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KCa3.1 mediates dysfunction of 
tubular autophagy in diabetic 
kidneys via PI3k/Akt/mTOR 
signaling pathways
Chunling Huang1, Mike Z. Lin1, Delfine Cheng2, Filip Braet2,3, Carol A. Pollock1 &  
Xin-Ming Chen1

Autophagy is emerging as an important pathway in many diseases including diabetic nephropathy. 
It is acknowledged that oxidative stress plays a critical role in autophagy dysfunction and diabetic 
nephropathy, and KCa3.1 blockade ameliorates diabetic renal fibrosis through inhibiting TGF-β1 
signaling pathway. To identify the role of KCa3.1 in dysfunctional tubular autophagy in diabetic 
nephropathy, human proximal tubular cells (HK2) transfected with scrambled or KCa3.1 siRNAs were 
exposed to TGF-β1 for 48 h, then autophagosome formation, the autophagy marker LC3, signaling 
molecules PI3K, Akt and mTOR, and oxidative stress marker nitrotyrosine were examined respectively. 
In vivo, LC3, nitrotyrosine and phosphorylated mTOR were examined in kidneys of diabetic KCa3.1+/+ 
and KCa3.1−/− mice. The results demonstrated that TGF-β1 increased the formation of autophagic 
vacuoles, LC3 expression, and phosphorylation of PI3K, Akt and mTOR in scrambled siRNA transfected 
HK2 cells compared to control cells, which was reversed in KCa3.1 siRNA transfected HK2 cells. In vivo, 
expression of LC3 and nitrotyrosine, and phosphorylation of mTOR were significantly increased in 
kidneys of diabetic KCa3.1+/+ mice compared to non-diabetic mice, which were attenuated in kidneys 
of diabetic KCa3.1−/− mice. These results suggest that KCa3.1 activation contributes to dysfunctional 
tubular autophagy in diabetic nephropathy through PI3K/Akt/mTOR signaling pathways.

Autophagy, a term derived from the Greek, means self (auto)-eating (phagy). It is a lysosomal protein degradation 
pathway in cells, playing a crucial role in removing protein aggregates as well as damaged or excess organelles to 
maintain intracellular homeostasis and cell integrity1. Autophagy is mediated by a unique organelle called the 
autophagosome, which engulfs a portion of cytoplasm. Autophagy has two major roles: to recycle intracellular 
energy resources in response to nutrient-depleted conditions and to remove cytotoxic proteins and organelles 
under stressful conditions2. Three types of autophagy have been recognized in cells: macroautophagy, microau-
tophagy, and chaperone-mediated autophagy; with different mechanisms and functions3. Of these three types 
of autophagy, “macroautophagy” is most prevalent and hereafter is referred to as “autophagy”. A basal level of 
autophagy is essential for cellular maintenance, differentiation, development and homeostasis, promoting the 
turnover of macromolecules and organelles via the lysosomal degradative pathway4. Several signaling pathways 
have been reported to regulate autophagy such as the phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/
mammalian target of rapamycin (mTOR) pathway5. In response to stress conditions including cell starvation, 
growth factor deprivation, hypoxia, and oxidant injury, autophagy can be induced as a cellular reaction to exert 
a protective role by promoting cell survival, allowing temporary cellular adaptation to unfavorable conditions6. 
Dysfunctional autophagy is involved in the pathogenesis of a variety of diseases including cancer7, cardiomyo-
pathy8, renal disorders9,10, neurodegenerative disorders11,12, and diabetes13. Hence, autophagy is emerging as an 
important pathway in many biological processes and diseases including diabetic nephropathy14. However, little 
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was known about the connection between tubular autophagy and diabetic nephropathy, thus the establishment of 
a linkage between tubular autophagy and diabetic nephropathy remains to be elucidated.

The intermediate-conductance calcium-activated potassium channel KCa3.1 (also known as also known as 
IK1, SK4 or KCNN4) is a member of the calcium-activated potassium channel (KCa) family. KCa3.1 regulates K+ 
efflux, increasing the driving force for Ca2+ entry through hyperpolarization of the plasma membrane15. It has 
been shown that KCa3.1 is a potential molecular target for pharmacological intervention in vascular restenosis, 
urinary incontinence, prostate cancer, and autoimmune disease16–18. Recently, we have demonstrated that block-
ade of KCa3.1 ameliorates renal fibrosis in diabetic mice through inhibition of the TGF-β 1 signaling pathway19. 
We also demonstrated a key role of KCa3.1 in mediating TGF-β 1 induced MCP-1 expression in renal proximal 
tubular cells via Smad3, p38 and ERK1/2 MAPK signaling pathways20. In addition, our studies demonstrated 
that blocking the KCa3.1 channel inhibits the NF-κ B pathway, resulting in downregulation of the inflammatory 
marker chemokine (C-C motif) ligand 2021. Our studies have further shown that blockade of KCa3.1 is likely 
to exert its anti-fibrotic effects through inhibition of fibroblast activation22. Collectively, the data demonstrate 
that blockade of KCa3.1 is able to prevent the development of diabetic nephropathy in mouse models of diabe-
tes mellitus. Therefore, the therapeutic potential of targeting KCa3.1 in diabetic nephropathy deserves further 
exploration.

It has been well documented that KCa3.1 is widely expressed throughout the body, including in erythrocytes, 
platelets, T and B cells, mast cells, monocytes/macrophages, microglia, epithelia, vascular endothelial cells, fibro-
blasts and vascular smooth muscle cells. KCa3.1 regulates Ca2+ entry and modulates Ca2+  signaling in these 
cells16,23–26. Both increased Ca2+ influx from the extracellular space and Ca2+ release from intracellular organelles 
leads to an increase in cytosolic calcium. It is well established that elevations in intracellular Ca2+ inhibits auto-
phagy27. The basal autophagic flux is negatively regulated by IP3R-dependent Ca2+ release from the endoplasmic 
reticulum and cytosolic Ca2+ elevation maintains an increase in mTORC1 activity through AMPK independent 
pathways28. The influx of extracellular Ca2+ leads to mTOR activation29. Activation of mTOR pathway in turn 
leads to inhibition of autophagy. Calcium-permeable ion channels have emerged as important regulators of auto-
phagy and the effect of such regulation is likely to depend on Ca2+ signals in a spatially restricted subcellular 
domains30. Since KCa3.1 regulates Ca2+ entry, it is proposed that there are interactions between KCa3.1 and auto-
phagy. Therefore, in this study we investigated the role of KCa3.1 in tubular autophagy in diabetic nephropathy 
using in vitro cultured human proximal tubular cells exposed to TGF-β 1 and in a validated mouse model of dia-
betic nephropathy19. Our results demonstrate that blockade of KCa3.1 was able to reverse diabetes inhibited tubu-
lar autophagy, which was mediated through inhibition of the activation of PI3K/Akt/mTOR signaling pathways.

Results
KCa3.1 gene silencing reversed TGF-β1-induced inhibition of tubular autophagy.  To determine 
whether KCa3.1 is involved in dysfunctional tubular autophagy, autophagy was examined in human kidney 
tubular cells exposed to TGF-β 1 with or without KCa3.1 gene silencing. We initially used transmission electron 
microscopy (TEM) to monitor the appearance of autophagosomes. As shown in Fig. 1, no obvious autophagic 
vacuoles were found in control and mock control HK2 cells. However, numerous autophagic vacuoles appeared 
in TGF-β 1 exposed HK2 cells transfected with control siRNA, while fewer autophagic vacuoles were observed in 
TGF-β 1 exposed HK2 cells transfected with KCa3.1 siRNA.

LC3, a marker of autophagy, was examined by western blot analysis. Consistent with TEM results, western blot 
analysis revealed that the level of LC3 was significantly increased in HK2 cells exposed to TGF-β 1, while KCa3.1 
silencing suppressed the TGF-β 1-induced LC3 expression (P <  0.01, Fig. 2a,b). Immunofluorescence staining 
further confirmed TGF-β 1-induced increased LC3 was reversed by KCa3.1 silencing (P <  0.01, Fig. 2c,d).

LC3 can accumulate due to increased upstream autophagosome formation or impaired downstream 
autophagosome-lysosome fusion. To distinguish between these two possibilities, we assayed LC3 in the presence 
of TGF-β 1 plus Bafilomycin A1, which blocks downstream autophagosome-lysosome fusion. As shown in Fig. 3a, 
TGF-β 1 significantly increased the level of LC3 as compared with control group. Treatment with Bafilomycin A1 
further increased the level of LC3 in HK2 cells exposed to TGF-β 1, which was partially reversed by KCa3.1 gene 
silencing (P <  0.05, Fig. 3b). These data confirmed that TGF-β 1 inhibited autophagosome clearance, thereby 
inhibited autophagy, which was restored by blocking KCa3.1.

Blockade of KCa3.1 reversed diabetes-induced upregulation of LC3 expression in kidney proxi-
mal tubules of diabetic mice.  To further determine the role of KCa3.1 in regulating tubular autophagy in 
diabetic kidneys, autophagy marker LC3 expression was assessed in the kidneys of diabetic animals using confo-
cal microscopy. As shown in Fig. 4a, significantly increased LC3 expression was found in kidney proximal tubules 
of diabetic KCa3.1+ /+  mice (K+ /+  DM) compared to non-diabetic mice (K+ /+  control). KCa3.1 deficiency 
significantly inhibited diabetes-induced upregulation of LC3 expression in kidney proximal tubules of diabetic 
KCa3.1− /−  mice (K− /−  DM) (Fig. 4b), indicating that blockade of KCa3.1 reversed diabetes-induced inhibition 
of tubular autophagy in diabetic mice kidneys.

KCa3.1 gene silencing inhibited TGF-β1-induced activation of PI3K/Akt/mTOR signaling path-
ways.  The PI3K/Akt/mTOR signaling pathway is one of the major pathways regulating autophagy. To under-
stand the molecular mechanisms whereby KCa3.1 gene silencing mediates autophagy in human kidney tubular 
cells, we examined the effects of KCa3.1 on PI3K/Akt/mTOR signaling pathways. The expression of PI3K and the 
phosphorylation of Akt, mTOR were examined by western blot analysis as well as the phosphorylation of P70S6, 
the downstream target of mTOR. Exposure of HK2 cells to TGF-β 1 resulted in significantly increased expression 
of PI3K and the phosphorylation of Akt, mTOR and P70S6 (P <  0.05, Fig. 5). Co-incubation of HK2 cells with 
KCa3.1 siRNA suppressed TGF-β 1 induced upregulation of PI3K and activation of Akt, mTOR and P70S6 in HK2 
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cells (P <  0.05, Fig. 5). These results indicate that KCa3.1 regulation of tubular autophagy is through PI3K/Akt/
mTOR signaling pathways.

Inhibition of PI3K/Akt/mTOR signaling pathways by mTOR inhibitor Rapamycin suppressed 
TGF-β1-induced activation of mTOR, P70S6 and upregulation of LC3 expression.  It is well know 
that PI3K/Akt regulates autophagy mainly through the modulation of mTOR activity. To determine the func-
tional significance of PI3K/Akt/mTOR activation on TGF-β 1-induced inhibition of autophagy, we then tested 
the effect of TGF-β 1 on autophagy in the presence of Rapamycin, a specific inhibitor of mTOR. As shown in 
Fig. 6a,b, Co-incubation with Rapamycin significantly suppressed TGF-β 1 induced activation of mTOR, which 
was further confirmed by the inhibition of P70S6, the direct substrate of mTOR (Fig. 6c,d). Treatment with 
Rapamycin reversed TGF-ß1-induced upregulation of LC3 expression (Fig. 6e,f). It is important to note that, 
TGF-β 1 activated mTOR activity was suppressed by Rapamycin, which correlates well with the induction of 
tubular autophagy, suggesting that the mTOR is the key effector molecule within the PI3K/Akt/mTOR pathways 
for TGF-β 1-induced inhibition of tubular autophagy.

KCa3.1 mediated diabetes-induced dysfunction of tubular autophagy through mTOR signal-
ing pathway in diabetic kidneys.  To further determine whether mTOR signaling is an essential interme-
diary in KCa3.1 mediated diabetes-induced dysfunction of tubular autophagy, phosphorylation of mTOR was 
examined in diabetic mice kidneys. Immunohistochemical staining results showed that mTOR signaling was 
strongly activated in diabetic KCa3.1+ /+  mice (K+ /+  DM) compared to non-diabetic control mice (K+ /+  
control) (P <  0.01, Fig. 7). However, the activation was inhibited in KCa3.1 deficient diabetic mice (K− /−  DM) 
(P <  0.01, Fig. 7). These data suggest that KCa3.1 mediated diabetes-induced dysfunction of tubular autophagy 
occurs through mTOR signaling pathway, which further confirms that mTOR is the central molecule in the PI3K/
Akt/mTOR signaling pathways.

Figure 1.  Electron microscopic evaluation of autophagy in TGF-β1-exposed HK2 cells. HK2 cells 
transfected with scrambled siRNA or KCa3.1 siRNA were exposed to TGF-β 1 for 48 h. Representative electron 
micrographs show autophagic vacuoles in HK2 cells (x12000).
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KCa3.1 mediated diabetes-induced dysfunction of tubular autophagy through oxidative 
stress.  Recently, it has been reported that autophagy is modulated by multiple intracellular stresses including 
oxidative stress31. To investigate whether KCa3.1-mediated oxidative stress is involved in regulation of autophagy, 

Figure 2.  Effect of knockdown KCa3.1 on the expression of LC3 in TGF-β1-exposed HK2 cells. HK2 
cells transfected with scrambled siRNA or KCa3.1 siRNA were exposed to TGF-β 1 for 48 h. Immunoblot 
analysis of LC3 with or without KCa3.1 siRNA transfection in TGF-β 1-exposed HK2 cells (a). Quantification 
of LC3 immunoblot expression in TGF-β 1-exposed HK2 cells (b). Immunofluorescence staining of LC3 
in TGF-β 1-exposed HK2 cells transfected with or without KCa3.1 siRNA (c). Quantification of LC3 
immunofluorescence expression in TGF-β 1-exposed HK2 cells (d). Results are presented as mean +  SEM. 
**P <  0.01. N =  4. Original magnification: × 600.
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nitrotyrosine32, a marker of NO-dependent oxidative stress, was examined in TGF-β 1-exposed HK2 cells  
in vitro. As shown in Fig. 8a,b, TGF-β 1 significantly increased the expression of nitrotyrosine in HK2 cells that 
was reversed by KCa3.1 silencing (P <  0.01). Furthermore, we examined the expression of nitrotyrosine in dia-
betic mice kidneys. Immnunohistochemical staining results confirmed that a marked induction of nitrotyrosine 
was observed in the kidneys of diabetic KCa3.1+ /+  animals when compared with non-diabetic controls, which 
were reversed in the kidneys of diabetic KCa3.1− /−  mice (P <  0.01, Fig. 8c,d). Together, these results indicate 
that KCa3.1 is likely to mediate dysregulation of tubular autophagy through oxidative stress.

Discussion
This study was undertaken to define the role of KCa3.1 in regulating tubular autophagy in diabetic nephropathy. 
Our study demonstrated that impaired autophagy was found in cultured human kidney proximal tubular cells 
exposed to TGF-β 1 as well as in kidney proximal tubular cells of diabetic mice. Blockade of KCa3.1 using siRNA 
technology, reduced formation of autophagosomes in tubular cells exposed to TGF-β 1. KCa3.1 gene silencing 
also partially reversed BafilomycinA1 blockade of autophagosome clearance, indicating that KCa3.1 was involved 
in dysfunctional tubular autophagy in diabetic condition, which was further confirmed in diabetic KCa3.1− /−  
mouse model. In addition, our results show that KCa3.1 mediated autophagy was dependent on the activation of 
the PI3K/Akt/mTOR signaling pathways while mTOR is the central molecule in the PI3K/Akt/mTOR signaling 
pathways. Furthermore, KCa3.1 mediated dysregulation of tubular autophagy is likely to be associated with oxi-
dative stress.

Autophagy has been observed in various parts of kidney including the proximal tubule, which has a central 
role in the pathogenesis of diabetic nephropathy. Numerous studies have reported on autophagy of proximal 
tubular cells in models of acute renal injury. Autophagy is readily induced by renal ischemia–reperfusion and 
cisplatin damage to the kidneys9,33. Reduced autophagic activity worsens acute kidney injury, suggesting that 
stress-inducible autophagy occurs as a renoprotective phenomenon34,35. In addition, mice lacking proximal tubu-
lar epithelial cell-specific Atg5, an important modulator in the expansion steps of autophagosome development, 
have been found to develop renal tubular injury with age9,34. However, to date, the role of tubular autophagy in 
diabetic nephropathy has not been defined.

As TGF-β 1 plays an important role in diabetic nephropathy, in this study we used TGF-β 1 to mimic diabetic 
condition in the in vitro experiments. To investigate whether impaired tubular autophagy was involved in diabetic 
nephropathy, electron microscopy, the gold standard to monitor the formation of autophagosomes, was used to 
demonstrate the accumulation of autophagic vacuoles in TGF-β 1-exposed human proximal tubular cells. The 
results were further confirmed by an increased LC3 level detected by western blotting and immunofluorescence 
staining. Since increased LC3 levels can be associated with either enhanced autophagosome synthesis or reduced 
autophagosome turnover. To better interpret changes in levels of processed LC3, Bafilomycin A1, an inhibitor of 
autophagosomal fusion with lysosomes, that inhibit degradation of autolysosome content and lead to the accu-
mulation of autophagosome, were used in the study. Bafilomycin A1, further increased TGF-β 1-induced LC3 
level in HK2 cells, suggesting that the autophagic flux is impaired in TGF-β 1-exposed human proximal tubular 
cells. The results (Figs 2 and 3) are consistent with our findings in diabetic kidneys (Fig. 4). Thus our results 

Figure 3.  Effect of knockdown KCa3.1 on the expression of LC3 in TGF-β1-exposed HK2 cells together 
with or without Bafilomycin A1. HK2 cells transfected with scrambled siRNA or KCa3.1 siRNA overnight 
were pretreated with 50 nmol/L Bafilomycin A1 for 3 hours and then incubated with TGF-β 1 (2 ng/ml) for 
48 hours. Immunoblot analysis of LC3 with or without KCa3.1 siRNA transfection in TGF-β 1-exposed HK2 
cells together with Bafilomycin A1 (a). Quantification of LC3 expression in TGF-β 1-treated HK2 cells together 
with Bafilomycin A1 (b). Results are presented as mean +  SEM. *P <  0.05 and **P <  0.01. N =  4.



www.nature.com/scientificreports/

6Scientific Reports | 6:23884 | DOI: 10.1038/srep23884

indicate that the inhibition of tubular autophagy is associated with diabetic nephropathy. However, it should be 
noted that TGF-β 1 plays a multifunctional role in autophagy. TGF-β 1 could induce autophagy or inhibit auto-
phagy by activation of the mammalian target of mTOR via PI3K/Akt signaling pathways36. Therefore, TGF-β 1 
may exert both stimulatory and inhibitory effects on authophagy, which may depend on the specific cell type and 
context in which it is studied36.

We have previously shown that blockade of KCa3.1 reversed diabetic-induced upregulation of inflammatory 
and fibrotic responses through a TGF-β 1/Smad dependent signaling pathway19. Since TGF-β 1 induced expres-
sion of KCa3.1 and suppressed autophagy in renal tubular cells, the link between KCa3.1 and autophagy in renal 
tubular cells was characterized. Our results demonstrated that TGF-β 1-induced expression of LC3, and accumu-
lation of autophagic vacuoles were decreased significantly in KCa3.1 gene silenced renal tubular cells exposed to 
TGF-β 1 with or without Bafilomycin A1 (Figs 2 and 3). In vivo studies also confirmed that KCa3.1 gene knock-
down reversed diabetes induced upregulation of LC3 expression compared to diabetic control mice, indicating 
that blockade of KCa3.1 promoted tubular autophagosome clearance, which was inhibited in diabetic control 

Figure 4.  The expression of LC3 in STZ-induced diabetic KCa3.1+/+ and KCa3.1−/−mice. KCa3.1+ /+  
and KCa3.1− /−  mice were injected with STZ to induce diabetes or citrate buffer alone as non-diabetic controls. 
After 24 weeks diabetes, kidney tissues were collected for immunostaining. Immunofluorescence staining 
of LC3 in mice kidney tissues (a). Quantification of LC3 expression in mice kidney tissues (b). Results are 
presented as mean +  SEM. **P <  0.01. N =  8. Original magnification: × 600.
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mice (Fig. 4). There data suggested that restoration of ‘normal’ autophagy may be a key mechanism by which 
blockade of KCa3.1 ameliorates diabetic nephropathy. To date, the mechanism of TGF-β 1 and KCa3.1 on LC3 
expression is not fully understood. However, as we have shown previously, TGF-β 1 upregulated KCa3.1 expres-
sion in renal tubular cells19 and it is well reported that KCa3.1 promotes Ca2+ influx from extracellular space and 
Ca2+ release from intracellular organelles, which subsequently inhibits autophagic flux by preventing the fusion 
between autophagosomes and lysosomes37,38. This study has shown that TGF-β 1 inhibited autophagic flux which 
led to the accumulation of LC3. KCa3.1 gene silencing may prevent TGF-β 1-induced Ca2+ influx and maintain 
autophagic flux, thus reversed TGF-β 1 induced LC3 expression.

The PI3K/Akt/mTOR signaling pathway is a well-known pathway involved in the regulation of autophagy. 
PI3K/Akt regulates autophagy mainly through the modulation of mTOR activity. mTOR is an evolutionarily con-
served protein kinase and forms two functional complexes, termed mTORC1 and mTOR complex 239. mTORC1 
has been shown to be a negative regulator of autophagy by integrating signals that are emitted by growth factors, 
amino acids, glucose, and energy status2. Recent studies suggest that the pathogenesis of diabetic nephropathy is 
associated with impaired autophagic activity via activation of the mTOR pathway40–42. In this study, we demon-
strated that the activation of PI3K/Akt/mTOR is essential for the effect of KCa3.1 in mediating autophagy. Our 
results show that suppression of KCa3.1 with siRNA gene silencing blocked TGF-β 1-induced activation of PI3K, 
Akt and downstream signaling of mTOR, which led to the induction of autophagy in HK2 cells. This is consistent 
with the finding that inhibition of PI3k/Akt/mTOR with Rapamycin, the specific inhibitor of mTOR, reversed 

Figure 5.  Effect of knockdown KCa3.1 on the expression of PI3K and the phosphorylation of Akt, mTOR 
and P70S6 in TGF-β1-stimulated HK2 cells. HK2 cells were transfected with scrambled siRNA or KCa3.1 
siRNA and then incubated with TGF-β 1 (2 ng/ml) for 48 h. The expression of PI3K (a) and phosphorylation 
of Akt (c), mTOR (e) and P70S6 (g) were determined by western blot analysis. Quantification of PI3K (b), Akt 
(d), mTOR (f) and P70S6 (h) expression in TGF-β 1-exposed HK2 cells. Results are presented as means +  SEM. 
*P <  0.05 and **P <  0.01. N =  4.
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TGF-β 1 inhibited autophagy. Collectively, these data suggest that KCa3.1 mediated autophagy is depended on the 
PI3K/Akt/mTOR pathways in TGF-β 1-stimulated HK2 cells. This is further supported by the in vivo results that 
KCa3.1 deficiency reversed diabetes suppressed autophagy through inhibition of the activation of the PI3K/Akt/
mTOR signaling pathways in diabetic mice.

Oxidative stress, resulting from excessive production or accumulation of reactive oxygen species (ROS), is a 
major modulator of autophagy. ROS has been shown to play a major role in the development of diabetic nephrop-
athy43–45. Recent studies suggested that autophagy might be able to ameliorate diabetic nephropathy by reducing 
oxidative stress46,47. In this study, we have shown increased oxidative stress in TGF-β 1-exposed HK2 cells as 
well as in diabetic kidneys, which was correlated with the inhibition of autophagy. Blockade of KCa3.1 not only 
reduced ROS production but also induced autophagy in both in vitro and in vivo diabetic models. These results 
suggested that inhibition of KCa3.1 may elicit an antifibrotic effect at least in part mediated through induction of 
autophagy by reducing the excess ROS production.

In summary, our studies from both in vitro and in vivo experimental models provide evidence that tubular 
autophagy was inhibited in diabetic nephropathy. Blockade of KCa3.1 reversed diabetes-induced inhibition of 
autophagy, which was dependent on the PI3K/Akt/mTOR signaling pathways. This study thus provides new 
insights, suggesting the renoprotective effect of KCa3.1 blockade in diabetic nephropathy is at least partly due to 
restoration of dysfunctional tubular autophagy.

Figure 6.  Effects of mTOR inhibitor Rapamycin on the activation of mTOR, P70S6 and the expression of 
LC3 in TGF-β1-stimulated HK2 cells. HK2 cells exposed to TGF-β 1 (2 ng/ml) with or without Rapamycin 
(100 nm) for 48 h. The activation of mTOR (a) and P70S6 (c) and the expression of LC3 (e) were determined 
by Western Blot. Quantification of mTOR (b), P70S6 (d) and LC3 (f) expression in TGF-β 1-exposed HK2 cells 
together with or without Rapamycin. Results are presented as means +  SEM. * P <  0.05, N =  4.



www.nature.com/scientificreports/

9Scientific Reports | 6:23884 | DOI: 10.1038/srep23884

Materials and Methods
Materials.  Lipofectamine 2000 and tissue culture medium were provided from Invitrogen Life Technologies 
(Carlsbad, CA). Anti-LC3-B antibody was purchased from Abcam (Cambridge, MA) and anti-α -tubulin anti-
body, Bafilomycin A1 and Rapamycin were from Sigma (St. Louis, MO). Anti-PI3K, anti-phospho-Akt, anti-Akt, 
anti-phospho-mTOR, anti-mTOR, anti-phospho-P70S6 and horseradish peroxidase-conjugated secondary anti-
bodies were purchased from Cell Signaling Technology (Danvers, MA). Anti-nitrotyrosine antibody was from 
Millipore (Darmstadt, Germany). Alexa488-conjugated secondary antibodies were obtained from Invitrogen 
(Carlsbad, CA).

Cell culture and KCa3.1 gene silencing.  Immortalized human proximal tubular cells (HK2 cells) 
were obtained from ATCC (Manassas, VA). HK2 cells were grown in keratinocyte serum-free media medium 
(Invitrogen, CA) and used for experiment at passages 5–15.

HK2 cells were transfected with either siRNA targeting KCa3.1 or scrambled control siRNA using 
Lipofectamine 2000 reagent (Invitrogen, CA) according to the manufacturer’s instructions. The targeting siRNA 
sequence for KCa3.1 is 5′ -GCACCUUUCAGACACACUU-3′  (GenePharma, Shanghai). After transfection over-
night, the cells were incubated with TGF-β 1 (2 ng/ml) for 48 hours, cell lysates and total RNA were collected for 
further analysis. Alternatively, cells were pretreated with 50 nmol/L Bafilomycin A1 for 3 hours and then incu-
bated with TGF-β 1 for 48 hours. To evaluate the effects of mTOR inhibition, HK2 cells were exposed to TGF-β 1 
(2 ng/ml) with or without Rapamycin (100 nm) for 48 hours.

The measurement of autophagy using transmission electron microscopy.  HK2 cells grown on 
glass coverslips were transfected with KCa3.1 or scrambled siRNA overnight and then incubated with TGF-β 1 
for 48 hours as described above. The samples were prepared for transmission electron microscopic analysis as 
previously reported48. Briefly, cells were washed with pre-warmed PBS twice, and then fixed in 2% glutaraldehyde 
in PBS for 60 minutes at room temperature. Fixed cells were washed with PBS 3 times then postfixed with 1% in 
osmium tetroxide in PBS for 1hr. After rinsing 3 times with distilled water, the samples were further stained with 
1% tannic acid for 1 hour. Finally, the cells were infiltrated and double-embedded in Epon. Sections of 70 nm 
were generated with an ultramicrotome (Ultracut 7, Leica) and post-stained with 2% aqueous uranyl acetate and 
Reynold’s lead citrate for 10 min each. The specimens were examined with the JEOL 2100TEM at 200 kV.

Figure 7.  The activation of mTOR in STZ-induced diabetic KCa3.1+/+ and KCa3.1−/−mice. 
Immunohistochemical analysis showed increased phosphorylated mTOR in diabetic KCa3.1+ /+  kidneys 
compared to control mice and reversed activation of mTOR in diabetic KCa3.1− /−  kidneys (a). The 
quantification of phosphorylated mTOR expression in mice kidneys (b). Results are presented as mean +  SEM. 
*P <  0.05 and **P <  0.01. N =  8. Original magnification: × 200.
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Immunocytofluorescence staining.  For indirect immunofluorescence, cells cultured on glass coverslips 
were washed with PBS, fixed with 4% formaldehyde at room temperature for 15 min, PBS wash once for 5 min and 
then permeabilized in 0.3% Triton X-100 in PBS for 10 min,and blocked with 2% bovine serum albumin (BSA) in 
PBS for 1 h at room temperature. Cells were incubated with primary antibodies against LC3 and nitrotyrosine in 
2% BSA in PBS overnight at 4 °C. After washing with PBS, cells were incubated with secondary anti-rabbit Alexa 
Fluor-488 or anti-rabbit Alexa Fluor-633 (Invitrogen) for 40 min at room temperature. Cells were then washed 
with PBS and counterstained with 4′ , 6-diamidino-2 phenylindole (DAPI)-mounting medium (Invitrogen). 
The immunofluorescence images were collected by Confocal fluorescence microscopy (Leica Microsystems, 
Mannheim, Germany).

Figure 8.  Effect of knockdown KCa3.1 on the expression of nitrotyrosine in TGF-β1-stimulated HK2 
cells and the expression of nitrotyrosine in STZ-induced diabetic KCa3.1+/+ and KCa3.1−/−mice. 
HK2 cells transfected with scrambled siRNA or KCa3.1 siRNA were untreated or treated with TGF-β 1 
for 48 h. Immunofluorescence staining of nitrotyrosine in TGF-β 1-exposed HK2 cells transfected with 
or without KCa3.1 siRNA (a). Quantification of nitrotyrosine expression in TGF-β 1-exposed HK2 cells 
(b). N =  4. KCa3.1+ /+  and KCa3.1− /−  mice were injected with STZ to induce diabetes or citrate buffer 
alone as non-diabetic control. After 24 weeks diabetes, kidney tissues were collected for immunostaining. 
Immunohistochemical staining of nitrotyrosine in mice kidney tissues (c). Quantification of nitrotyrosine 
expression in mice kidney tissues (d). N =  8. Results are presented as mean +  SEM. *P <  0.05 and **P <  0.01. 
Original magnification: × 600.
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Western blotting.  Equal amount of cell lysate samples were separated by SDS-PAGE, and then transferred 
to Hybond ECL nitrocellulose membrane (Amersham, USA). The membranes were incubated with primary anti-
bodies LC3, PI3k, Akt, mTOR, P70S6 and Tubulin at 4 °C overnight followed with HRP-conjugated secondary 
antibody (Amersham, USA). The blots were then detected with standard ECL technique, and the bands were 
quantified by densitometry using LAS-4000 Imaging System (FUJIFILM, Japan).

Animal studies.  KCa3.1− /−  mice were kindly provided by Dr. James Melvin, National Institute of Dental 
and Craniofacial Research, Bethesda, MD, USA. Eight-week-old male KCa3.1+ /+  mice and KCa3.1− /−  mice 
weighing approximately 20 to 25 g were assigned to receive either 55 mg/kg of streptozotocin (STZ) (Sigma, MO) 
diluted in 0.1 M citrate buffer, pH 4.5, or citrate buffer alone by intraperitoneal injection as described previously19. 
All animals were housed in the Kearns Animal Facility of Kolling Institute of Medical Research with a stable envi-
ronment maintained at 22 ±  1 °C with a 12/12-h light-dark cycle.

Mice were weighed and their blood glucose levels measured using the Accu-chek glucometer (Roche 
Diagnostics) weekly and only STZ-treated animals with blood glucose > 16 mmol/l were considered diabetic. 
After animals were culled, left kidneys were removed and snap frozen for the isolation of RNA or protein, and 
right kidneys were perfused with PBS and fixed in 10% buffered formalin for histological examination.

This study was carried out in strict accordance with the recommendations in the Guide of the National Health 
and Medical Research Council of Australia’s Code for the Care and Use of Animals for Scientific Purposes. 
The protocol was approved by the Animal Research Ethics Committee of Royal North Shore Hospital (Permit 
Number: 1101–001A).

Immunostaining.  Frozen tissues were fixed in ice-cold acetone for 10 mins and then washed twice with ice 
cold PBS. After pre-incubation with 2% BSA in PBS for 1 hour, the tissues were incubated with primary antibod-
ies against LC3 for 1 hour at room temperature. After washing with PBS, cells were incubated with secondary 
anti-rabbit Alexa Fluor-488 (Invitrogen) for 40 min at room temperature. Cells were then washed with PBS and 
counterstained with 4′ , 6-diamidino-2 phenylindole (DAPI)-mounting medium (Invitrogen). The immunofluo-
rescence images were collected by confocal fluorescence microscopy (Leica Microsystems, Mannheim, Germany).

Paraffin-embedded kidney sections were used for immunohistochemical staining. Briefly, after heat retrieval, 
endogenous peroxidase activity was blocked by incubation in 0.3% hydrogen peroxide. After pre-incubation with 
10% protein block (Dako, CA) for 10 minutes at room temperature to block nonspecific binding of antibodies, the 
tissues were incubated overnight at 4 °C with primary antibodies against nitrotyrosine and p-mTOR. After incu-
bation with appropriate secondary antibodies, sections were developed with 3, 3-diaminobenzidine (Dako, CA)  
to produce a brown color and counterstained with haematoxylin. Positive signals in the renal cortex regions were 
quantified using Image J software as previously described19.

Statistical analysis.  Results from at least four independent experiments were expressed as mean ±  SEM. 
Statistical analysis of data from two groups was compared by two-tail t-test. Data from multiple groups was 
performed by one-way ANOVA, followed by Tukey post test. Statistical significance was determined as P <  0.05.
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