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Abstract: We present a computational approach for studying the effect of potential drug combinations on the protein net-
works associated with tumor cells. The majority of therapeutics are designed to target single proteins, yet most diseased 
states are characterized by a combination of many interacting genes and proteins. Using the topology of protein-protein 
interaction networks, our methods can explicitly model the possible synergistic effect of targeting multiple proteins using 
drug combinations in different cancer types.

The methodology can be conceptually split into two distinct stages. Firstly, we integrate protein interaction and gene 
expression data to develop network representations of different tissue types and cancer types. Secondly, we model network 
perturbations to search for target combinations which cause signifi cant damage to a relevant cancer network but only 
minimal damage to an equivalent normal network. We have developed sets of predicted target and drug combinations for 
multiple cancer types, which are validated using known cancer and drug associations, and are currently in experimental 
testing for prostate cancer. Our methods also revealed signifi cant bias in curated interaction data sources towards targets 
with associations compared with high-throughput data sources from model organisms. The approach developed can poten-
tially be applied to many other diseased cell types.
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1. Introduction

1.1. Aims and motivation
Research into the genetic basis of many different diseases has developed our knowledge of the links 
between particular genes, proteins and diseases, such as the wellknown P53 gene and cancer. Most 
diseased states are polygenic, however, and cannot be explained or characterized by a single gene, but 
rather by a combination of interacting genes and their products (Vogelstein et al. 2000). Therapeutic 
drugs traditionally target single highly connected proteins in the networks associated with diseased 
cells, in order to elicit a response. Some degree of effi cacy is possible using such an approach, but a 
knowledge and characterization of the gene and protein interaction networks associated with a diseased 
cell state is important for the development of improved therapeutics. For example, highly connected 
proteins are more likely to have a critical role in the protein interaction networks of normal cells, and 
hence side effects and chemotoxicity will often result with such an approach (Keyomarsi and Pardee, 
2003). In addition to disease therapy, a network level approach is also required to understand many 
other phenotypic processes, such as development (Gilbert, 2000).

We present an approach which characterizes cancer types on a network level, by developing a 
model of the interaction networks present in tumor cells. The primary motivation for using such an 
aproach is to search for potential combinations of drugs which give improved effi cacy for cancer 
treatments compared to existing therapies typically involving a single drug. The potential improved 
effi cacy from using a multi-drug approach to cancer therapy has already been recognized (Mitchell, 
2003), but research has not yet attempted to discover novel drug combinations from a knowledge of 
the underlying associated networks. For example, if a given drug is known to inhibit tumor growth 
to some extent, we can computationally search for another drug to be used in combination with the 
known drug to give improved effi cacy. Part of the premise of such an approach is that network 
topology is a useful predictor for cancer and diseased targets in general. Network topology has been 
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shown to infl uence many biological properties 
including gene essentiality (Jeong et al. 2001; Yu 
et al. 2004), expression (Lukashin et al. 2003; 
Herrgard et al. 2003) and function (Dunn et al. 
2005; Guimerà and Amaral, 2005) amongst 
others, and therefore some infl uence or correlation 
with target suitability seems likely. Yet, to our 
knowledge this correlation has not yet been 
studied in any detail.

We develop models of the networks associated 
with tumor cells and equivalent normal cells in H. 
sapiens by mapping gene expression comparison 
data onto networks of protein-protein interactions. 
The interaction data is collated both from estab-
lished sources of curated H. sapiens interaction 
data and from a set of ortholog interactions in 
model organisms. We search for potential drug 
combinations using a computational simulation of 
the effect of removing target protein combinations 
from the network associated with a given tumor 
cell (cancer network). A number of alternative 
measures or ranking methods are introduced to 
model the criticality of these protein combinations, 
which are used to predict potential drug combina-
tions by relating the relevant proteins to known 
drugs. A network level model is a relatively new 
approach to cancer research but—together with the 
integration of gene expression data—has already 
been noted as a useful avenue for drug discovery 
for cancer therapies (Huang, 1999). Due to current 
limitations in data coverage and accuracy, in 
particular for protein interaction data, such a 
network-level model cannot be expected to provide 
a complete solution, but may provide signifi cant 
predictive power.

Interaction network models can be developed 
on a number of levels, using a global network 
model such as in the current work, possibly incor-
porating different network types, or alternatively 
using more detailed models of sub-networks or 
individual pathways. One of the ultimate goals of 
biological network models is to produce an accu-
rate model of the complete network of interactions 
in a cell or tissue type, often referred to as the 
interactome (Walhout et al. 2002). In this 
approach, signalling networks, metabolic 
networks, and protein networks are all explicitly 
included in a single model, which is currently 
only feasible for relatively simple organisms such 
as E. coli (Juty et al. 2001). Models for more 
complex organisms focus on particular network 
types, such as transcriptional networks (Bolouri 

and Davidson, 2002), or metabolic networks 
(Kell, 2004; Stelling et al. 2002). Topological 
network models have shown that many cellular 
networks exhibit a power-law degree disribution 
(Jeong et al. 2000), and that their structure has a 
modular nature (Ravasz et al. 2002; Rives and 
Galitski, 2003).

1.2. Network perturbation
We use network perturbation to search for novel 
target combinations, and consider the perturbation 
of one network relative to another, which we call 
“preferential perturbation”. A single network 
perturbation approach attempts to maximize the 
perturbation to a cancer network, whereas an 
approach involving preferential perturbation in this 
case attempts to maximize the perturbation to a 
cancer network, while minimizing the resultant 
perturbation to a related normal network.

The susceptibility of networks to attack and 
failure has been studied for many network models 
and real world networks (Holme et al. 2002). The 
robustness of real-world networks is critical in a 
wide-range of contexts, including power-grids 
and general transport networks, communication 
networks and the Internet (Holme et al. 2002) 
(Cohen et al. 2000). Most studies have investi-
gated the robustness of single networks or systems 
of networks, and have not considered the robust-
ness of one network relative to another. The 
preferential perturbation of a pair of networks 
with non-zero similarity is a very different 
problem to single network perturbation, and we 
study the principles and topological dependency 
of preferential network perturbation in a separate 
publication (Quayle et al. 2006). We show that 
the extent of preferential perturbation of a pair of 
networks depends on a number of topological 
parameters, including the network similarity, size 
and average degree amongst others. The work in 
(Quayle et al. 2006) uses random (ER model) 
networks (Erdös and Rényi, 1960) and so called 
“scale-free” (BA model) networks (Barabási and 
Albert, 1999) to develop results and principles 
for general networks.

2. Model and Methods
We describe the methods and approach used in 
detail in Sections 2.1 to 2.3, in three conceptu-
ally distinct and sequential phases. The first 
phase is the collation of interaction data (Section 
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2.1), which generates underlying network 
models. Gene expression data is used to generate 
networks associated with specific cell types 
(Section 2.2) and the final phase involves the 
simulation of network perturbations to study 
these networks (Section 2.3). We also describe 
the disease and drug association data used 
(Section 2.4) and details of statistical techniques 
used for data analysis (Section 2.5).

2.1. Protein-protein interaction data
We combine a number of interaction data sources 
to improve coverage over that which could be 
acheived using only one such data source. We 
collated and populated curated H. sapiens interac-
tion data from BIND (Bader et al. 2003), HPRD 
(Peri et al. 2003) and DIP (Xenarios et al. 2002) 
to give a total of 9,020 interactions between 4,524 
HUGO genes (Wain et al. 2004). Since the interac-
tion data currently available for H. sapiens is 
relatively limited in terms of coverage, we also 
added a set of predicted interactions in H. sapiens 
which was derived from interactions in model 
organisms by Lehner and Fraser (Lehner and 
Fraser, 2004). By mapping proteins referenced in 
interaction data from the model organisms C. 
elegans, D. melanogaster and S. cerevisiae to 
orthologous proteins in H. sapiens using the 
Inparanoid algorithm (O’Brien et al. 2005), a set 
of predicted interactions in H. sapiens was 
obtained. We extracted the core dataset of interac-
tions which have the highest associated confi dence 
score according to the Inparanoid mapping algo-
rithm, to give 6,958 unique interactions. The 
majority of results presented here are based only 
on the higher confi dence curated data sources, but 
the set of predicted interactions gives improved 
coverage.

2.2. Generation of networks 
associated with cell types
The combination of data sources described in 
Section 2.1 generates a network which is a subset 
of the true network of all possible interactions 
due to data limitations, and is also subject to the 
accuracy of interaction data. The particular 
proteins and interactions present in a cell varies 
signifi cantly between cell types, depending on the 
gene and protein expression. A knowledge of the 
gene expression profi le for a given cell type can 

be used to generate a model of the associated 
interaction network. We used expression compar-
isons of SAGE libraries (Blackshaw et al. 2003) 
from a particular type of tumor cell and equivalent 
normal cell to determine those genes which are 
up-regulated or down-regulated, according to a 
signifi cance level of 5% and at least a fi ve-fold 
change in the expression level (after conversion 
to a parts per million measure).

A tag to gene mapping stage is also required, 
for which we used the mappings available from 
SAGE Genie (Boon et al. 2002). Approximately 
80% of the tags were successfully mapped to genes, 
which is a reasonable fraction for tag mapping. A 
more detailed discussion of alternative approaches 
and complications involved in tag to gene mapping 
is described in Pleasance and Jones (Pleasance and 
Jones, 2005). We map genes that are up-regulated 
in the cancer library to the cancer network, and 
down-regulated genes to the normal network, and 
the non-differentially regulated genes are mapped 
to both networks. This second phase gives two 
sub-networks from an underlying network to repre-
sent the networks associated with particular types 
of tumor and normal cells. In this phase of the 
method, approximately 50% of the genes map to 
the underlying interaction network (see Section 
3.2 for more detailed discussion on data 
coverage).

Networks for seven different cancer types are 
generated from expression comparisons of short 
SAGE libraries available from the Cancer Genome 
Anatomy Project (CGAP) (Lash et al. 2000), as 
listed in Table 1.

2.3. Network perturbation
In the current work we use a topological char-
acterization of the networks generated from the 
techniques described in Sections 2.1 and 2.2, as 

Table 1. CGAP SAGE library IDs used in expression 
comparisons for each cancer type.

Cancer Type Cancer Normal
Stomach GSM2385 GSM784
Colon GSM755 GSM728
Pancreas GSM743 GSM716
Prostate GSM740 GSM739
Breast GSM672 GSM14756
Lung GSM14806 GSM14805
Brain GSM14762 GSM763
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the fi rst phase towards the development of a 
more detailed understanding and model of these 
networks. We study the change in network 
topology when a combination of proteins 
(network vertices, which we use to refer to 
proteins later in the paper) is removed, which 
we call a network perturbation.We search for 
optimum target combinations which, when 
removed, maximize the fragmentation of a given 
cancer network, while minimizing the fragmen-
tation of the associated normal network. It is 
hoped that this may lead to novel drug combina-
tions, which can target particular proteins, and 
selectively perturb the cancer network.

We measure network perturbation by the size 
of the giant component, which is the largest compo-
nent in a network. This is a standard approach used 
in network robustness studies (Holme et al. 2002; 
Albert et al. 2000). We defi ne the perturbation score 
for a single network as,

 P
G G

G
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b
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1 1

1

= − ,  (1)

where G1b and G1a are the giant component sizes 
of network 1 before and after perturbation respec-
tively (Quayle et al. 2006). Equation 1 includes 
normalization based on the initial network, such 
that the perturbation score ranges between zero 
and one. We defi ne a preferential perturbation as 
the difference in perturbation scores for two 
networks such that,
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where P12 reflects a preferential perturbation 
between two networks.

An exhaustive search for the optimum vertex 
combination which maximizes the perturbation 
score is not possible due to the size of the associated 
search space, and a number of alternative optimiza-
tion approaches were considered. It was found that 
a technique using successive vertex removal gives 
the highest score on average (Quayle et al. 2006). 
That is, the highest ranking vertex is initially 
removed, parameters are recalculated based on the 
new networks, the new highest ranking vertex is 
removed, and this process is repeated iteratively 

until the required number of vertices have been 
removed to make up a vertex combination.

Alternative vertex ranking methods were 
studied, based on parameters such as vertex 
degree, diffi erence in degree, betweenness, diffi -
erence in betweenness, and the resulting perturba-
tion score (see (Quayle et al. 2006) for further 
explanation of these methods and a detailed study 
of their success). It was found that no single 
method is a universally optimal method, but rather 
the best method depends on the regime of interest 
(number or fraction of vertices to remove) and 
also details of network topology. Therefore we 
present and compare results from all methods 
considered for the perturbation of cancer and 
normal networks.

2.4. Target association data
Given a novel target combination we wish to 
determine whether those targets are druggable 
or disease associated, and in particular whether 
they are cancer associated. We used the Thera-
peutic Target Database (TTD) as a source of 
target-drug associations (Chen et al. 2002), 
which includes information on protein and 
nucleic acid targets, the diseased target, corre-
sponding drugs or ligands and pathway informa-
tion. After mapping to HUGO IDs we obtained 
659 targets, 231 of which have drug associa-
tions, and 641 with disease associations at the 
time of population. Many of the listed disease 
associations are cancer associations, and many 
targets are associated with multiple cancers. An 
additional set of 299 cancer associations was 
obtained from a literature census of mutated 
genes implicated in human cancer (Futreal et 
al. 2004), giving 275 associations after mapping 
to HUGO IDs.

2.5. Correlation tests
We studied the correlation of vertex properties 
between networks which provides a number of 
insights, but is principally useful for quantifying 
the infl uence of the underlying network on the 
resulting cancer and normal networks. The types 
of analysis are based either on initial network 
topology or perturbation results, for which we use 
standard linear regression (Section 2.5.1) or 
Spearman’s rank correlation coeffi cient (Section 
2.5.2) respectively.
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2.5.1. Initial topology
Correlations between vertex topological properties 
have been studied for model networks (Holme 
et al. 2002; Quayle et al. 2006), and a similar 
analysis can be made for the cancer and normal 
networks, and the underlying network. For 
example, the correlation between vertex degree 
and betweenness for a given network is visualized 
by a scatter plot, where the x and y values of each 
point are the degree and betweenness of a vertex.
A least-squares linear regression coeffi cient is used 
to quantify the strength of the correlation. We 
calculate the linear correlation coeffi cients between 
different cancer networks and between the under-
lying network and cancer networks.

2.5.2. Perturbation results
The output from a perturbation simulation is an 
ordered vertex list, that is, a set of vertex ranks. 
The correlation between the rank positions of 
vertices in two different perturbations can be 
calculated using Spearman’s rank correlation 
coefficient which is suitable specifically for 
ranked data. The output from two perturbations 
typically contains different vertex sets and a 
different number of vertices, so the coeffi cient is 
calculated based only on vertices in both output 
lists. Spearman’s rank correlation coeffi cient, rs 
is given by the expression,

 r
d

n ns
i
n

i= −
−
=1 6 1

2

3
Σ ,  (3)

where n is the number of paired ranks, and di is 
the diffi erence between the two ranks in a pair (in 
this case for a given vertex) (Zar, 1999). Note that 
the above expression is strictly only valid for data 
with no tied ranks, which is true for the perturba-
tion results since only one vertex is removed at a 
time.

3. Results and Discussion

3.1. Protein-protein interaction data
The underlying network model constructed from 
the combination of data sources was analyzed by 
calculating a range of network properties. Table 2 
shows relevant statistics for the data sources and 
data source combinations, where we use the network 
terminology vertices and edges to refer to proteins 
and protein-protein interactions respectively.

A number of network parameters are shown in 
Table 2 which we explain in more detail below, 
since these parameters are discussed in later 
sections of this paper. The degree of a vertex is the 
number of edges connected to that vertex, and the 
average degree is the vertex degree averaged across 
all vertices in a network. Similarly, there is a 
shortest path length between every pair of vertices 
in a network, and the path length is averaged over 
all vertex pairs to give the average shortest path.
The betweenness of a vertex (Joy et al. 2005), 
which is discussed later, measures the number of 
shortest paths passing through a given vertex.

The clustering coeffi cient measures the fraction 
of transitive triples or triangles between nearest 
neighbours, and the clustering coeffi cient of vertex 
i, Ci, is given by,

 C
E

k ki
i

i i

=
−

2
1( )

,  (4)

where ki is the degree or number of nearest neigh-
bours of vertex i, and Ei is the number of edges 
connecting between these nearest neighbours 
(Watts and Strogatz, 1998; Wasserman and Faust, 
1994). The clustering coeffi cient of a network is 
calculated by averaging Ci over all vertices of the 
network. Finally the assortativity coefficient 
measures the tendency of vertices to connect to 
other vertices which have a similar degree (see 

Table 2. Data statistics: Topological properties of data sources and data combinations where C1 = BIND + 
HPRD + DIP and C2 = BIND + HPRD + DIP + Predicted.

 BIND HPRD DIP Predicted Combination C1 Combination C2
Number of vertices, N 2501 3349 597 2696 4524 5989
Number of edges, n 3574 5521 730 6958 9020 15776
Average degree, k 2.858 3.297 2.446 5.162 3.988 5.268
Average shortest path, l 5.300 5.945 6.737 6.485 5.043 5.091
Clustering coeffi cient, C 0.073 0.058 0.094 0.139 0.078 0.104
Assortativity coeffi cient, r –0.169 0.041 0.031 0.446 –0.111 –0.052
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(Newman, 2002) for an exact defi nition). In other 
words, if the “hubs” in a network tend to connect 
to other hubs, then the network shows assortative 
mixing. The assortativity coeffi cient is defi ned 
between minus one for a perfectly disassortative 
network and plus one for a perfectly assortative 
network, where a value of zero means there is no 
assortative mixing. It has been shown that social 
networks are generally assortative, whereas 
biological and technological networks are gener-
ally disassortative (Newman, 2002).

We group the data sources into two data source 
combinations, where the fi rst is a combination of 
primary H. sapiens interaction data, and the second 
combination contains all data sources including 
predicted interactions. DIP has the least interac-
tions and the smallest average degree, and corre-
spondingly the largest average shortest path. The 
data source of predicted interactions is the most 
connected, and has a surprisingly high assortativity 
coeffi cient of r = 0.446, since biological networks 
are generally disassortative. This likely refl ects 
sample bias in this dataset of core interactions, 
since each data source is only a subset of the 
complete set of interactions, and is subject to bias 
in terms of known interactions. This bias and the 
fact that data derived from orthologous protein-
protein interactions is expected to be less accurate 
than primary H. sapiens interactions are the 
motivation for using two alternative data source 
combinations.

3.2. Topology and similarity of cancer 
and normal network pairs
We use the defi nition of network similarity, S, in 
terms of network edges given by,

 S
n

n
c

t

= ,  (5)

where nc is the number of edges in common 
between the two networks, and nt is the total 
number of edges in the combined network (see 
(Quayle et al. 2006) for further explanation). At 
the two extremes, if the networks are identical then 
no preferential perturbation is possible, but if the 
networks have no similarity then a complete pertur-
bation of one network relative to the other is 
possible if suffi cient vertices are removed, and the 
problem is equivalent to single network perturba-
tion. Between these limits, some maximum 

possible preferential perturbation score is associ-
ated with two given networks.

A detailed derivation of the similarity of both 
independent and “correlated” network pairs has 
been determined (Quayle et al. 2006). Correlated 
networks are derived from a single underlying 
network, and the cancer and normal network pairs 
are correlated network pairs, since they are derived 
from the underlying interaction network. The 
similarity of such correlated networks is indepen-
dent of network topology if the vertices which 
make up the correlated networks are sampled 
randomly from the underlying network. The simi-
larity of randomly sampled correlated networks 
varies directly with the vertex set similarity, VS, 
which is given by,

 V
N

NS
C

T

= ,  (6)

where NC is the number of vertices common to the 
two networks, and NT is the total number of distint 
vertices in the networks. For random vertex 
sampling, we showed by analytical derivation that 
the expected network similarity, E(S), is equal to 
the square of the vertex set similarity.

 E S VS( ) = 2  (7)

Fourteen cancer and normal network pairs were 
generated from the seven cancer types listed in 
Section 2.2 and the two data source combinations 
described in Section 3.1. After tag mapping, the 
results from an expression comparison contain 
around 7,000 genes, which is typically reduced to 
around 2,000 after singletons—a SAGE tag with 
only one occurrence in the corresponding 
library—are removed. There is signifi cant variation 
in this stage, however, and some cancer types such 
as prostate have far fewer singletons, leaving 
around 4,000 genes after the removal of singletons. 
Approximately 50% of these genes map to the 
underlying network, giving network sizes of the 
order of 1,000 genes. The similarity of the generated 
network pairs was calculated and plotted against the 
vertex set similarity for each network pair, as shown 
in Figure 1. The variation of the expected network 
similarity for a general network pair with random 
vertex sampling is also shown.

Figure 1 shows that the network similarity and 
vertex set similarity values for the cancer and 
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normal networks are generally close to the 
predicted variation for random vertex sampling. 
Network pairs for different cancer types have 
network similarity values within the approximate 
range 0.55 ≤ S ≤ 0.70, with the exception of pros-
tate cancer, where S ∼ 0.90. Therefore the maximum 
preferential perturbation score is likely to be lower 
for the prostate cancer networks, depending also 
on other topological parameters such as network-
size, average degree and clustering coeffi cient, 
which all infl uence network robustness to some 
extent (Quayle et al. 2006). Table 3 show the values 
of such parameters for selected networks, which 
is a sample from a larger table in the Supplemen-
tary Materials section.

3.3. Preferential perturbation of cancer 
and normal network pairs

3.3.1. Vertex ranking methods
We study the preferential perturbation of cancer 
and normal networks using the vertex ranking 
methods described in Section 2.3. We are primarily 
interested in removing combinations of only a few 
vertices (proteins) to give novel target combina-
tions, which corresponds to a small fraction of the 
total number of vertices in a given network. 
Successive vertex removal is applied until a 
network is fully fragmented and all vertices are 
removed, which provides useful additional network 
characterization. We refer to the variation of the 

perturbation score with the number of vertices 
removed as a “perturbation profile”. Figure 2 
shows preferential perturbation profi les averaged 
across the fourteen cancer and normal network 
pairs based on the number of vertices removed. 
Notably a preferential perturbation profi le gener-
ally increases up to a maximum, and if more 
vertices are removed beyond this point the score 
decreases, as the normal network becomes more 
fragmented.

As predicted from results developed in (Quayle 
et al. 2006), Figure 2 shows that no single vertex 
ranking method is universally optimal, but rather 
the best method depends on the regime of interest 
and the defi nition or metric of method success. 
Alternative metrics of success are discussed further 
below, but often the extent of perturbation or 

Table 3. Topological parameters of selected networks, where the network name refl ects the data combination 
(C1 or C2), cancer type, and whether the network is a cancer or normal network.

Network Number of Number of Giant component Assortativity
 vertices, N edges, n size,G coeffi cient, r
C1 stomach cancer 887 586 414 –0.1499
C1 stomach normal 848 501 366 –0.1843
C1 colon cancer 992 709 502 –0.1325
C1 colon normal 1069 843 569 –0.1197
C1 pancreas cancer 898 585 391 0.0584
C1 pancreas normal 859 452 286 0.0106
Network Average Average Clustering Modularity, Q
 degree, k shortest path, l coeffi cient, C
C1 stomach cancer 1.3213 5.8250 0.0309 0.7666
C1 stomach normal 1.1816 5.7118 0.0271 0.7620
C1 colon cancer 1.4294 5.5504 0.0285 0.7332
C1 colon normal 1.5771 5.6176 0.0343 0.7477
C1 pancreas cancer 1.3028 6.8627 0.0335 0.7837
C1 pancreas normal 1.0523 6.7659 0.0299 0.7806

Figure 1. Network similarity and vertex set similarity values for can-
cer and normal network pairs(data combinations C1 and C2), com-
pared directly to the expected network similarity for a general network 
topology with random vertex sampling.
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perturbation score may be the most suitable metric. 
According to this metric, for small Nrm the pertur-
bation scores method is the most effective, and 
betweenness-based methods are generally more 
effective than degree-based methods. 

For ER and BA model networks degree-based 
methods are in fact more effective than betweenness-
based methods in this regime. The cancer and 
normal networks are signifi cantly more clustered 
than equivalent ER and BA model networks of the 
same size and average degree, as shown in 
Table 4, which is partly responsible for the 
observed difference in effectiveness of these 
methods. The observed clustering fi ts results from 
previous studies which have shown that many 
biological networks have an inherent modularity 
and clustering (Ravasz et al. 2002; Girvan and 
Newman, 2002).

The success of vertex ranking methods relates 
closely to whether or not they provide an accurate 
measure of the “centrality” of vertices in a network. 
As discussed, degree and betweenness are 

alternative measures of vertex centrality, and for 
most network topologies betweenness-based 
methods are more effective (Holme et al. 2002; 
Quayle et al. 2006). This is not surprising, since 
betweenness is a global measure (requires knowl-
edge of network structure) whereas degree is only 
a local measure (detailed network structure is not 
needed to measure the degree of a given vertex). 
The perturbation scores method is a relatively poor 
measure of vertex centrality, since this method 
effectively forces at least some perturbation for 
each vertex removal, and hence tends to target 
more peripheral vertices. Therefore, although this 
method on average gives the greatest preferential 
perturbation score for small Nrm, this may not be 
the most effective predictor of useful targets. 

Alternative metrics for analyzing method effec-
tiveness are the score at the maximum in a profi le, 
and the average perturbation gradient, which is 
given by,

 grad P
P

N N
max

rm

( )
/

,12
12=

⎛

⎝
⎜

⎞

⎠
⎟  (8)

where max represents the values of these param-
eters at the maximum in a given profile (see 
(Quayle et al. 2006) for the motivation behind these 
parameters). When searching for novel target 
combinations, we focus on combinations of up to 
5 targets, in other words the regime for small Nrm, 
below the maximum. The current static topological 
model gives a conservative estimate of the 
fragmentation of a real network, since it cannot 

Table 4. Clustering coeffi cients of example cancer and 
normal networks, compared to equivalent ER and BA 
model networks with the same N and k.

Cancer network ER model BA model Observed
C2 stomach cancer 0.0019 0.0019 0.0869
C2 stomach normal 0.0017 0.0018 0.0789
C2 colon cancer 0.0017 0.0020 0.0858
C2 colon normal 0.0016 0.0026 0.0924
C2 pancreas cancer 0.0017 0.0019 0.0901
C2 pancreas normal 0.0020 0.0021 0.1017
C2 prostate cancer 0.0014 0.0072 0.0953
C2 prostate normal 0.0014 0.0077 0.0946
C2 breast cancer 0.0015 0.0047 0.0935
C2 breast normal 0.0016 0.0054 0.0885
C2 lung cancer 0.0016 0.0027 0.0905
C2 lung normal 0.0018 0.0056 0.0921
C2 brain cancer 0.0014 0.0056 0.0940
C2 brain normal 0.0013 0.0040 0.0861

Figure 2. Preferential perturbation averaged over fourteen cancer 
and normal network pairs, for alternative vertex ranking methods 
and for initial vertex removals (small Nrm) (a), and large Nrm up to 
maximum (b).
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take into account dynamical effects such as 
possible cascades and subtle dependencies between 
interactions, which may be observed in the real 
biological network. Therefore, alternative metrics 
based on the maximum in a profi le may be more 
realistic, or at least equally effective predictors of 
the effect of perturbations on a network, rather than 
simply the score at a given Nrm value.

Tables 5 and 6 show values for these metrics  
averaged across the fourteen network pairs for each 
vertex ranking method. Vertex betweenness is 
signifi cantly the most effective method according 
to both metrics, which cannot be seen in the aver-
aged profi les shown in Figure 2 since maxima 
occur at different Nrm values in different networks. 
These results show a similar order of method 
effectiveness as predicted (Quayle et al. 2006), and 
suggest that the betweenness method may provide 
the most useful target predictions.

Target results for prostate cancer networks for 
combinations of up to 5 targets are shown in Table 7, 
for which we are testing the predictions in our own 
prostate cancer research group. Although between-
ness is the most effective method according to the 
two metrics as shown in Tables 5 and 6, the fi rst 
few vertex removals using this method actually 
give a negative perturbation score for this particular 
network pair (i.e. the normal network is more 
fragmented than the cancer network). On the other 
hand, diffierence in betweenness generates a 
comparable score to that generated using the 
perturbation scores method.

The results shown in Figure 2 and Tables 5 to 7 
give strong evidence that degree-based methods 
are less useful than betweenness-based methods. 
Furthermore, betweenness and difference in 
betweenness are more effective measures of vertex 
centrality than degree and difference in degree 
respectively. What is less clear from the above 
analysis is exactly which metric of method success 
is most appropriate, given the current model. 

Therefore we are initially investigating highly 
ranked targets from the betweenness, diffi erence 
in betweenness and perturbation scores in experi-
mental testing.

3.3.2. Correlation tests
Targets with a high betweenness in a given cancer 
network also tend to have a high betweenness in 
the underlying network from which the cancer 
network was derived. This has the result that highly 
ranked targets according to the betweenness 
method for a given cancer type are often highly 
ranked targets in another cancer type, due to the 
correlation of both cancer networks with the under-
lying network. The difference in betweenness 
ranking method selects targets which are less 
strongly correlated with the topology of the under-
lying network, and thus the highly ranked targets 
tend to be more specifi c to a given cancer type. It 
is possible that both approaches may predict useful 
novel targets, since some known cancer targets are 
highly specifi c to a given cancer type (Fukazawa 
et al. 2004), while others are known to provide a 
therapeutic response in many cancer types (Shelton 
et al. 2005).

To analyze the strength of these correlations 
between the underlying network and the cancer 
and normal networks, and between different 
cancer types, we used correlation tests as described 
in detail in Section 2.5.1. Table 8 shows the vertex 
betweenness correlation between the underlying 
networks and cancer networks. Typical correlation 
coeffi cients are within the approximate range 0.8 < 
r < 0.9, indicating a signifi cant correlation in this 
case. Correlations between vertex degree are 
slightly stronger between a cancer network and 
the underlying network from which it was derived, 
but weaker between a cancer network and a 
different underlying network (see Supplementary 
Materials). This is an interesting result which 
shows that betweenness is less sensitive to the 

Table 5. Average maximum preferential perturbation 
score for alternative vertex ranking methods and the 
standard deviation.

Ranking method Score σ

Betweenness 0.5589 0.0952
Diffi erence in betweenness 0.3910 0.1619
Degree 0.3133 0.1079
Diffi erence in degree 0.2412 0.0756
Perturbation scores 0.3691 0.1464

Table 6. Average perturbation gradient for alternative 
vertex ranking methods and the standard deviation.

Ranking method Gradient σ

Betweenness 9.9506 2.5663
Diffi erence in betweenness 3.9463 2.4213
Degree 3.2155 1.4297
Diffi erence in degree 0.7879 0.6310
Perturbation scores 2.7634 2.2960
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addition or removal of links (between different 
underlying networks) than degree, and that vertex 
betweenness captures the overall or core topology 
of a network more effectively than vertex degree. 
This inference is consistent with the fact that 
betweenness provides a better measure of vertex 
centrality than degree. Since the current under-
lying networks are only subnetworks of the true 
or complete interaction network, this result indi-
cates that such a subnetwork can provide a useful 
representation of the “core” topology of the true 
interaction network.

It is expected that the observed correlations with 
initial network topology extend to the vertices 
(targets) selected in perturbations in different 
cancer types, since perturbation ranking methods 
are based on betweenness and degree. We investi-
gated the vertex correlations between perturbation 
results for different cancer types using Spearman’s 
rank correlation coeffi cient, as described in detail 
in Section 2.5.2. Correlation coeffi cients were 

calculated between each cancer network or cancer 
and normal network pair, for each vertex ranking 
method. The Supplementary Materials contains 
detailed results for the betweenness and difference 
in betweenness ranking methods, and Table 9 
shows the average rank correlation coeffi cient for 
each vertex ranking method.

The average correlation coeffi cients for the 
betweenness and degree ranking methods are 
signifi cantly higher than those from other methods, 
since these methods do not take into account the 
relevant normal network topology. Therefore a 
target with a high rank in the perturbation results 
using the betweenness method in a given cancer 
type, is likely to also have a high rank in the results 
for another cancer type, if it is present in the 
network (recall the correlations are only based on 
common targets). There is less correlation in the 
perturbation results using other ranking methods, 
and the diffi erence in betweenness ranking method 
gives the least correlation, refl ecting the sensitivity 
of this method to topological differences. Correla-
tions between perturbation results were also 
compared between the underlying network and the 
cancer networks, giving similar results for different 
ranking methods.

Table 7. Successive targets obtained using alternative ranking methods and the associated perturbation score 
for the preferential perturbation of prostate networks of data combination type C1.

Vertices  betweenness  diff in   degree  difference   perturbation 
  betweenness  in degree scores
removed target score target score target score target score target score
1 PXN –0.0026 SERPINA3 0.0019 PXN –0.0027 SERPINA3 0.0019 APP 0.0117
2 VCL –0.0011 APP 0.0136 VCL –0.0011 SLC9A3R1 0.0038 CDC42 0.0187
3 SMAD2 –0.0006 SLC9A3R1 0.0155 SMAD2 –0.0006 HIST2H2BE 0.0067 MAPK3 0.0216
4 TLN1 –0.0020 DSP 0.0165 TLN1 –0.0020 DSP 0.0077 CDKN1A 0.0246
5 EGFR –0.0026 HIST2H2BE 0.0193 SMAD3 –0.0036 CBX4 0.0086 PBX2 0.0275

Table 8. Linear regression correlation coeffi cients for 
initial vertex betweenness between the underlying 
networks (C1 and C2) and cancer networks. 

 C1 C2
C1 stomach 0.8231 0.8080
C1 colon 0.8397 0.8484
C1 pancreas 0.6851 0.6043
C1 prostate 0.8879 0.8274
C1 breast 0.8648 0.8467
C1 lung 0.7963 0.7515
C1 brain 0.8966 0.8545
C2 stomach 0.7625 0.8539
C2 colon 0.7871 0.8441
C2 pancreas 0.6349 0.7356
C2 prostate 0.8211 0.8871
C2 breast 0.8047 0.8701
C2 lung 0.7626 0.8246
C2 brain 0.8245 0.8854

Table 9. Average Spearman’s rank correlation coeffi -
cient between perturbation results for each vertex 
ranking method, averaged across all cancer and normal 
network pairs.

Ranking method  < rs >
betweenness  0.6019
diffi erence in betweenness  0.1784
degree  0.6261
diffi erence in degree  0.3189
perturbation scores  0.1809 
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3.3.3. Target associations
The outcome of the current work is a set of ranked 
targets for a given cancer type, which we are testing 
for their potential as targets for cancer therapy. An 
approach for assessing the likelihood that these 
targets are useful, potentially novel cancer targets 
is to validate the target ranks against known cancer 
targets. If our methods preferentially select for 
known cancer targets, this indicates that highly 
ranked novel targets have a greater likelihood of 
being useful cancer targets. We applied a global 
statistical analysis on the ranks of targets with 
known cancer associations, disease associations 
and drug associations, using the association data 
described in Section 2.4. The null hypothesis is 
that targets with a specifi ed association type are 
selected randomly from a given network, and the 
alternative hypothesis is that such targets have a 
greater chance of selection by our methods, or in 
other words are more highly ranked than at random. 
The analysis generates a p-value using hypergeo-
metric probability distributions for each cancer and 
normal network pair for a given association type 
and ranking method. These p-values are then 
combined using the Z-transform test (Whitlock, 
2005) to give an overall p-value for each ranking 
method, for a given association type. The combined 
p-value therefore measures the ability of a given 
ranking method to preferentially select for cancer 
targets, for example.

The resulting p-values are given in Table 10, 
which shows that according to the null hypothesis 
the betweenness, degree and perturbation scoring 
methods all strongly select for cancer and disease 
associated targets. This seems to validate the effec-
tiveness of these methods, but the null hypothesis 
is naive, since it assumes independence between 
tests and does not account for possible biases or 
network correlations as calculated in Section 3.3.2. 
As discussed, we expect some biases in the under-
lying interaction data for known cancer targets, 
since these targets are known to be therapeutically 
interesting. These biases will tend to increase the 

degree and betweenness of targets with associa-
tions in the underlying networks and cancer and 
normal networks. We therefore calculate the 
average degree and betweenness of targets with 
associations in these networks, and compare them 
with the average degree and betweenness of all 
targets in the networks. Tables 11 and 12 show ratio 
values for the average betweenness for different 
association types.

The ratio values are consistently greater than 1, 
which shows that targets with associations have 
signifi cantly greater betweenness than an average 
target, both in the cancer networks and the under-
lying networks. The average value of the equiva-
lent ratios for the average degree are typically 
around 1.5 (see Supplementary Materials), which 
is less than the ratios for average betweenness. 
The betweenness distributions of these networks 
have a larger spread or standard deviation than 
that of equivalent degree distributions, which in 
part explains this difference.

Since targets with associations tend to have a 
higher than average betweenness and degree in the 
underlying curated networks, much of the signifi -
cance observed in Table 10 is due to the infl uence 
of the underlying network, rather than the cancer 
specific networks. This result is biologically 
reasonable, and is potentially very useful for the 
discovery of cancer targets with therapeutic appli-
cations in many cancer types. For example, the 
well-characterized EGFR target is highly ranked 

Table 10. Combined p-values for alternative ranking 
methods and target associations. Methods: be-
betweenness, db-difference in betweenness, de-degree, 
dd-diffi erence in degree, ps-perturbation scores.

Method  Cancer  Disease  Drug
be  2.47 × 10–9  < 1 × 10–15  0.0002
db  0.0010  0.0008  0.7168
de  1.92 × 10–6  1.73 × 10–14 0.0080
dd  0.7260  0.5151  0.7800
ps  1.45 × 10–5  1.38 × 10–13  0.0006

Table 11. Ratio of average betweenness for targets with associations over the average betweenness of all targets 
in the underlying data source combinations.

Data source  Cancer  Disease  Drug
combination  associations  associations  associations
C1  3.4734  2.4497  2.2374
C2  3.4356  2.3218  2.1695
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from our methods in many cancer types, and is 
known to be implicated in many cancer types 
including prostate cancer (Shelton et al. 2005), 
where it is the fi fth highest ranked target using the 
betweenness ranking method. Many other key 
cancer targets are highly-ranked using our methods 
in different cancer types, such as SMAD3, MAPK3, 
RAF1 and TP53, amongst others.

In order to quantify the bias in these curated 
datasets to some extent, we ran a similar analysis 
using networks generated only from high-
throughput data. All methods of network genera-
tion and analysis are as described previously except 
the underlying network is now the complete set of 
interactions predicted by Lehner & Fraser (Lehner 
and Fraser, 2004). This high throughput data is 
biased, but the types of bias are different to those 
expected in curated data, and therefore such an 
analysis is useful (Mrowka et al. 2001; Serebriiskii 
et al. 2000). Tables 13 and 14 show equivalent 
results for networks generated from high-throughput 
data to the results in Tables 11 and 12 for curated 
interaction data (see Supplementary Materials for 
degree ratios).

The betweenness ratios are much lower for 
networks generated from high-throughput data 
than from curated data, which indicates that much 
of the signifi cance is likely to be due to biases in 
the data, and gives a clear demonstration of bias 
in curated interaction data sources. Interestingly, 

the betweenness and degree ratios are still signifi -
cant for targets with drug associations, which 
shows how drugs have typically been developed 
for relatively “central” targets with high degree 
and betweenness. We also ran perturbations of 
networks generated from high-throughput data, 
and applied the same analysis as described for 
curated data sources to generate Table 10. Equiva-
lent results from high-throughput data sources are 
shown in Table 15. In this case, none of the asso-
ciation types are signifi cantly selected, with the 
exception of drug associations, which are selected  
by the betweenness and degree methods. These 
results are consistent with the differences between 
network properties of targets with associations for 
curated and high-throughput data as shown in 
Tables 11 to 14.

The differences in results for curated and high-
throughput interaction data sources highlight some 
of the current problems with interaction data, 
where curated sources contain signifi cant biases 
towards well studied targets of interest, and high-
throughput sources contain a high percentage of 
false positives. As more high-quality interaction 

Table 12. Ratio of average betweenness for targets with 
associations over the average betweenness of all targets 
in different cancer networks for data combination C1.

Cancer  Cancer  Disease  Drug
type  associations  associations  associations
stomach  3.7041  3.1512  3.5090
colon  1.5189  1.7063  1.4188
pancreas  2.1791  2.8405  3.0614
prostate  2.6549  2.1653  3.5936
breast  2.3021  1.7587  1.8214
lung  1.9976  2.5478  1.7136
brain  3.5784  3.1194  1.9577

Table 13. Ratio of average betweenness for targets 
with associations over the average betweenness of all 
targets in the high-throughput dataset.

Cancer Disease Drug
associations associations associations
1.7238 1.1538 1.8700

Table 14. Ratio of average betweenness for targets 
with associations over the average betweenness of all 
targets in different cancer networks generated from the 
high-throughput dataset.

Cancer Cancer Disease Drug
type associations associations associations
stomach 1.0841 1.2993 2.5160
colon 1.0573 1.5334 2.2316
pancreas 1.2621 0.8791 2.3329
prostate 0.9520 1.1033 1.8761
breast 1.2542 1.2098 1.9720
lung 1.3149 0.9944 1.9793
brain 1.3337 1.2194 2.4215

Table 15. Combined p-values for alternative ranking 
methods and target associations from perturbations of 
networks generated from high-throughput data. Meth-
ods: be-betweenness, db-difference in betweenness, 
de-degree, dd-diffi erence in degree, ps-perturbation 
scores.

Method Cancer Disease Drug
be 0.8778  0.1521  2:12 × 10–5

db  0.9353  0.7946  0.9955
dd  0.3805  0.5317  0.9453
de  0.6702  0.0694  4.82 × 10–6

ps  0.9867 0.9473  0.9937
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data becomes available, a network-level approach 
will become increasingly important for target and 
drug discovery. Given the current data limitations, 
however, our predictions for novel target combina-
tions have returned many targets known to be 
important in the relevant cancer types, and we are 
pursuing these predictions for their applicability 
in cancer therapy. We have also run perturbations 
where only targets with known drug associations 
are selected so that the results can be tested using 
readily available drug combinations. Many of the 
highest ranked targets with drug associations are 
also known cancer targets.

4. Summary
In summary, we have developed and studied a 
novel method for predicting target and drug combi-
nations based on network topology in multiple 
cancer types. By simulating network fragmentation 
from targeting multiple proteins in a given cancer 
type, such a network-level approach facilitates a 
search for novel target combinations. Our methods 
signifi cantly select for cancer associated targets 
using curated interaction data sources, and return 
many targets of interest in cancer therapy. When 
using predicted H. sapiens interaction data gener-
ated from high-throughput model organism data 
sets, the methods do not signifi cantly select for 
known cancer associations. The difference in 
results between networks generated from curated 
data sources and high-throughput data sources 
reveals signifi cant bias in curated data towards 
targets of interest, with known associations. We 
have predicted sets of target and drug combinations 
in seven different cancer types, which are currently 
in experimental testing for prostate cancer using 
both drug studies and siRNA techniques.
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Table 1. Target lists for stomach cancer and networks of data combination C1.

Vertices  betweenness difference in   degree  difference in   perturbation 
removed  betweenness  degree scores
1  PXN  G22P1  PXN  PXN  GAPD
2  VCL  VCL  VCL  VCL  CTBP1
3  EGFR  COL1A1  EGFR  COL1A1  CTSB
4  SMAD3  EGFR  RNF11  APEX1  COL1A1
5  COL1A1  PXN  SMAD3  COL1A2  MIF
6  PIN1  SMAD3  RAF1  KRT18  RAF1
7  CTNNB1  UBE2I  JUN  G22P1  EGFR
8  UBE2I  SFRS1  COL1A1  HSPH1  C1QBP
9  MAPK3  HSPA1A  CDC42  CTSB  G22P1
10  HSPA1A  APEX1  HDAC2  HSPD1  APEX1

Table 2. Target lists for colon cancer and networks of data combination C1.

Vertices  betweenness difference in   degree  difference in   perturbation 
removed  betweenness  degree scores
1  VCL  SMAD2  PXN  SMAD2  SMAD2
2  PXN  GNB2L1  VCL  GNB2L1  BCAP31
3  TLN1  MYC  TLN1  FUS  VCL
4  UBE2I  FUS  SMAD2  MYC  PXN
5  PCNA  HLA-C  PLK1  HLA-C  CALR
6  PIN1  RPS20  FNBP3  VCL  MAPK1
7  SMAD2  MAPK1  CDC42  SRRM1  FUS
8  GNB2L1  IDE  PCNA  SACM1L  APP
9  SMARCA4  SNRPC  APP  IGF2  PCNA
10  PLK1  RAC1  SP1  NPM1  YWHAZ

Table 3. Target lists for pancreas cancer and networks of data combination C1.

Vertices  betweenness difference in   degree  difference in   perturbation 
removed  betweenness  degree scores
1  JUN  ERBB2  FNBP3  RELA  ERBB2
2  HDAC3  JUN  RELA  SMAD3  LRP1
3  SMAD3  SMAD3  ITGB1  COL1A1  NCL
4  ERBB2  RELA  SMAD3  THBS1  RELA
5  UBE2I  NCL  APP  ERBB2  MMP2
6  CSNK2A1  THBS1  JUN  FOS  SMAD3
7  GNB2L1  APP  HDAC3  EP300  FNBP3
8  ZNF265  UBE2I  COL1A1  COL1A2  GSN
9  APP  YY1  YY1  LRP1  ACTG1
10  YY1  HDAC3  ERBB2  NCL  CTSB

Cancer Informatics 2007:5 00–00
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Table 4. Target lists for prostate cancer and networks of data combination C1.

Vertices  betweenness difference in   degree  difference in   perturbation 
removed  betweenness  degree scores
1  PXN  SERPINA3  PXN  SERPINA3  APP
2  VCL  APP  VCL  SLC9A3R1  CDC42
3  SMAD2  SLC9A3R1  SMAD2  HIST2H2BE  MAPK3
4  TLN1  DSP  TLN1  DSP  CDKN1A
5  EGFR  HIST2H2BE  SMAD3  CBX4  PBX2
6  SMAD3  YWHAZ  RNF11  KRT18  HSPH1
7  CREBBP  IQGAP2  EGFR  COPS3  COL4A1
8  SRC  MAPK3  CREBBP  CCNB1  HIST2H2BE
9  HDAC3  COPS3  RAF1  TOMM20  VDAC1
10  RAF1  DCN  EP300  RPS3KA1  SHC1

Table 5. Target lists for breast cancer and networks of data combination C1.

Vertices  betweenness difference in   degree  difference in   perturbation 
removed  betweenness  degree scores
1  VCL  SMAD2  PXN  SMAD2  SMAD2
2  PXN  COL1A1  VCL  COL1A1  EP300
3  TLN1  ERBB2  TLN1  COL1A2  MPHOSPH6
4  SMAD3  COL1A2  SMAD2  LMO4  NFKB1
5  SMAD2  CSK  SMAD3  ERBB2  PTMA
6  ERBB2  RNF11  FNBP3  A2M  NFKBIB
7  PAK1  CCT3  CREBBP  CSK  PBX2
8  FNBP3  LGALS1  ITGB1  EXOSC4  PXN
9  XPO1  YY1  RNF11  PBX2  UBE2I
10  PTMA  RELB  RAF1  SLC9A3R1  VCL

Table 6. Target lists for lung cancer and networks of data combination C1.

Vertices  betweenness difference in   degree  difference in   perturbation 
removed  betweenness  degree scores
1  VCL  YWHAH  VCL  PCNA  BECN1
2  SMAD3  PCNA  SMAD3  LRP1  NFKB2
3  JUN  LRP1  PCNA  A2M  CTNNB1
4  CSNK2A2  DDX3X  RNF11  HLA-DRA  YWHAH
5  FNBP3  CSNK2A2  FNBP3  CUL1  HLA-C
6  RNF11  AKT1  NFKBIA  HLA-C  LRP1
7  HSF1  CD63  JUN  COL1A2  CD63
8  HDAC3  B2M  APP  YWHAH  AUP1
9  AKT1  HSPA5  MPHOSPH6  TFRC  CSNK2A2
10  A2M  SPARC  HDAC3  CEBPA  AKT1

Table 7. Target lists for brain cancer and networks of data combination C1.

Vertices  betweenness difference in   degree  difference in   perturbation 
removed  betweenness  degree scores
1  VCL  VCL  VCL  ITGB1  HLA-C
2  TP53  ITGB1  TP53  HSPA1A  ITGB1
3  TLN1  RAF1  TLN1  COL1A1  RAF1
4  SMAD3  TP53  SMAD3  RAF1  SMAD3
5  CTNNB1  PIK3R1  RNF11  VCL  HD
6  PIK3R1  HSPA1A  HD  COL1A2  RAN
7  RAF1  SMAD3  CTNNB1  NFKBIA  HSPA1A
8  RNF11  KIT  APP  XPO1  PTK2B
9  HSF1  TLN1  ITGB1  TGFBR2  ITGA5
10  HD  COL1A1  E2F4  RAN  LSM1
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Table 15. Ratio of average degree for targets with associations over the average degree of all targets in different 
cancer networks generated from the curated only data source combination.

Cancer  Cancer  Disease  Drug
type  associations  associations  associations
C1 stomach  2.0340  2.0067  2.4387
C1 colon  1.4333  1.3889  1.3356
C1 pancreas  1.8839  1.9936  1.9390
C1 prostate  1.7860  1.7628  2.4421
C1 breast  1.6318  1.5601  1.2491
C1 lung  1.6719  1.9992  1.5839
C1 brain  2.1083  2.1777  1.7906
C2 stomach  1.4832  1.3556  1.6414
C2 colon  0.9918  1.0728  0.9576
C2 pancreas  1.5766  1.4142  1.3132
C2 prostate  1.3732  1.2276  1.6521
C2 breast  1.3467  1.1052  0.9614
C2 lung  1.2333  1.2384  0.9642
C2 brain  1.4802  1.4996  1.5017

Table 17. Ratio of average degree for targets with associations over the 
average degree of all targets in different cancer networks generated from the 
high throughput dataset.

Cancer  Cancer  Disease  Drug
type  associations  associations  associations
stomach  0.9520  1.0098  1.8037
colon  0.9951  1.3780  2.2372
pancreas  1.0253  0.8898  2.9431
prostate  1.0267  1.3193  2.0682
breast  1.1524  1.1267  1.8870
lung  1.2070  1.2825  2.7589
brain  1.2587  1.1293  2.4459

Table 16. Ratio of average degree for targets with associations over the 
average degree of all targets in the high-throughput dataset.

Cancer  Disease  Drug
associations  associations  associations
1.2255  1.2793  2.1912
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