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ABSTRACT

A major barrier to the use of antimicrobial peptides as
antibiotics is the toxicity or ability to lyse eukaryotic
cells. In this study, a 26-residue amphipathic α-helical
antimicrobial peptide A12L/A20L (Ac-KWKSFLKTFKSLK
KTVLHTLLKAISS-amide) was used as the framework to
design a series of D- and L-diastereomeric peptides and
study the relationships of helicity and biological activi-
ties of α-helical antimicrobial peptides. Peptide helicity
was measured by circular dichroism spectroscopy and
demonstrated to correlate with the hydrophobicity of
peptides and the numbers of D-amino acid substitu-
tions. Therapeutic index was used to evaluate the
selectivity of peptides against prokaryotic cells. By
introducing D-amino acids to replace the original
L-amino acids on the non-polar face or the polar face of
the helix, the hemolytic activity of peptide analogs have
been significantly reduced. Compared to the parent
peptide, the therapeutic indices were improved of
44-fold and 22-fold against Gram-negative and Gram-
positive bacteria, respectively. In addition, D- and
L-diastereomeric peptides exhibited lower interaction
with zwitterionic eukaryotic membrane and showed the
significant membrane damaging effect to bacterial cells.
Helicity was proved to play a crucial role on peptide
specificity and biological activities. By simply replacing
the hydrophobic or the hydrophilic amino acid residues
on the non-polar or the polar face of these amphipathic
derivatives of the parent peptide with D-amino acids, we
demonstrated that this method could have excellent
potential for the rational design of antimicrobial pep-
tides with enhanced specificity.

KEYWORDS antimicrobial peptides (AMPs), peptide
antibiotics, helicity, secondary structure, diastereomeric
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INTRODUCTION

In recent years, resistant superbugs have become a great
concern in public health due to the extensive clinical use of
classical antibiotics and prompting an urgent need for a new
class of antibiotics (Oyston et al., 2009). Compared to the
traditional antibiotics, cationic antimicrobial peptides (AMPs)
exhibit several unique characteristics, including the ability to
rapidly kill target cells, broad spectrum activity against seri-
ous antibiotic-resistant pathogens in the clinic, and the rel-
ative difficulty in selecting resistant mutants in vitro (Jenssen
et al., 2006; Huang et al., 2010b). Therefore, AMPs have
been proposed as potent candidates of a new class of
antibiotics.

Nowadays, many natural and synthesized AMPs have
been identified with antimicrobial activity (Shai, 1999; Shai
and Oren, 2001; Wang et al., 2009a) and several action
models that attempt to explain the mechanism of action,
such as the “carpet” model (Shai, 1999), the “barrel-stave”
model (Ehrenstein and Lecar, 1977) and the “toroidal-pore”
model (Matsuzaki et al., 1995). Recently, based on the
“barrel-stave” model and the “carpet” model, Chen et al.
proposed a “membrane discrimination” model for AMPs
whose sole target is the biomembrane, and the peptide
specificity to eukaryotic or prokaryotic cells depends upon
the compositional difference in the lipids of membranes
(Chen et al., 2005; Chen et al., 2007). Although the precise
mechanism of action of AMPs has not been fully deciphered,
it is believed that the cytoplasmic membrane is the main
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target and the interaction with the cell membrane is the key
step for all AMPs (Hancock and Rozek, 2002).

The toxicity of AMPs against eukaryotic cells is the key
obstacle for their clinical application. Numerous studies have
been performed to optimize their potentials for clinical appli-
cations, i.e., to improve the antimicrobial activity and to reduce
the toxicity against human normal cells (Pag et al., 2004;
Wang et al., 2009b; Huang et al., 2010a). In the previous
study, the hydrophobicity and net charge were studied for the
relationships of structure and mechanism of action of AMPs
(Chen et al., 2005; Chen et al., 2007; Jiang et al., 2008). In
this study, the helicity was selected to study the relationships
of secondary structure and the selectivity against microbial
cells of α-helical antimicrobial peptides. Two groups of D- and
L-diastereomeric peptides were designed and the helicity was
systematically modulated by introducing D-amino acids to
replace the original L-amino acids on the non-polar face or the
polar face of the α-helical antimicrobial peptides. We believe
that peptide helicity plays an important role on the specificity
and the toxicity of antimicrobial peptides.

RESULTS

Peptide design

In this study, a 26-residue amphipathic α-helical antimicrobial
peptide of A12L/A20L from the previous studies

(Ac-KWKSFLKTFKSLKKTVLHTLLKAISS-amide, named as
peptide P herein) with a strong α-helical structure (Chen et al.,
2007) was used as a framework to design a series of D- and
L-diastereomeric peptides and study the relationships of
helicity and biological activities of α-helical antimicrobial
peptides. The helicity was systematically reduced in various
degrees by replacing L-lysine residues with D-lysine residues
on the polar face as well as L-leucine residues with D-leucine
residues on the non-polar face, respectively. The sequences
of peptide analogs are shown in Table 1 and the helical nets
and the helical wheel of peptide P are shown in Fig. 1. In order
to reduce peptide helicity of peptide P to different degrees, on
the polar face, positions of 7, 14 and 22 were selected to
make three single D-lysine substituted peptides (K7D, K14D,
K22D), two double D-lysine substituted peptides (K7D/K14D
and K14D/K22D), and one triple D-lysine substituted analog
(K7D/K14D/K22D), respectively. In order to study the effect of
helicity change on peptide biological activities, three peptides
with the corresponding 4, 5 and 6 D-lysine substitutions (K7D/
K10D/K14D/K22D, K3D/K7D/K10D/K14D/K22D, and K1D/K3D/
K7D/K10D/K14D/K22D, respectively) were designed to further
reduce the helicity of peptide P. In contrast, on the non-polar
face, positions of 6, 12 and 20 were selected according to
the similar design with those on the polar face to make single
and multiple D-leucine substituted peptides (from L6D to L6D/
L12D/L17D/L20D/L21D).

Table 1. Design and sequence of α-helical antimicrobial peptides

Group Peptide Amino acid sequence*

Parent P Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

Polar face group K7D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

K14D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

K22D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

K7D/K14D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

K14D/K22D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

K7D/K14D/K22D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

K7D/K10D/K14D/K22D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

K3D/K7D/K10D/K14D/K22D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

K1D/K3D/K7D/K10D/K14D/K22D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

Non-polar face group L6D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

L12D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

L20D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

L6D/L12D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

L12D/L20D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

L6D/L12D/L20D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

L6D/L12D /L17D/L20D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

L6D/L12D /L17D/L20 D /L21D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide

* One-letter codes are used for the amino acid residues; the bold italic letters denote the substituting D-amino acids of the peptide P, all other

amino acids are L-amino acids.
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Peptide secondary structure

Table 2 shows the molar ellipticity values at different envi-
ronments and the relative helicity of peptide analogs. It is
well studied that D-amino acids show disruptive ability on
α-helical peptide composed of all L-amino acids (Shai and
Oren, 1996; Chen et al., 2005; Prenner et al., 2005). In this
study, all peptides showed the typical α-helical structure with
double minima at 208 nm and 222 nm in a hydrophobic
environment of 50% TFE to mimic the cell membrane, while
all the D-amino acid substituted peptides exhibited reduced
helical structures in a hydrophilic environment of KP buffer.
The helicity of peptide was strongly influenced by the num-
ber of the substituted D-amino acids and gradually
decreased with the increasing numbers of D-amino acid
substitutions both on the polar face and the non-polar face.
The relative helicity of peptide analogs ranged from 100%
(Peptide P) to 48.6% (K1D/K3D/K7D/K10D/K14D/K22D) with
the D-lysine substitutions on the polar face and to 33.2%
(L6D/L12D/L17D/L20D/L21D) with the D-leucine substitutions
on the non-polar face.

Furthermore, the position of the substituted D-amino
acids may influence the helicity of peptide. From Table 2, it is
clear to see that N-terminal amino acids in the peptide P

sequence may be more important to stabilize the helical
structure since the relative helicity values of peptide K7D/
K14D (71.7%) and L6D/L12D (73.1%) were lower than those
of the peptide K14D/K22D (81%) and L12D/L20D (75.7%)
respectively. It is interesting to see that, single L-lysine on
the polar face had more important role to sustain the helical
structure than L-leucine on the non-polar face due to the
relative helicity values of single D-amino acid substituted
peptides K7D (77.8%), K14D (88.7%) and K22D (85.5%)
were less than those of L6D (99.6%), L12D (95.1%) and L20D
(92.9%), respectively. However, when comes to multiple
substitutions, 4 D-leucine substitutions on the peptide
showed a stronger disruptive effect on α-helical structure
than 6 D-lysine substitutions (48.61% of helicity for peptide
K1D/K3D/K7D/K10D/K14D/K22D and 37.88% for peptide L6D/
L12D/L17D/L20D, respectively), showing the important effect
of hydrophobicity on sustaining peptide secondary structure.

Peptide hydrophobicity

RP-HPLC retention behaviors of peptides are highly sensi-
tive to the conformational status upon interacting with the
hydrophobic environments of the column matrix and are
widely utilized to represent the relative hydrophobicity of

Peptide P: Ac -K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amideA
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Figure 1. Representation of the parent peptide A12L/A20L as helical nets showing the polar/hydrophilic face (circled

residues) and non-polar/ hydrophobic face (boxed residues) and helical wheel, the lysine residue at position 13 of the

sequence is denoted by a triangle. In the helical nets, the D-amino acid substitution sites are shown in bold and italic, while in the

helical wheel, three single substitution sites are shown with solid arrows on the non-polar face as a solid arc and hollow arrows on the

polar face as an open arc, respectively, Ac denotes Nα-acetyl, and amide denotes Cα-amide. One-letter codes are used for the amino

acid residues.
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peptides (Zhou et al., 1990; Chen et al., 2002). In this study,
the hydrophobicity of peptides was determined by RP-HPLC.
The hydrophobicity difference of peptides caused by
D-amino acid substitutions was mainly due to the change on
the continuity of the hydrophobic/hydrophilic face of the
helical structure, since the side chain hydrophobicity of D-
and L-amino acid enantiomers is exactly the same. From
Table 2, the hydrophobicity of peptides (as expressed by RP-
HPLC retention time tR) decreased gradually with the
increasing numbers of D-amino acid substitutions on both
the polar face and the non-polar face of peptide analogs
while tR ranging from 44.1 min (K7D) to 34.6 min (K1D/K3D/
K7D/K10D/K14D/K22D) on the polar face and from 44.6 min
(L6D) to 34.8 min (L6D/L12D/L17D/L20D/L21D) on the non-
polar face, respectively. This order was the same as the
aforementioned order of helicity and confirmed to the previ-
ous results that peptide helicity was correlated with peptide
hydrophobicity (Huang et al., 2010a; Huang et al., 2011).
Thus, D-amino acid substitutions not only affect the helicity
of peptides,but also affect the hydrophobicity of peptides by
changing the continuity of the hydrophobic and hydrophilic
faces of α-helical structure.

Hemolytic activity

The minimal hemolytic concentration (MHC) of the peptide
analogs against human erythrocytes was determined as a
major measurement of peptide toxicity toward normal cells
(Table 3). Compared to the peptide P (MHC 5.2 μmol/L), the
peptide hemolytic activity significantly decreased to no
detectable hemolysis at the concentration of 325.2 μmol/L by
substituting D-amino acid both on the non-polar face and the
polar face of the parent peptide. Compared to the single
substituted peptides and the double substituted peptides, the
peptides with multiple substitutions both on the polar face and
on the non-polar face showed lower toxicity toward normal red
blood cells. This phenomenon is similar to that of helicity and
hydrophobicity. That is, due to the substitutions of D-amino
acids, the helicity of peptides was disrupted and results in the
decrease of peptide hydrophobicity and the hemolytic activity.

Antimicrobial activity

The antimicrobial activities of peptide analogs were deter-
mined against both Gram-negative and Gram-positive bac-
terial strains. The results are showed in Table 3 and Table 4.

Table 2. Biophysical data of the peptide analogs

Peptidesa tR (min)b Benignc 50% TFEd

25°C [θ]222 % helixe [θ]222 % helixe

P 46.9 −14550 36.66 −39700 100.00

K7D 44.1 −6050 15.22 −30900 77.77

K14D 43.5 −15550 39.16 −35250 88.72

K22D 43.3 −8400 21.14 −33950 85.48

K7D/K14D 40.9 −8750 22.02 −28450 71.65

K14D/K22D 40.1 −6350 15.95 −32150 81.00

K7D/K14D/K22D 37.9 −5000 12.59 −26350 66.33

K7D/K10D/K14D/K22D 35.5 −7350 22.48 −19400 48.84

K3D/K7D/K10D/K14D/K22D 34.6 −4750 14.59 −21400 53.99

K1D/K3D/K7D/K10D/K14D/K22D 34.6 −5800 17.74 −19300 48.61

L6D 44.6 −8500 21.45 −39550 99.61

L12D 42.9 −8350 21.01 −37750 95.08

L20D 42.5 −6900 17.42 −36900 92.90

L6D/L12D 40.8 −6800 17.14 −29050 73.13

L12D/L20D 37.8 −5550 13.93 −30050 75.69

L6D/L12D/L20D 37.4 −4950 12.45 −28450 71.66

L6D/L12D /L17D/L20D 36.3 −4050 12.46 −15050 37.88

L6D/L12D /L17D/L20D /L21D 34.8 −3600 10.97 −13150 33.20

a Peptides are ordered by relative hydrophobicity.
b tR (min) denotes the retention time at 25°C by RP-HPLC.
c The mean residue molar ellipticities, [θ]222 (degree cm2 dmol−1) at wavelength 222 nm were measured at 25°C in KP buffer (100 mmol/L KCl,

50 mmol/L PO4, pH 7.0).
d The mean residue molar ellipticities, [θ]222 (degree cm2 dmol−1) at wavelength 222 nm were measured at 25°C in KP buffer with 50% TFE.
e The helical content (in percentage) of a peptide relative to the molar ellipticity value of peptide P in 50% TFE.
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The geometric mean MIC (minimal inhibitory concentration)
values of microbial strains were calculated to provide an
overall evaluation of antimicrobial activity against Gram-
negative or Gram-positive bacteria, respectively. Generally,
the peptides with more D-amino acid substitutions exhibited
lower antimicrobial activity compared to the analogs with
single or double D-amino acid substitutions. In this study, by
substituting D-amino acids on the polar or the non-polar face
of the parent peptide, we have dramatically improved pep-
tide antimicrobial activities, especially against Gram-nega-
tive bacteria (Tables 3 and 4). However, when introducing
relatively more D-amino acids (4 and more D-amino acids),
the antimicrobial activities decreased significantly against
both Gram-negative and Gram-positive bacteria. Compared
to peptide P, the single and double amino acid substituted
peptides (on both the polar and the non-polar faces) exhib-
ited close antimicrobial activities with MIC values from 1–
2 μmol/L against Gram-negative and Gram-positive bacteria.

However, along with the further increasing of D-amino acid
substitutions, peptide analogs exhibited significant lower
antimicrobial activity with MIC values ranging from 4–
125 μmol/L. It is clear to see that peptides with higher helicity
generally exhibited stronger antimicrobial activities, which
indicates the importance of helicity of peptides during the
mechanism of action against microbial strains.

Peptide specificity (therapeutic index)

Therapeutic index is a widely employed parameter to rep-
resent the specificity of antimicrobial reagents. It is calcu-
lated by the ratio of MHC (hemolytic activity) and MIC
(antimicrobial activity) and larger values in therapeutic
index indicate greater antimicrobial specificity. From
Tables 3 and 4, it is clear that, with the D-amino acid
substitutions on the polar or the non-polar face, the speci-
ficity of peptide P against both Gram-negative and Gram-

Table 3. Antimicrobial (MIC) and hemolytic (MHC) activities of peptide analogs against Gram-negative bacteria and human red blood
cells

Peptidesa MHCb

(µmol/L)
MICc (µmol/L) GMd Therapeutic

indexe
Foldf

E. coli
ATCC25922

P. aeruginosa
ATCC27853

P 5.2 2 8 4.0 1.3 1.0

K7D 10.41 1 2 1.4 7.4 5.7

K14D 5.2 1 2 1.4 3.7 2.8

K22D
g 20.81 1 1 1.0 20.8 16.0

K7D/K14D 20.81 2 2 2.0 10.4 8.0

K14D/K22D 20.81 1 1 1.0 20.8 16.0

K7DK14DK22D 81.31 8 2 4.0 20.3 15.6

K7D/K10D/K14D/K22D 325.2 64 8 22.6 14.4 11.1

K3D/K7D/K10D/K14D/K22D >325.2 8 32 16.0 40.7 31.3

K1D/K3D/K7D/K10D/K14D/K22D >325.2 125 32 63.3 10.3 7.9

L6D 10.41 2 1 1.4 7.4 5.7

L12D 20.81 1 1 1.0 20.8 16.0

L20D 20.81 1 1 1.0 20.8 16.0

L6D/L12D 20.81 4 2 2.8 7.4 5.7

L12D/L20D 81.31 2 2 2.0 40.7 31.3

L6D/L12D/L20D 162.61 4 2 2.8 57.5 44.2

L6D/L12D/L17D/L20D 81.3 32 8 16.0 5.1 3.9

L6D/L12D/L17D/L20D/L21D >325.2 16 4 8.0 81.3 62.5

a Peptides are ordered by relative hydrophobicity.
b Hemolytic activity (minimal hemolytic concentration) was determined on human red blood cells after incubating with peptides for 1 h (hRBC).

When no hemolytic activity was observed at 325.2 μmol/L, a value of 650.4 μmol/L was used for the calculation of the therapeutic index.
c Antimicrobial activity (minimal inhibitory concentration) was determined as the minimal concentration of peptide to inhibit microbial growth.
d GM denotes the geometric mean of MIC values from two microbial strains in this table.
e Therapeutic index = MHC (μmol/L)/geometric mean of MIC (μmol/L), larger values indicate greater antibacterial specificity.
f The fold improvement in the therapeutic index was determined as relative to that of parent peptide P.
g The bold data represent the leading peptide analogs with great specificity improvement.
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positive bacteria has been significantly improved. For
example, with D-lysine substitution on the polar face, the
therapeutic index of peptide P against Gram-negative
bacteria was improved to 20.8 (peptides K22D and K14D/
K22D), which is a 16-fold improvement; in contrast, by
substituting D-leucine on the non-polar face, we improved
the therapeutic index of peptide P against Gram-negative
bacteria to 57.5 (peptide L6D/L12D/L20D), which is a 44.2-
fold improvement (Table 3). In Table 4, with D-lysine sub-
stitution on the polar face, the therapeutic index of peptide
P against Gram-positive bacteria was increased to 14.8
(peptide K22D), which is a 5.7-fold improvement compared
to the parent peptide; in contrast, with D-leucine substitu-
tion on the non-polar face, the therapeutic index was
improved 22.2-fold (57.7 for peptide L12D/L20D). Compared
to the peptides with D-amino acid substitutions on the polar
face, the peptides with D-amino acid substitutions on the

non-polar face displayed higher specificity against both
Gram-negative and Gram-positive bacteria due to their
lower mammalian cell toxicity. Although peptide L6D/L12D/
L17D/L20D/L21D showed the best therapeutic index values
against Gram-negative and Gram-positive bacteria, due to
its poor antimicrobial activities, it was not considered as the
best leading compound on specificity.

Scanning electron microscopy

Pseudomonas aeruginosa and Staphylococcus aureus were
used as the representatives of Gram-negative and Gram-
positive bacteria, respectively, to examine the morphologic
changes of cell surface before and after interacting with our
leading peptide L12D/L20D by scanning electron microscopy
at 30K magnification. As showed in Fig. 2, the untreated
control samples displayed smooth surface for both Gram-

Table 4. Antimicrobial (MIC) and hemolytic (MHC) activities of peptide analogs against Gram-positive bacteria and human red blood
cells

Peptidesa MHCb

(µmol/L)
MICc (µmol/L) Therapeutic

indexe
Foldf

S. aureus
ATCC25923

B. subtilis
ATCC49619

GMd

P 5.2 4 1.0 2.0 2.6 1.0

K7D 10.41 4 0.25 1.0 10.4 4.0

K14D 5.2 2 0.25 0.7 7.3 2.8

K22D
g 20.81 4 0.5 1.4 14.8 5.7

K7D/K14D 20.81 8 0.5 2.0 10.4 4.0

K14D/K22D 20.81 8 0.5 2.0 10.4 4.0

K7DK14DK22D 81.31 32 0.5 4.0 20.3 7.8

K7D/K10D/K14D/K22D 325.2 >125 0.5 11.2 29.1 11.2

K3D/K7D/K10D/K14D/K22D >325.2 >125 2.0 22.4 29.1 11.2

K1D/K3D/K7D/K10D/K14D/K22D >325.2 >125 0.5 11.2 58.2 22.4

L6D 10.41 4 1.0 2.0 5.2 2.0

L12D 20.81 4 1.0 2.0 10.4 4.0

L20D 20.81 4 1.0 2.0 10.4 4.0

L6D/L12D 20.81 8 1.0 2.8 7.4 2.8

L12D/L20D 81.31 8 0.25 1.4 57.7 22.2

L6D/L12D/L20D 162.61 32 0.25 2.8 57.5 22.1

L6D/L12D/L17D/L20D 81.3 >125 0.5 11.2 7.3 2.8

L6D/L12D/L17D/L20D/L21D >325.2 125 0.5 7.9 82.2 31.6

a Peptides are ordered by relative hydrophobicity.
b Hemolytic activity (minimal hemolytic concentration) was determined on human red blood cells after incubating with peptides for 1 h (hRBC).

When no hemolytic activity was observed at 325.2 μmol/L, a value of 650.4 μmol/L was used for the calculation of the therapeutic index.
c Antimicrobial activity (minimal inhibitory concentration) was determined as the minimal concentration of peptide to inhibit microbial growth.

When no antimicrobial activity was observed at 125 μmol/L, a value of 250 μmol/L was used for the calculation of the therapeutic index.
d GM denotes the geometric mean of MIC values from two microbial strains in this table.
e Therapeutic index = MHC (μmol/L)/geometric mean of MIC (μmol/L), larger values indicate greater antibacterial specificity.
f The fold improvement in the therapeutic index was determined as relative to that of parent peptide P.
g The bold data represent the leading peptide analogs with great specificity improvement.
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negative and Gram-positive bacteria (Fig. 2A and 2B); in
contrast, after treated with peptide L12D/L20D for 2 h, all
bacteria showed significant surface damaging phenomena
with surface wrinkling, roughening and leaking (Fig. 2C and
2D).

Interaction of peptides with liposomes

Large unilamellar vesicles (LUV) were prepared with PC/
cholesterol (8:1, w/w) and PC/PG (7:3, w/w) to mimic zwit-
terionic eukaryotic membrane and anionic prokaryotic
membrane, respectively, and to investigate the specificity of
peptides interacting with different model membranes. The
fluorescence emission of the tryptophan residue was used to
monitor the binding of peptides to liposomes, since fluores-
cence of the tryptophan residue is sensitive to different
environments. The fluorescence emission maxima of pep-
tides exhibited a blue shift and a marked increase in emis-
sion intensity when the peptides with tryptophan residue
inserted into a hydrophobic environment, such as the
hydrophobic core of cytoplasmic membrane (Zhang et al.,
1999). Peptides P, K22D and L12D/L20D were selected to
testify peptide specificity when interacting with different
types of membranes. As shown in Fig. 3, it is clear that the
fluorescence emission maxima of all three peptides exhib-
ited a blue shift about 20 nm and the marked increases in
emission intensity in PC/PG lipsomes compared to those in
HEPES buffer (Fig. 3A, 3C and 3E), which indicates that the
peptides inserted deeper into a more hydrophobic environ-
ment when interacting with prokaryotic type of membrane,
thus there was a stronger interaction between peptides and
prokaryotic cell membrane. In contrast, when interacting with
PC/cholesterol lipsomes, only peptide P exhibited blue shift

about 10 nm, while the fluorescence of peptides K22D and
L12D/L20D showed the similar fluorescence emission com-
pared to those in HEPES buffer, hence the interaction of
peptides with the zwitterionic eukaryotic membrane are
much weaker than with prokaryotic membrane. In addition,
D-amino acid substitutions seem to have preventive effects
on peptides entering into the hydrophobic core of
membrane.

In order to further study the interaction of peptide with the
membrane-mimicking environments, the water soluble
quencher KI was used and added to peptides in different
liposomes. The fluorescence intensity will be significantly
reduced when the peptide containing a tryptophan residue
exposed into the hydrophilic environment due to that the
tryptophan residue was accessible to the aqueous quencher.
As shown in Fig. 3, it is clear that KI quenched the intensity
of fluorescence of tryptophan to different degrees when the
peptides interacting with different types of membranes
(Fig. 3B, 3D and 3F). Compared to the anionic prokaryotic
membrane, the significant quenching of fluorescence inten-
sity of the peptides in the zwitterionic eukaryotic membrane
was observed, indicating that peptides did not insert into the
deep hydrophobic core of eukaryotic membrane and were
reachable to the water soluble quencher KI, thus resulted in
the more tilted lines in Fig. 3.

DISCUSSION

In this study, helicity of peptide P was systematically mod-
ulated by introducing D-amino acids to replace the original
L-amino acids on the non-polar face or the polar face of the
helix. In order to minimize the hydrophobicity influence of
amino acid substitution, D-amino acid was used to replace
L-amino acid both on the non polar face and polar face and
design a series of D- and L-diastereomeric peptides. In
addition, acetylation of the N-terminal and amidation of the
C-terminal and DL-diastereomeric structure of peptide could
slow or eliminate proteolytic degradation and improve the
activity or stability of peptides (Brinckerhoff et al., 1999;
Papo et al., 2003; Nguyen et al., 2010).

As shown in Fig. 4, helicity of peptide in the hydrophobic
environment and hydrophobicity of peptide exhibited excel-
lent linear correlations with the numbers of D-amino acid
substitutions both on the polar face (R values of 0.942 and
0.967, respectively) (Fig. 4A and 4C) and on the non-polar
face (R values of 0.954 and 0.924, respectively) (Fig. 4B and
4D). The helicity reducing of the peptides can be attributed to
that D-amino acid substitutions disrupted α-helical structure
of peptides and the hydrophobicity difference of peptides
caused by D-amino acid substitutions was mainly due to the
change on the continuity of the hydrophobic/hydrophilic face
of the helical structure, since the side chain hydrophobicity of
D- and L-amino acid enantiomers are exactly the same
(Chen et al., 2002; Chen et al., 2005). From Fig. 4E and 4F, it
is clear that the hydrophobicity and the helicity in 50% TFE of

Figure 2. Effect of peptide L12D/L20D on the surface of

negatively-stained S. aureus (left) and P. aeruginosa (right)

by scan electron microscopy. Untreated bacterial cells were

shown in panels A and B. Treated bacterial cells with peptide

L12D/L20D revealed disrupted cell membranes in panels C and

D.
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the peptides with D-amino acid substitutions on the polar
face or the non-polar face are linearly correlated with R
values of 0.955 and 0.913, respectively. These results are
consistent with the linear relationships of hydrophobicity and
helicity of amphipathic helical anticancer peptides in the
previous studies (Chen et al., 2005; Huang et al., 2011;
Huang et al., 2012).

From Table 3 and Table 4, it is clear that both the
hemolytic activities and the antimicrobial activities of pep-
tides generally decreased along with the increasing of the
numbers of D-amino acid substitutions on both the polar
face and the non-polar face of peptides, but the degree is
different. Compared to the antimicrobial activities, D-amino
acid substitutions have more influence on the hemolytic
activities. Thus, the therapeutic index values are not exactly
linearly correlated with the increasing numbers of D-amino
acid substitutions. We think this may be due to the different
action mechanism of peptides against the prokaryotic cells
and eukaryotic cells based on their different composition of
cell membranes. In this study, several peptides with amino
acid substituted peptides on the polar face or the non-polar

face, particularly peptides K22D, K14D/K22D, L12D/L20D
and L6D/L12D/L20D exhibit the strongest antimicrobial
activity and the highest therapeutic index. The specificity of
peptide P was improved about 44.2-fold and 22.2-fold
against Gram-negative and Gram-positive bacteria,
respectively. These results prove that hydrophobicity and
helicity are crucial parameters for biological activities of α-
helical antimicrobial peptides and are consistent with the
previous studies of α-helical anticancer peptides (Huang
et al., 2011; Huang et al., 2012). In addition, the approach
of making D- and L-diastereomeric peptides was demon-
strated as an applicable approach to improve the specificity
of antimicrobial peptides which is consistent with the pre-
vious reports using model peptides (Oren and Shai, 1997;
Hong et al., 1999; Papo et al., 2002).

From the results of tryptophan fluorescence and
quenching experiments, the similar conclusions can be
drawn that peptide specificity could be improved by the
modulation helicity and hydrophobicity. Compared to the
interaction with eukaryotic membrane, all peptides in this
study exhibited stronger interaction with anionic prokaryotic
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Figure 3. Fluorescence emission spectra (left) and Stern-Volmer plot (right) of peptides with various liposomemodels at 25°C.

Stern-Volmer plots were obtained by the sequential addition of the fluorescence quencher KI. Results of three peptides were plotted as

follows: parent peptide P in Panels A and B, peptide K22D in Panels C and D, and peptide L12D/L20D in Panels E and F, respectively.

HEPES buffer, PC/cholesterol lipsomes and PC/PG lipsomes were presented by solid squares, hollow circles and solid triangles,

respectively.
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membrane, showing blue shifts about 20 nm, marked
increases in emission intensity and lower quenching effect,
indicating the deeper insertion into prokaryotic membrane,
and resulting in the stronger antimicrobial activity. The
scanning electron microscopy results also demonstrated
that all bacteria treated with peptide L12D/L20D showed
significant membrane damaging effect. In contrast, for
zwitterionic eukaryotic membrane, the D- and L-diastereo-
meric peptides, except the parent peptide P, displayed
weaker interaction with mimic zwitterionic membranes,
showing lower cytotoxicity against normal cells. This is
consistent well with the proposed “membrane discrimina-
tion mechanism” (Chen et al., 2005; Chen et al., 2007),
Thus, based on the “membrane discrimination mecha-
nism”, peptides use different mechanisms when interacting
with prokaryotic and eukaryotic membranes, which giving
us an opportunity to optimize peptide specificity and to
develop peptides as promising therapeutics for clinical

practices. Peptide specificity can be improved by the
modulation of suitable D-amino acids on the polar face or
the non-polar face of helix to form D- and L-diastereomeric
peptides.

In summary, showing excellent correlation with peptide
hydrophobicity, peptide helicity displays a critical role on the
antimicrobial activity of α-helical antimicrobial peptides. The
helicity and hydrophobicity of peptide can be modulated by
D-amino acid substitution approach to form D- and L-dia-
stereomeric peptides. In addition, D- and L-diastereomeric
peptides particularly for the peptides with D-amino acid
substitutions on the non-polar face displayed stronger anti-
microbial activity and lower cell toxicity against normal cells.
Due to the different lipid compositions between prokaryotic
and eukaryotic cytoplasmic membranes, peptides exhibited
high specificity against bacterial cells, which providing great
opportunities to develop peptides as promising therapeutics
in clinical practices.

Figure 4. Relationships of peptide helicity, hydrophobicity with the numbers of D-amino acid substitutions. The experimental

data from Table 2 and least squares fit analysis were used. The results showed correlations of helicity and the number of D-amino

acid substitutions with R = 0.942 on the polar face (A) and R = 0.954 on the non-polar face (B); correlations of hydrophobicity and the

number of D-amino acid substitutions with R = 0.967 on the polar face (C) and R = 0.924 on the non-polar face (D); correlations

between hydrophobicity and helicity with R = 0.955 on the polar face (E) and R = 0.913 on the non-polar face (F).
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MATERIALS AND METHODS

Peptide synthesis and purification

Peptides synthesis were carried out by solid phase peptide synthesis

using Fmoc (9-fluorenyl-methoxycar-bonyl) chemistry and Rink amide

4-methylbenzhydrylamine resin (MBHA resin; 0.8 mmol/g), as descri-

bed previously (Chen et al., 2005; Huang et al., 2010a). The crude

peptides were purified by preparative Shimadzu LC-6A high-perfor-

mance liquid chromatography (HPLC), using a Zorbax 300 SB-C8 col-

umn (250 × 9.4-mm ID, 6.5-mm particle size, 300-Å pore size; Agilent

Technologies) with a linear AB gradient (0.1%acetonitrile/min) at a flow

rate of 2 mL/min, while eluent A was 0.1% aqueous trifluoroacetic acid

(TFA) in water, and eluent B was 0.1% TFA in acetonitrile. Peptide

samples were analyzed on a Shimadzu LC-20A HPLC. Runs were

performed on a Zorbax 300 SB-C8 column (150 × 4.6-mm ID, 5-mm

particle size, 300-Å pore size) from Agilent Technologies, using a linear

AB gradient (1% acetonitrile/min) and a flow rate of 1 mL/min, in which

eluent A was 0.1% aqueous TFA and eluent B was 0.1% TFA in ace-

tonitrile. The peptideswere further characterizedbymass spectrometry

and amino acid analysis (Lee et al., 2003; Mant et al., 2003).

Characterization of helical structure

The mean residue molar ellipticities of the peptides were determined

by circular dichroism (CD) spectroscopy of J-810 spectropolarimeter

(Jasco, JAPAN) with a 0.02-cm path length quartz cuvette at 25°C

as described previously (Huang et al., 2010a). The concentration of

75 μmol/L peptides was measured in benign buffer (50 mmol/L

KH2PO4/K2HPO4, 100 mmol/L KCl, pH 7) or benign buffer with 50%

TFE at 25°C. The mean residue molar ellipticities were calculated by

the equation [θ] = θ/10lCMn (Chen et al., 2005) and θ is the ellipticity

in millidegrees, l is the optical path length of the cuvette in centi-

meters, CM is the peptide concentration in mole/liter, and n is the

number of residues in the peptide. The values of mean residue molar

ellipticities of the peptide analogs at 222 nm were used to determine

the relative helicity of the peptides.

Measurement of antibacterial activity (MIC)

Minimal inhibitory concentrations (MIC) were determined using a

broth dilution method (Stark et al., 2002) and four bacterial strains

were used in this study including two Gram-negative bacterial strains

of Escherichia coli ATCC25922, Pseudomonas aeruginosa

ATCC27853 and two Gram-positive bacterial strains of Staphylo-

coccus aureus ATCC25923, Bacillus subtilis ATCC6633. Briefly,

bacteria were grown overnight at 37°C in Mueller-Hinton (MH) broth,

diluted in the same medium and transferred into 96-well microtiter

plates (90 μL/well). Peptides were serially diluted by 0.2% bovine

serum albumin containing 0.01% acetic acid and added to the

microtiter plates in a volume of 10 μL of each well to give a final

concentration of 5 × 105 CFU/mL. MICs were determined as the

lowest peptide concentration that inhibited bacterial growth after

incubation for 24 h at 37°C.

Measurement of hemolytic activity (MHC)

Peptide samples were serially diluted by PBS in 96 well plates

(round bottom, Corning No. 3879) to give a volume of 70 μL sample

solution in each well. Human erythrocytes anticoagulated by EDTAK

were collected by centrifugation (1000 ×g) for 5 min, and washed

twice by PBS, then diluted to a concentration of 2% in PBS. 70 μL of

2% erythrocytes were added to each well to give a final concen-

tration of 1% human erythrocytes in each well and plates were

incubated at 37°C for 1 h. The plates were then centrifuged for

10 min at 3000 rpm (800 ×g) and supernatant (90 μL) was trans-

ferred to a 96-well plate (flat bottom, Corning No. 3599). The release

of hemoglobin was determined by measuring the absorbance of the

supernatant at 578 nm. The hemolytic activity was determined as the

minimal peptide concentration that caused hemolysis (minimal

hemolytic concentration, MHC). Erythrocytes in PBS and distilled

water were used as the control of 0 and 100% hemolysis,

respectively.

Calculation of therapeutic index (MHC/MIC ratio)

Therapeutic index values were determined by the ratio of MHC/MIC,

indicating the specificity of peptides against bacterial and eukaryotic

cells, respectively. When there was no hemolytic activity at

325.2 µmol/L, a minimal hemolytic concentration of 650.4 µmol/L

was used to calculate the therapeutic index. In contrast, for the

antimicrobial activity, 650.4 µmol/L would be used if there was no

activity at the upper limit value of MIC 325.2 µmol/L.

Field emission-scanning electron microscopy (FE-SEM) analysis

of bacterial cells

Bacterial cells of Pseudomonas aeruginosa and Staphylococcus

aureus were cultured in Mueller-Hinton (MH) broth to its log growth-

phase at 37°C under constant shaking at 180 rpm, respectively.

Microorganism was harvested by centrifugation for 5 min at 4000 rpm,

washed twice with 10 mmol/L PBS and re-suspended. 5 × 105 cells

were incubated at 37°C for up to 2 h with antimicrobial peptides

L12D/L20D at the concentration of 20 µmol/L (a concentration above

the MIC of the peptide). Controls were run without peptides. Cells

were fixed with 2.5% (w/v) glutaraldehyde in PBS, and then the cells

were extensively washed with PBS and dehydrated with a gradation

of ethanol concentrations. After critical point drying and gold coating,

the samples were observed using a Hitachi S-3400N instrument

(Wiradharma et al., 2011; Chen et al., 2012).

Preparation of liposomes

Large unilamellar vesicles (LUV) were prepared with PC/cholesterol

(8:1 w/w) and PC/PG (7:3 w/w) using the freeze-thaw method as

described previously (Mayer et al., 1985; Zhang et al., 1999) fol-

lowed by extrusion through 0.1 μm double-stacked nuclepore filters

using an Mini-Extruder (Avanti Polar Lipids, Inc.).

Tryptophan fluorescence and quenching experiments

A luminescence spectrometer, Shimadzu RF5301 was used to

measure the tryptophan fluorescence. Each peptide (2 μmol/L) was

added to 1 mL HEPES buffer (10 mmol/L HEPES, 150 mmol/L NaCl)

containing 0.1 mmol/L liposomes (pH 7.5), and the peptide/liposome

mixture was allowed to interact at 25°C for 10 min. The fluorescence

was excited at 280 nm, and the emission was scanned from 300 to

400 nm. The fluorescence spectrum of each peptide with liposomes/
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HEPES was collected after the deduction of the spectrum of lipo-

somes/HEPES without peptide.

KI quenching experiments were carried out at an excitation

wavelength of 280 nm. KI was added from a 2 mol/L stock solution to

peptides in the absence or the presence of liposomes and the tested

concentrations of KI were 0 mol/L, 0.02 mol/L, 0.04 mol/L, 0.06 mol/L

and 0.08 mol/L. The experimental data were plotted according to the

Stern-Volmer equation F0/F = 1 + Ksv[Q], where F0 and F are the

fluorescence in the absence and the presence of a quencher at

different concentrations [Q], respectively, and Ksv is the Stern-Vol-

mer quenching constant (Eftink and Ghiron, 1976; Zhang et al.,

1999).
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