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Abstract
DNA replication is an essential process occurring prior to cell division. Cell
division coupled to proliferation ensures the growth and renewal of a large
variety of specialized cell types generated during embryonic development.
Changes in the DNA replication program occur during development. Embryonic
undifferentiated cells show a high replication rate and fast proliferation,
whereas more differentiated cells are characterized by reduced DNA synthesis
and a low proliferation rate. Hence, the DNA replication program must adapt to
the specific features of cells committed to different fates. Recent findings on
DNA synthesis regulation in different cell types open new perspectives for
developing efficient and more adapted therapies to treat various diseases such
as genetic diseases and cancer. This review will put the emphasis on recent
progress made in this field.
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Introduction
DNA synthesis occurs during the S phase of the cell cycle 
and is ensured by the replisome, a molecular machine made 
of a large number of proteins acting in a coordinated manner to  
synthesize DNA at many genomic locations, the replication  
origins1. Replication origin activation in space and time (or rep-
lication program) is set by a sequence of events, starting already 
at the end of mitosis, lasting through G

1
 phase, and ending  

in S phase when DNA replication is activated. These coordi-
nated events ensure that the full genome will be replicated before  
mitosis since a faithful DNA synthesis is a prerequisite for genome 
integrity maintenance2. DNA replication initiates from thousands 
of replication origins scattered along the chromosomes. Origins 
acquire the competence to replicate in a step called “licensing” 
that involves formation of a pre-replication complex (pre-RC),  
including loading of the replicative helicase MCM2-7 (recently 
reviewed 3). Then once the transition from pre-RC to a pre- 
initiation complex (pre-IC) is induced by S-phase kinases, DNA 
replication is activated and DNA is unwound to provide the  
template for the replicative DNA polymerases2,4.

The last 30 years of deep investigations in the DNA replica-
tion field have allowed the general mechanisms involved in 
eukaryotic DNA synthesis to be defined. Thanks to recent meth-
odological improvements, such as genome-wide analysis5,6, 
in vitro reconstitution assays7–9, proteomics10–12, and structural  
biology13,14, our vision of the molecular pathways that govern  
DNA synthesis is becoming sharper.

Although the factors that drive DNA replication initiation are 
well conserved throughout the eukaryotic kingdom, cell type–
specific differences in the regulation of this process within 
eukaryotes have been recently unraveled. From these studies, 
it appears that the regulation of DNA replication is influenced 
by the fate of a given cell. These findings shed new light on  
how the DNA replication program and the proliferation rate are 
being modulated during cell fate commitment, when cell type 
specialization is determined. New discoveries in this topic are 
undoubtedly essential to expand our understanding about the 
genesis of diseases and their progression. In this review, we 
will briefly describe recent achievements aiming to understand  
how the replication factors involved in the licensing, activa-
tion, and elongation steps of DNA synthesis adapt dynamically  
with cell fate determination to maintain genome integrity and 
homeostasis.

Coordination between replication origin licensing 
and G1 length is critical for cell destiny
In vitro reconstitution assays in yeast have provided tremendous 
detailed information on how origins are licensed by dissect-
ing the sequential biochemical steps involved3,7–9,14,15. Detailed 
reviews covering the main features that characterize metazoan 
origins have been recently published3,5,16. Briefly, in eukaryotes,  
replication origins are licensed through a chronological order 
that requires the binding of Origin Recognition Complex  
(ORC), Cdc6, and Cdt1 proteins onto chromatin17,18. Two  
hexamers of the MCM2-7 helicase complex then are loaded in  
an inactive state prior to S phase (Figure 1). In yeast and mouse 
cells, Cdt1 and MCM2-7 form a complex before being recruited 

onto replication origins by ORC and Cdc619–21. The MCM2-7  
double hexamer must be activated by S-phase kinases to be 
able to unwind DNA and initiate DNA replication. However, 
MCM2-7 complexes are recruited in excess so that not all 
MCM2-7 complexes are activated during a cell cycle (Figure 1). 
The choice of the origins to be activated (around 30,000 in  
mammalian cells) is variable from cell to cell and ensures  
flexibility in origin usage during the DNA replication pro-
gram to adapt with cell fate commitment, cell environment, and  
replicative stress22,23. Origin mapping strategies coupled with 
high-throughput sequencing revealed that the chromatin context  
influences origin selection through genetic and epigenetic features  
located in close proximity to the origins.

It is now clear that most replication origins being constitutively 
activated across multiple metazoan cell types (hereafter named 
“shared origins”) are associated with unmethylated CpG islands, 
G-rich elements, transcriptional start sites, and histone modi-
fications related to open chromatin marks (H3K4me3, H3K9Ac, 
and H3K27Ac)24–29. Notably, this population of shared origins 
tends to initiate early during S phase, whereas cell type–specific  
origins initiate during late S-phase and are linked with  
compacted chromatin marks28. These observations underline the 
relationship between chromatin modifications with the cellular  
context in origin selection.

Two independent studies describing reconstitution of DNA  
replication initiation events in vitro from chromatinized tem-
plates in yeast provided biochemical evidence that the regulatory  
functions of chromatin structure influence origin selection. These 
studies confirmed that nucleosome-free regions contribute to 
defining ORC binding and thus origin function30,31, as previously 
suggested from genome-wide studies mapping ORC binding 
sites and nucleosome occupancy in various organisms32–36.  
Moreover, in mouse embryonic stem (ES) cells, depletion of 
the histone H1 perturbs the landscape of replication origin  
activation37. Because chromatin environment changes during 
cell fate commitment and in different cell types, it is generally 
assumed that the DNA replication program is coordinated with 
transcription to avoid transcription–replication conflicts and thus  
preserve genomic integrity. This seems particularly crucial 
during the onset of developmental programs and cell lineage 
specification. In Caenorhabditis elegans, origins from rapidly  
replicating pluripotent embryos coincide with open chromatin 
regions of highly transcribed genes, whereas establishment 
of the new transcriptional program, occurring at later embry-
onic stages when cell differentiation begins, correlates with the  
reorganization of replication initiation sites29,38.

Permissive chromatin features for rapid activation of replication 
origins could influence the cell cycle length. ES cells have a 
shorter G

1
 compared with their differentiated counterparts, 

which impacts on the licensing step. ES cells recruit much more 
MCM2-7 to the chromatin than tissue-specific stem cells or pro-
genitor cells39. This excess of origins that remain dormant during  
S phase appears to be important to maintain pluripotency40,41 and 
could also protect the genome against DNA replication stress  
occurring in ES cells39,42.
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Besides changes in the kinetics by which MCM2-7 is loaded 
onto chromatin, licensing control adapts to G

1
 length, suggest-

ing that pre-RC binding is developmentally regulated. Indeed, 
quantitative single-cell analysis performed in human cells by 
Matson and colleagues demonstrated that origins are licensed 
faster in pluripotent cells compared with their isogenic differ-
entiated counterparts and that loading of the MCM2-7 helicase  
slows down as G

1
 duration is extended43. The authors revealed 

that high expression of the licensing factor Cdt1 was important 
for fast MCM2-7 loading rates, thus enabling ES cells to  
rapidly license origins prior to the G

1
-to-S phase transition. 

Similar to the need for additional dormant origins, fast licensing 
kinetics seems essential to ensure pluripotency in ES cells and 
induced pluripotent stem cells. This observation was corrobo-
rated by Carroll and colleagues in intestinal stem cells from  
adult tissues44. The authors demonstrated that licensing is inter-
connected with the proliferative commitment of stem cells. 
They found that Lgr5+ intestinal stem cells, which contribute  
primarily to the renewal of the intestinal epithelium, reside mostly 
in a G

1
, unlicensed state, although they express MCM2 and 

other proliferative markers to a level equivalent to the licensed 
population. Interestingly, this unlicensed state correlates with an  
elongated cell cycle that could be considered as a backup mecha-
nism to sustain proliferative fate decisions and tissue maintenance.  
Nonetheless, the link between chromatin structures and adaptation 
to G

1
 length in such a context remains to be determined.

Uncoupling of G
1
 length with licensing kinetics has been 

observed during oncogenic transformation. Overexpression 
of oncogenes, such as cyclin E and c-MYC, shortens G

1
 and 

forces cells to engage S phase earlier with incomplete licensing. 
Consequently, the replication program is perturbed, leading to 
accumulation of replication stress45,46. Origin usage following 
oncogene activation was recently investigated genome-wide. 
The authors found that in these conditions new initiation zones, 
which were normally suppressed by transcription in G

1
, appear in  

intragenic regions47. These results also confirm an observation in  
drosophila showing that active transcription modulates MCM2-7  
distribution48. Nonetheless, how RNA polymerases inactivate 
and redistribute MCM2-7 remains to be determined. It has been  
reported that DNA translocases and RNA polymerases in  
yeast are able to push MCM2-7 along DNA, but similar proc-
esses have not yet been described in metazoans8,49. An emerging  
picture from these studies is that cell cycle length, local  
chromatin structure, and active transcription can modulate the 
extent of origin licensing.

Activation of DNA replication in different cellular 
contexts: control in space and time matters
During S phase, origins are activated by the combined activi-
ties of cyclin-dependent kinase (CDK) and Dbf4-dependent 
kinase (DDK) kinases (Figure 1) targeting several substrates 
allowing the recruitment of CDC45 and GINS complex to 

Figure 1. Replication of eukaryotic chromosomes. Replication origins are scattered along the genome to ensure that each chromosome is 
entirely replicated in S phase. Pre-replication complex (Pre-RC) assembly and origin activation are tightly regulated in a sequential manner to 
ensure that replication occurs only once per cell cycle. Hence, throughout the G1 phase, origins are licensed by the sequential loading of the 
pre-RC components: Origin Recognition Complex (ORC), CDC6, CDT1, and (at the final stage) MCM2-7. Once a double MCM2-7 hexamer 
is stably recruited onto chromatin, origins are licensed. Many replication origins are licensed but few are activated, allowing a backup of 
origins to be used when DNA replication is perturbed. Origin firing occurs under the combined activities of S-phase Cyclin-Dependent Kinase 
(CDK) and Dbf4-Dependent Kinase (DDK), allowing the recruitment of additional factors involved in DNA replication initiation and elongation.  
MCM2-7, together with CDC45 and GINS, composes the DNA helicase that unwinds DNA in a bidirectional manner. The entire replication 
machinery made of accessory factors required for replication fork stability and the synthesis of DNA is called the replisome.
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MCM2-7, thereby forming the CMG complex, the functional  
replicative helicase50. Chromatin environment contributes to 
licensing as described previously through MCM2-7 loading but 
also to origin selection through MCM2-7 activation51,52. The 
dynamics of origin activation during S phase follow a spatio-
temporal order known as replication timing (Figure 2). Repli-
cation timing in eukaryotes controls activation of replication 
of large chromosomal domains and is mediated by genetic 
determinants, local histone modifications, and global chroma-
tin organization53. Thus, DNA sequence features that mediate  
licensing in vertebrates can also affect the time when origins 
will be activated. Origin G-rich repeated elements (OGREs) 
are prone to form G-quadruplexes (G4s). Their presence in 
the genome is associated with origin activity25,54. Nucleosome  
organization at the proximity of origins was reported to modu-
late both origin licensing (as described above) and MCM2-7  
helicase-dependent activation steps of initiation55 in yeast and 
more recently in mammals37. Different histone modifications and  
certain histone modifiers have been assigned in origin selection  
and the dynamics of their activation across S phase29,38,52,56–60.

Several histone-modifying enzymes such as the methyltransferase 
PR-Set7 and the acetyltransferase HBO1 in complex with 
BRPF3 have been reported to have a role in activation of  
particular replication origins52,61. More recently, a great deal of 
investigation has focused on the contribution of chromatin regu-
lators in controlling the timing of activation through chromatin 
organization. The telomere-associated protein Rif1 interferes  
with DDK-dependent phosphorylation of MCM2-7 and modu-
lates nuclear architecture by anchoring heterochromatin62,63. Rif1 
might organize replication-timing domains through its associa-
tion with G4s to repress pre-RC activation until late S-phase63–65. 
The ORC-associated protein ORCA/LRWD1 establishes a repres-
sive chromatin environment at a subset of origins, thus priming 
them for late replication66. The replication-initiation determinant 
protein RepID initiates replication in a sequence-specific manner 
by interacting with a subgroup of origins67.

Modulation of origin activation in a cell type–specific manner 
depends upon global changes in chromosomal architecture 
and mainly occurs within large chromosome domains known 

Figure 2. Replication program and cell features. Changes in the DNA replication program are dependent on cell features. In those rapidly 
dividing embryos, which are transcriptionally inactive, many replication origins fire to ensure fast S-phase. Selection of replication origins at 
this stage is believed to be random. Despite improvements in replication origin mapping, this idea has not yet been challenged. The timing 
of replication during early development is not clearly defined, as S-phase length is very short. During the pluripotency stage, appearance of 
gap phases and the onset of transcription confer a certain nuclear organization that sets the genome for a specific program of replication. 
Constitutive origins that replicate early are associated with strong origin density and efficiency, a high GC content, strong gene density, 
and nucleosome-free regions. On the other side, late constitutive origins are poor in origins and genes, GC content is low, and chromatin 
accessibility is restricted. Rif1 is a major factor shown to modulate origin activity for late replicating domains. The replication program 
changes dynamically during differentiation or cell lineage development, in coordination with changes in transcriptional activity and chromatin 
organization. Whereas constitutive origins are activated at the same location and with the same timing, some origins will be regulated following 
acquisitions of new cellular features. Remarkably, tumor development leads to formation of a heterogeneous population of cells, including 
cells with stem-like properties, progenitors, and differentiated tumor cells. These cells have the ability to perpetuate their lineage, to give rise 
to differentiated cells, and to undergo rapid growth. These molecular features, recapitulated during early embryonic development, illustrate 
similarities between cancer stem cells and embryogenesis. Understanding the DNA replication program regulation in a cell type–specific 
manner will allow investigation of the processes behind tumorigenesis from a different perspective.
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as Topologically Associating Domains (TADs)68–71. These  
constitute structurally distinct chromatin domains covering  
several megabases where DNA interactions are favored. TADs 
show a strong correlation with replication timing domains in 
which several replication units are concomitantly activated. 
Nuclear reorganization that accompanies differentiation and the  
establishment of developmental programs result in changes in  
replication timing of the human genome70,72,73; notably, alterations 
in replication timing have been detected in several diseases74,75.

Therefore, flexibility in origin activation seems critical to accom-
modate the dynamic changes in the transcriptional program 
and genome repositioning (Figure 2). Indeed, cell type–specific 
replication origins correlate with regions corresponding to differ-
entiation-specific and tissue-specific gene expression programs76,77. 
Origins that are activated in a cell type–dependent manner 
appear to replicate late in S phase28. Histones and chromatin  
modifications described above impose a crosstalk between repli-
cation and transcription and are interconnected during differen-
tiation and development29,38 although this relationship remains  
enigmatic.

Origin activation dynamics that determine replication tim-
ing therefore might play a role in establishing local and glo-
bal chromatin structure to facilitate the cellular response to the  
differentiation process. Remarkably, establishment of TADs  
during early development in mammals requires DNA replication  
but not transcription78. Moreover, perturbations in DNA rep-
lication during development can cause epigenetic changes  
(alleviation of repressive marks) potentially inherited by the next 
generations79.

Chromatin organization immediately following fertilization in  
vertebrates is particularly critical for DNA replication initiation  
and this occurs in a transcription-independent manner following 
fertilization80.

The capacity to selectively modulate origin usage in a cell type–
specific manner suggests that the proteins involved in origin 
activation might play specific functions. Indeed, replication ini-
tiation proteins, and their availability during S phase, can be 
involved in dictating specificity in origin activation81–85. The 
Sld3 vertebrate homolog Treslin/TICRR, a CDK target that 
acts as a binding site for TopBP1 and Mdm2 binding protein  
MTBP (both proteins being required for GINS-CDC45 
recruitment), was proposed to link chromatin acetylation to 
DNA replication initiation efficiency and timing in different  
cancer cell lines58,86. This observation shows that Rif1 is not 
the only known site-specific regulator of DNA replication ini-
tiation and timing. Likewise, a function in origin efficiency has  
been assigned to the Treslin partner MTBP, probably through 
its ability to localize Treslin near G4 structures87. Finally, Rif1 
accessibility to chromatin was recently implicated in determining  
the onset of late replication during embryonic development88.

Overall, these studies suggest a functional interaction between 
components of the replication machinery with chromatin modi-
fiers leading to reorganization of the genome architecture  

during development. In turn, reorganization of the chromatin  
architecture defines cell type–specific transcriptional programs 
that feedback on the availability of replication proteins but 
equally on the replication timing by shaping chromatin archi-
tecture in specific domains such as TADs. Hence, genetic  
and epigenetic features set during developmental transitions 
may function as selective ways to repress or activate licensing or  
firing (or both) of a subset of origins, potentially within  
replication timing domains. Precise origin mapping at the single- 
molecule level in a single cell (using nanopore sequencing, for 
instance) completed by in vitro reconstitution assays using human  
proteins will undoubtedly bring to light new exciting concepts  
in this field.

Adaptation of the replisome to fast proliferation
A large variety of cell types critical for tissue function are formed 
during early embryonic development, when cell commitment 
first takes place. The proliferative state decision is variable for  
each cell type and may influence cell cycle duration. Con-
sequently, steps required for proliferation, such as genome  
duplication, must be tightly regulated with cell cycle progression 
to maintain homeostasis. For instance, embryonic cell division 
in metazoans exhibits dramatic lengthening of the cell cycle at 
the onset of gastrulation, a stage required for cell type speciali-
zation and embryo patterning89,90. Lengthening of the total cell 
cycle time is achieved mostly by extension of the G

1
 phase and  

moderately the S phase91.

A variation in replisome composition following DNA replica-
tion perturbations or between different cell types was unraveled 
thanks to recent advances in quantitative proteomics at the  
replication forks11,92,93. Analysis of the replication machinery at the 
forks by isolation of proteins on nascent DNA (iPOND) allows 
comparison of protein abundance at replication forks in different 
contexts. It was shown that replisomes of pluripotent stem 
cells contain a particular protein network that accommodates 
a high proliferative capacity with short cell cycle phases and  
reduced endogenous DNA replication stress94. Factors involved 
in DNA repair, such as mismatch repair, but equally pluripotency 
and epigenetic inheritance factors, such as the NuRD-HDAC 
complex, were found to be enriched at replication forks.  
Interestingly, independent studies confirmed the requirement of 
a NuRD complex for DNA replication during early embryonic 
development95. ES cells seem to require additional factors at the  
replication forks to cope with DNA replication perturbations. 
Thus, Filia-Floped was identified by iPOND as a new protein 
complex involved in resolution of stalled forks during a normal 
S-phase in mouse ES cells compared with their differenti-
ated counterparts96. It is likely that strategies set in stem cells 
to ensure fast DNA replication may also be exploited in other  
biological contexts requiring fast proliferation, including very  
early embryogenesis and tumorigenesis. For example, the 
Rad18 E3 ubiquitin ligase, a master regulator of translesion 
DNA synthesis, is an abundant component of the DNA replica-
tion machinery during Xenopus early development and confers 
to the replisome the ability to hijack DNA lesions and suppress 
the DNA damage response, ensuring fast cell cycle progression.  
Remarkably, Rad18 was found to be highly expressed in  
glioblastoma cancer stem cells97.

Page 6 of 10

F1000Research 2018, 7(F1000 Faculty Rev):1351 Last updated: 29 AUG 2018



Overall, these recent observations converge toward the idea 
that replisome composition can be selected “a la carte” regard-
ing the biological features set by specific cell types. Consist-
ent with this idea, replication of specific genome locations like 
telomeres, common fragile sites, or centromeres has been 
shown to involve particular DNA replication partners at the  
vicinity of the DNA replication fork to ensure stability of those 
genomic regions98–100.

Conclusions
A defective DNA replication program is the source of several 
pathologies during development (Meier-Gorlin syndrome) and 
during the adult life (carcinogenesis)45,101. Metazoan origins 
lack consensus sequences and are associated with different 
structural features that confer cell type–specific replication.  
Additional mechanisms operate to fine-tune pre-RC assembly, 
origin activity, and replisome composition. This allows cells to 
coordinate a fast replication program with their fate, contribut-
ing to genome integrity maintenance despite DNA replication 
perturbations often observed during tumorigenesis and devel-
opment. Identification of various factors involved in origin  
selection and their activity in a cell type–specific manner is a great 
source of interest. Such factors may often be deregulated during  
cancer development; thus, their targeting might constitute  
effective anti-cancer therapies.

Nevertheless, these discoveries are only the tip of the iceberg 
as limited information is currently available regarding their 
regulation. Biochemistry, electron cryomicroscopy analysis, 
in vitro reconstitution assays using vertebrate proteins, and 
genomic approaches on single cells should largely contribute to  
breakthrough findings in the field.
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