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Sepsis has high fatality rates. Early diagnosis could increase its curating rates. There were no reliable molecular biomarkers to
distinguish between infected and uninfected patients currently, which limit the treatment of sepsis. To this end, we analyzed
gene expression datasets from the GEO database to identify its mRNA signature. First, two gene expression datasets
(GSE154918 and GSE131761) were downloaded to identify the differentially expressed genes (DEGs) using Limma package.
Totally 384 common DEGs were found in three contrast groups. We found that as the condition worsens, more genes were
under disorder condition. Then, random forest model was performed with expression matrix of all genes as feature and disease
state as label. After which 279 genes were left. We further analyzed the functions of 279 important DEGs, and their potential
biological roles mainly focused on neutrophil threshing, neutrophil activation involved in immune response, neutrophil-
mediated immunity, RAGE receptor binding, long-chain fatty acid binding, specific granule, tertiary granule, and secretory
granule lumen. Finally, the top nine mRNAs (MCEMP1, PSTPIP2, CD177, GCA, NDUFAF1, CLIC1, UFD1, SEPT9, and
UBE2A) associated with sepsis were considered as signatures for distinguishing between sepsis and healthy controls. Based on
5-fold cross-validation and leave-one-out cross-validation, the nine mRNA signature showed very high AUC.

1. Introduction

As a clinical syndrome, sepsis has been accompanied by
human society from ancient times to the present [1]. Sepsis
and septic shock have high fatality rates and consume a large
amount of medical resources. Since the launch of save sepsis
in the early 2000s, the treatment outcomes of patients with
sepsis have improved. But the case fatality rate for sepsis
remains at 25 to 30 percent, and when shock occurs, it can
be as high as 40 to 50 percent [2]. After decades of research,
there is still no specific treatment for sepsis. The improve-
ment in patient outcomes came primarily from nonspecific
interventions, including fluid resuscitation, early application
of antibiotics, and elimination of the source of infection ([3]
#5; [4] #8478; [5] #8582; [6] #49). An important reason for

this disheartening situation is that the definitions of sepsis
and septic shock cover a very heterogeneous population of
patients. The causes are so varied that it is difficult to find
a common treatment for these conditions.

How to classify patients with sepsis is one of the key
areas of research on sepsis and other diseases [7–9], though
biomarkers have been the subject of intensive research for
decades ([10] #71; [11] #15; [12] #8853; [13] #431; [14]
#673; [15] #50). For example, procalcitonin has been
included in treatment guidelines [16], but there is currently
no reliable biomarker to distinguish between infected and
uninfected patients. Only 30-40% of patients with sepsis or
septic shock have positive blood cultures. New technologies
such as high-throughput technologies (genomics, tran-
scriptomics, etc.) have been used to better identify subsets
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of patients with sepsis, to identify patients at high risk of
developing sepsis, and to provide the possibility for rapid
and accurate diagnosis of infection [17, 18, 19].

This study analyzed microarray dataset from public gene
expression database, to obtain differentially expressed genes
(DEGs) between sepsis and healthy people, and then, a ran-
dom forest model was performed on the DEGs to select
more import biomarkers. Next, we performed gene func-
tional enrichment analysis on the DEGs selected to analyze
the function module of the DEGs and to uncover how the
DEGs contribute to sepsis. Our study aims to detect
neglected biomarkers of sepsis to better distinguish between
sepsis patients and healthy controls.

2. Materials and Methods

2.1. Data Resource. To identify potential gene signatures
associated with sepsis, we got two gene expression datasets
(GSE154918 and GSE131761) [20, 21] from the GEO data-
base (https://www.ncbi.nlm.nih.gov/geo/), GSE154918 data-
set as primary research data and GES131761 as
supplementary data.

Totally, 109 samples from GSE154918 dataset were col-
lected from 19 septic shock patients, 20 sepsis patients, 12
uncomplicated infection patients, and 40 healthy volunteers.
Supplementary validation dataset GSE131761 was collected
from 81 septic shock patients and 15 healthy volunteers.
All samples were collected from peripheral blood. The diag-
nosis of septic shock was according to the Sepsis 3.0 cri-
teria [3].

2.2. Identification of DEGs. The workflow is shown in
Figure 1. DEGs were calculated between sepsis samples
(uncomplicated infection, sepsis, and septic shock) and
healthy control using Limma package [22] with p value <
0.05 and ∣logFC ∣ >1 as threshold.

2.3. Random Forest Model. Random forest model was per-
formed using Python machine learning library Scikit-learn
[23], with expression matrix of all genes as feature and dis-
ease state as label as other researches [1]. We set 1000 ran-
dom forest trees and operated 5-fold cross-validation and
leave-one-out cross-validation to evaluate the performance
of the model. Feature importance was collected from the
random forest model after training and assessment, and
then, we sorted the features by feature importance and chose
top n features to reconstruct random forest, accessing the
best combination of gene signatures [24].

2.4. Functional and Pathway Enrichment Analyses. Gene
enrichment analysis of DEGs was based on Gene Ontology
(GO) database from molecular function, cellular compo-
nent, and biological process using R package ClusterProfiler
[25]; pathways with adjusted p value < 0.05 were selected as
significant enriched pathways [26].

3. Results

3.1. Identification of DEGs. Gene expression difference was
calculated between three sepsis groups and healthy control,

respectively. 530 differentially expressed genes (DEGs) were
found in uncomplicated infection patients compared with
healthy control, 727 DEGs were found in sepsis samples,
1414 DEGs were found in sepsis shock samples, and 384
common DEGs were found in the above three contrast
groups (Figure 2). We found that as the condition worsens,
more genes were under disorder condition.

3.2. Features Selected by Random Forest. Next, we performed
random forest [15, 27] to select important genes of the DEGs
of the above three contrast groups, with gene expression
matrix of DEGs as feature and health state as label; we
selected the genes with feature importance > 0 as the most
important genes. We, respectively, found 440, 657, and
1018 DEGs in uncomplicated infection vs. healthy control,
sepsis vs. healthy control, and sepsis shock vs. healthy con-
trol, and 279 genes were common among the three
(Figure 3).

3.3. Enrichment Analysis of Intersection Important DEGs.
We further performed functional analyses for 279 important
DEGs to explore the underlying biological roles. Multiple
GO-BP terms were associated with neutrophil degranula-
tion, neutrophil activation involved in immune response,
and neutrophil-mediated immunity. The DEGs played
essential roles in GO-MF terms containing 2 more enriched
terms: RAGE receptor binding and long-chain fatty acid
binding. The GO-CC revealed that these DEGs were mainly
enriched in specific granule, tertiary granule, and secretory
granule lumen (Figure 4).

3.4. Biomarkers Distinguishing Disease States. To detect bio-
markers to distinguish three disease-state patients and
healthy patients, we further performed random forest on
three disease states and healthy samples together, sorted
the feature importance, and selected the top n (1-50) gene
features to reconstruct random forest model to access the
best biomarker combination. We found that when 6 features
were selected, the accuracy of the model reached 0.895, and
the accuracy of model began to decline since more than 9
features were selected. Therefore, the first 9 characteristics
were selected as potential biomarkers to predict different
sepsis states (Figure 5).

3.5. Supplement Validation. In order to assess the availabil-
ity of the 9 biomarkers, we used a supplementary valida-
tion dataset to build random forest model using these 9
biomarkers as feature. Since the biomarker MCEMP1
was not sequenced because of lacking probe, only 8 bio-
markers were sequenced in supplement dataset, so we only
evaluated the 8 biomarkers. We found that the model per-
formed good to distinguish sepsis from healthy control in
supplement dataset. Then, we further calculated the gene
expression difference between sepsis and healthy control
samples in supplement dataset, and we found that 6 out
of 8 biomarkers were DEGs in supplement dataset
(Table 1).

2 Computational and Mathematical Methods in Medicine

https://www.ncbi.nlm.nih.gov/geo/


4. Discussion

According to the Sepsis 3.0 definition, sepsis is a life-
threatening organ dysfunction resulting from an infection-
induced host response disorder. Neutrophils are the main
immune-cell barrier against pathogens, but they can be a
double-edged sword in sepsis because they play a role in
both proinflammatory response and anti-inflammatory
response. We hypothesize that the immune signature of sep-
sis can be determined early by the phenotype of neutrophils
and distinguish sepsis from noninfectious inflammatory
syndromes. It is important to screen for features that are
considered important in the biology of sepsis but alone are
not distinguishable to clearly distinguish sepsis. Sepsis is
thought to be an immune imbalance in which pathogens
evade the host’s defense mechanisms and continue to stimu-
late and destroy host cells. Many of the protective immune
mechanisms activated early in the disease become harmful
and are associated with excessive inflammation and immu-
nosuppression. The host response of sepsis involves the
coexistence of inflammatory and anti-inflammatory
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Figure 1: The workflow of identifying molecular signature of sepsis. Gene different expression analysis was firstly performed on gene
expression data, and then, random forest model was performed with expression of DEGs as feature. Next, the function of selected
important DEGs from random forest was analyzed.
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Figure 2: DEG numbers of the three contrast groups. The Venn
diagram displays the DEG numbers of three contrast groups
Inf1_P vs. healthy, Sepsis_P vs. healthy, and Shock_P vs. healthy.
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responses, involving different organs, systems, and cell
types [28].

We conducted a differential analysis of data from a
group of three sepsis severity levels and healthy controls
and found that the number of differential genes in sepsis
patients increased according to the severity of the disease,
suggesting that more genes became dysregulated with the
severity of the disease. There were 279 differentially
expressed genes in all three kinds of severe infection, which
may play roles in the onset and progression of sepsis. Func-
tional enrichment analysis showed that biological processes
were most significantly enriched in neutrophil activation,
immune activation, inflammatory response, and bacterial
response.

In GO-MF analysis, DEGs were significantly enriched in
RAGE receptor binding and long-chain fatty acid binding. A
meta-analysis showed that RAGE inhibition had a signifi-
cant advantage in multiple microbial infections. For G+ bac-
terial infection, RAGE suppression reduced bacterial growth
and transmission, inflammatory cell flow, plasma cytokine
levels, and lung damage. This paper concluded that RAGE
inhibition had beneficial effects on the outcomes of animal
models of sepsis with different causes [29]. There are few
studies on long-chain fatty acid binding and sepsis. This arti-
cle is one of them. Extraenteral pathogenic E. coli can cause
diseases such as urinary tract infections and sepsis. Mucus is
the main nutrient source of Escherichia coli in the intestinal
tract, and genes directly or indirectly related to the fatty acid
oxidation pathway contribute to the adaptation and migra-
tion of ExPEC [30].

In our study, the remarkable GO-CC terms are associ-
ated with neutrophil degranulation, such as tertiary granule,
specific granule, and secretory granule lumen. Neutrophils
are one of the most important cells in the host’s natural
defense. The following are the granules in neutrophil cyto-
plasm: azurophilic granule, specific granules, gelatinase
granules, and secretory vesicles. They all play very important
roles. Neutrophil dysregulation is present in sepsis. Many
evidence suggest that neutrophil threshing molecules are of

value in the diagnosis and prognosis of sepsis. Monitoring
neutrophil function may help identify early sepsis [31].

We used the random forest to select 9 characteristic
genes as potential biomarkers for predicting sepsis:
MCEMP1, PSTPIP2, CD177, GCA, NDUFAF1, CLIC1,
UFD1, SEPT9, and UBE2A. Some of these genes have been
confirmed in experiments or have also been widely con-
cerned in bioinformatics studies.

MCEMP1 is involved in the regulation of mast cell differ-
entiation or innate immune response. In our study, MCEMP1
gene expression was increased in sepsis. Chen et al. [32]. estab-
lished a cecal ligation and puncture-induced sepsis mouse
model to determine the expression of mast cell expression
membrane protein 1 (MCEMP1). They observed that
MCEMP1 was highly expressed in septic mice. Loss of
MCEMP1 can promote T lymphocyte and NK cell activity,
increase immunoglobulin expression, inhibit the release of
inflammatory factors, and reduce T lymphocyte apoptosis.
They also found that downregulation of lncRNA NEAT1
could inhibit MCEMP1, thereby promoting the immunosup-
pression effect of Mir-125 on sepsis mice. This may be a
potential therapeutic target for sepsis. Xie et al. found that
MALAT1 upregulates MCEMP1 by binding to Mir-23a,
thereby promoting inflammatory response in sepsis mice [33].

Proline-serine-threonine-phosphatase-interacting pro-
tein 2 (PSTPIP2) belongs to the F-BAR family of proteins
and is mainly expressed in macrophages. In recent years,
PSTPIP2 has been found to play an important role in con-
genital immune diseases and acquired immune diseases
(AIDS) [34]. Chen et al. [35] studied biomarkers of Escher-
ichia coli-induced sepsis. They analyzed 4 microarray data-
sets from GEO database and identified 54 DEGs. Eight
different genes were found between sepsis patients and con-
trols. Furthermore, differential expression of the candidate
gene was verified by human blood model in vitro. qPCR
results suggested that PSTPIP2 may be closely related to
Escherichia coli-induced sepsis.

Neutrophils play an important role in the pathophysiol-
ogy of sepsis and are the primary defense against infection.
A transcriptome study was performed on purified neutro-
phils from patients with septic shock to identify genes that
were differentially expressed during the first week of illness
compared with healthy controls. The results were confirmed
at the protein level. They found that 364 differentially
expressed genes were upregulated and 328 downregulated
in patients with sepsis. CD177mRNA showed the most sig-
nificant difference between patients and healthy controls.
This is consistent with our findings, which also found that
CD177 was significantly upregulated in sepsis patients [36].

Yang and Li [37] applied bioinformatics to study the
molecular mechanism of sepsis. Transcriptome data
(GSE12624) were downloaded from Gene Expression Omni-
bus database for protein-protein interaction network analysis.
Twenty-four differentially expressed clusters were identified
by ANCOVA global test, including 12 clusters in sepsis sam-
ples and 12 clusters in nonsepsis samples. 207 biomarker
genes were extracted from the first 6 clusters by SVMmethod,
and 10 genes including GCA were considered as potential
biomarkers.
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Figure 3: Gene feature numbers of the three contrast groups after
performing random forest. The Venn diagram displays the gene
feature numbers of the three contrast groups Inf1_P vs. healthy,
Sepsis_P vs. healthy, and Shock_P vs. healthy.
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Tang et al. [38] explored the relationship between septic
shock and AKI by analyzing codifferentially expressed genes
(co-DEGs) in the hope of identifying possible genetic
markers for septic shock-associated AKI. They downloaded
two gene expression datasets (GSE30718 and GSE57065).
DEGs related to septic shock and AKI were searched to clar-
ify the molecular mechanism of DEGs through function
analysis (GO), pathway enrichment analysis (KEGG), and
protein interaction (PPI) network analysis. They also
assessed co-DEGs and corresponding predictive miRNAs
associated with septic shock and AKI. 16 genes, including
NDUFAF1, were found to be involved in septic shock-
associated AKI. Our study also found that NDUFAF1
expression was upregulated in patients with sepsis.

UBE2A, also called HHR6A or UBC2, can be expressed
in a variety of tissues. Current studies mainly focus on cog-
nitive impairment and skeletal muscle metabolism, but we
have not found reports that UBE2A is directly related to sep-
sis. UBE2A may be associated with increased skeletal muscle
protein catabolic activity in a number of diseases and malnu-
trition states, such as cancer, sepsis, and diabetes. Sepsis is
often accompanied by septic encephalopathy, which is
mainly manifested by changes in cognitive function and
state of consciousness. It is necessary to further study
whether UBE2A expression is abnormal in patients with
septic encephalopathy [39, 40].
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In our study, there were 9 major differential genes
involved in the development of sepsis. Five of these genes
have been reported, indicating that the biomarkers selected
by our random forest model have high diagnostic value.
CLIC1, UFD1, SEPT9, and UBE2A are new biomarkers
found by us through the random forest model, and there is
no research report related to sepsis so far. These four genes
may serve as relevant targets for the diagnosis and treatment
of sepsis. Future in vitro and in vivo studies are needed to
analyze the functions and pathways of these genes in the
pathophysiology of sepsis. Further studies in more sepsis
patients are needed to confirm the diagnostic value of the
selected genes.

5. Conclusions

In this study, bioinformatics methods were used to analyze
two septic shock-related datasets (GSE154918 and
GES131761) and identify differentially expressed genes
(DEGs) from GEO. We found that the number of differen-
tially expressed genes increased with the increase of sepsis
severity. It indicates that there are more genetic disorders
from sepsis to septic shock. GO gene enrichment analysis
showed that differential gene expression was significantly
enriched in neutrophil activation and degranulation path-
ways. RAGE pathway has been found to be closely related
to the occurrence of sepsis. Nine genes, including MCEMP1,
PSTPIP2, CD177, GCA, NDUFAF1, CLIC1, UFD1, SEPT9,
and UBE2A, were identified to be associated with sepsis.
Further studies of the role of these pathways and genes in
sepsis patients or experiments are needed.
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