–c). (e) The spin correlation function c(lx,ly) of the f-electrons in the clean lattice along a triangular path 
shown in the inset. (f) The local density of states of the f-electrons in the clean lattice for V/t =​ 1.0 with varying 
temperature. Other parameters are βt =​ 20 in (a–e) and ε =t/ 30f

I  in (a–d).
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To provide a basis for comparison, we first present the results for the clean lattice (ε = 0f
I ) in Fig. 1(e,f). The 

spin correlation function at low temperature (T/t =​ 0.05) exhibits clear antiferromagnetic spatial oscillation for 
V/t =​ 1.0, indicating antiferromagnetic long-range order in the finite lattice for weak hybridization. For stronger 
hybridization with V/t =​ 1.5 and 2.5, the antiferromagnetic oscillation is suppressed and, as expected, the system 
shows a transition from the antiferromagnetically long-range ordered state to the paramagnetic (disordered) state 
with increasing hybridization due to the competition between the collective Kondo hybridization and the induced 
RKKY (Ruderman-Kittel-Kasuya-Yosida) exchange coupling among the f-moments17. Figure 1(f) plots the 
f-electron local density of states at V/t =​ 1.0. We see for T/t =​ 0.5 two broad Hubbard peaks located at ω =​  
±​U/2 =​ ±​3. As temperature decreases, a narrow resonance peak first appears at T/t =​ 0.125, reflecting the onset 
of coherence, and then splits into two sharp peaks at T/t =​ 0.05. The split of the resonance peak is a special feature 
of the Anderson lattice model and originates from the collective hybridization between the conduction band and 
the effective f-electron flat band near the Fermi energy. The emergence of the gap feature indicates that collective 
hybridization already takes place in the antiferromagnetic state.

The effect of doping can be readily obtained by comparing the results for the clean Anderson lattice (ε = 0f
I ) 

and that with a finite  εf
I. Figure 1(a–d) plot the spatial distribution of the average σni

c , the occupation number of 
the conduction electrons, for ε = = =t D t/ 30 4 4f

I . This resembles the situation of a Kondo hole, as the local 
f-electron occupation number at the impurity site is almost zero. On the other hand, the local occupation of the 
conduction electrons, σnI

c , is strongly enhanced and increases rapidly with increasing V. This may be understood 
if we integrate out the local f-electron degree of freedom at the impurity site. We obtain effectively a local attrac-
tive potential, δε ε∝ − V /c

I
f
I2 , which tends to trap the conduction electrons on the Kondo hole site, causing the 

increase of  σnI
c . For small V/t =​ 1.0 and 1.5, we see that σni

c  is enhanced at the impurity site while slightly 
reduced in the nearest-neighbor sites. The charge density oscillation is also associated with this potential scatter-
ing, reflecting the effect of Friedel oscillation of free conduction electrons. This is possible because for sufficiently 

Figure 2.  Bound states in the local densities of states around the Kondo hole. (a,b) The local density of states 
ρc(ω) of the conduction electrons at the Kondo hole site and far away from hole (FAFH) site. (c,d) The local 
density of states ρf(ω) of the f-electrons at the nearest-neighbor (NN) site and far away from hole (FAFH) site for 
different hybridization strengths V/t =​ 1.0 and 2.5. Other parameters are ε =t/ 30f

I  and βt =​ 20.
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small V, the scattering potential is relatively stronger and overcomes the hybridization energy, ∆ ∝ −Deh
aUt V/ 2

, 
where a is a constant of the order of unity. As expected, there is no oscillation for strong hybridization at 
V/t  =​  2.5. σni

c  exhibits a rapid decay with increasing distance away from the Kondo hole. We note that unlike 
previous mean-field studies18–20, we observe no evident spatial oscillation in the hybridization function21, indicat-
ing that the perturbation is suppressed in our model, possibly due to the half filling.

The perturbation to the local electronic densities of states is presented in Fig. 2 and compared with that far 
away from the Kondo hole site (FAFH) for V/t =​ 1.0 and 2.5. The latter is the same as that in the clean lattice. As 
shown in Fig. 2(a,c), a sharp peak emerges inside the hybridization gap for both ρc at the Kondo hole site and ρf at 
the nearest-neighbor sites for V/t =​ 2.5, in contrast to the unperturbed results far away from the Kondo hole site. 
The resonance peak gives the well-known bound states and is missing if hybridization strength at the hole site is 
set to zero (no impurity scattering). For small V, the bound states are absent due to weak impurity scattering as 
discussed above and the peaks at the edges of the hybridization gap reflect the hybridization between the con-
duction electrons and the f-moments, similar to those in the clean lattice. The suppression of these hybridization 
states at the gap edges for V/t =​ 2.5 is a manifestation of the destruction of the heavy electrons due to the presence 
of the nearby Kondo hole. This suggests that the heavy electron emergence is not a single-site property but a col-
lective phenomenon that involves correlations among neighboring sites in the dense Kondo lattice.

Figure 3 further compares the densities of states at different sites and for varying εf
I. We see that the height of 

the resonance peak is reduced substantially by over an order of magnitude further away from the impurity site. 
Nevertheless, as εf

I increases, the bound states move uniformly towards the center of the hybridization gap and 
become more and more pronounced. The change in their location is shown as a function of εf

I in the inset of 
Fig. 3(c). We obtain similar curves for the peaks in both ρc at the hole site and ρf at the NN sites, indicating their 
common origin. As expected, the bound state approaches ω =​ 0 as ε → ∞f

I , consistent with the mean-field 
prediction.

Figure 3.  The variation of the bound states with εf
I . (a,b) The local density of states ρc(ω) of the conduction 

electrons at the impurity site and the nearest-neighbor (NN) site. (c,d) The local density of states, ρf(ω), of the f-
electrons at the nearest-neighbor (NN) site and the next-nearest-neighbor (NNN) site. The impurity level is 
taken to be ε =t/ 5f

I , 10, 30. The inset in (c) shows the location ωs of the bound state as a function of εf
I. Other 

parameters are V/t =​ 2.5 and βt =​ 20.
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Next, we study how increasing doping may change the electronic and transport properties by tuning the 
system from the Kondo insulator to the diluted limit. We add more impurity sites whose positions are chosen 
randomly in the numerical simulation and calculate the dc conductivity of the doped Anderson lattice using the 
approximation,

σ
β
π

τ β= =g ( /2), (5)dc xx

2

in which gxx(τ) is the current-current correlation function in imaginary time,
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The resulting conductivity, σdc, is plotted in Fig. 4 as a function of doping x for different temperatures. The data 
presented here are an average over only 5 samples of random configurations. We have checked the results up 
to 20 samples and found a numerical error of less than 5%. We see all curves cross at a critical doping, xc ≈​ 0.6, 
indicating opposite temperature dependence below and above xc. Moreover, our analysis of finite size effect shows 
no significant change in xc with increasing L (see Supplementary Fig. S1). For x <​ 0.6, σdc is small and the resis-
tivity, ρ =​ 1/σdc, increases as temperature decreases, so that the system is in the Kondo insulator phase. As x 
becomes larger than 0.6, σdc increases rapidly with x as the system approaches the single-ion Kondo limit. In 
this regime, ρ(T) first decreases with deceasing temperature and exhibits metallic behavior at high temperatures 

Figure 4.  Percolation transition from the Kondo insulator state to the single-ion Kondo state with 
increasing doping. (a) The dc conductivity σdc as a function of doping x at different temperatures. (b) The 
resistivity ρ =​ 1/σdc as a function of temperature for various doping x. (c,d) The average ρc(ω) and ρf(ω) at 
βt =​ 12 for different x. Other parameters are V/t =​ 2.5 and ε =t/ 30f

I .
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down to about T <​ 0.1, below which the resistivity becomes insulating like, with a minimum signalling the typical 
single-ion Kondo behavior in the diluted limit. Our calculations therefore cover the whole doping range from the 
dense Kondo lattice to the single-ion Kondo limit.

To understand the connection between the transport property and the bound states, we calculate the average 
densities of states of both the conduction and f-electrons on all sites. The results are plotted in Fig. 4(c,d). We see 
that the average impurity states exhibit broad peaks inside the hybridization gap, similar to the mean-field results. 
For x =​ 0.333, 0.583 and 0.667, the gap is gradually filled in, yielding a finite density of states at ω =​ 0, in contrast 
to the insulating like behavior shown in our calculated resistivity curve. Hence the average density of states cannot 
be used directly to explain the transport properties. This points to the percolative nature of the electron transport. 
In the theory of site percolation10, adjacent bound states could form a cluster. When the size of the cluster grows 
and eventually percolates through the whole lattice after stochastic doping of enough sites, the system reaches a 
percolation threshold where a phase transition takes place. For the square lattice of infinite size in two dimension 
with only nearest-neighbor hopping, the percolation threshold is xc ≈​ 0.59310. Increasing the number of coordi-
nation or dimension can reduce the threshold9. In our two dimensional 12 ×​ 12 system, bound states are only 
pronounced at the hole site for the conduction electrons. Since only nearest-neighbor hopping is allowed, the 
impurity sites have to be connected to form a network in order for the conduction electrons to move from one 
side to the other side of the lattice. As shown in Fig. 4, the critical doping xc ≈​ 0.6 obtained in our resistivity cal-
culations is in good agreement with the percolation threshold xc. Moreover, previous theories have also predicted 
for T =​ 0 and x >​ xc a power law scaling, σdc ∝​ (x −​ xc)μ, with μ ≈​ 1.322, consistent with our fit giving μ ≈​ 1.44 for 
L =​ 12 and βt =​ 16 (see Supplementary Fig. S2). The doping-induced insulator-metal transition is therefore an 
indication of site percolation of the conducting electrons through the bound states, which governs the charge 
transport in the heavily doped Kondo lattice. Our results confirm the previous theoretical and experimental spec-
ulations. Along the percolation path, collective hybridizations are destroyed around the impurity sites, providing 
an explanation to the crossover from the heavy electron physics to the single-ion Kondo physics.

Conclusion
We use the determinant Quantum Monte Carlo (DQMC) method to study the doping effects in the 
two-dimensional periodic Anderson lattice. We observe the suppression of the hybridization feature in the vicin-
ity of the Kondo hole, which suggests a physical mechanism to destroy the heavy electron states with increasing 
doping. Our results also confirm the bound states appearing around the Kondo hole, but show no obvious sig-
nature of the hybridization oscillation predicted in the mean-field calculations. We further study the evolution 
of the electron transport with increasing doping and demonstrate the percolative nature of the insulator-metal 
transition from the dense Kondo lattice to the single-ion Kondo limit. We obtain a critical doping that is consist-
ent with the predicted threshold for site percolation.
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