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Abstract: Pneumoconiosis remains one of the most serious global occupational diseases. However,
effective treatments are lacking, and early detection is crucial for disease prevention. This study
aimed to explore serum biomarkers of occupational coal workers’ pneumoconiosis (CWP) by high-
throughput metabolomics, combining with machine learning strategy for precision screening. A case–
control study was conducted in Beijing, China, involving 150 pneumoconiosis patients with different
stages and 120 healthy controls. Metabolomics found a total of 68 differential metabolites between
the CWP group and the control group. Then, potential biomarkers of CWP were screened from these
differential metabolites by three machine learning methods. The four most important differential
metabolites were identified as benzamide, terazosin, propylparaben and N-methyl-2-pyrrolidone.
However, after adjusting for the influence of confounding factors, including age, smoking, drinking
and chronic diseases, only one metabolite, propylparaben, was significantly correlated with CWP.
The more severe CWP was, the higher the content of propylparaben in serum. Moreover, the receiver
operating characteristic curve (ROC) of propylparaben showed good sensitivity and specificity as
a biomarker of CWP. Therefore, it was demonstrated that the serum metabolite profiles in CWP
patients changed significantly and that the serum metabolites represented by propylparaben were
good biomarkers of CWP.

Keywords: pneumoconiosis; metabolomics; biomarkers; case–control study; machine learning

1. Introduction

Pneumoconiosis is one of the most serious global occupational diseases and includes
a group of respiratory diseases caused by the inhalation of mineral dust. The Global
Burden of Disease Study (GBD) demonstrated that the global incidence of pneumoconiosis
increased by 66.0% from 1990 to 2017 [1]. As coal still plays a dominant part in global
energy production and consumption, there is a very large number of people exposed to coal
dust [2]. More than 50% of annual officially reported occupational cases were coal workers’
pneumoconiosis (CWP) in China, which may still be underestimated due to insufficient
occupational health examination and strict diagnostic criteria [3]. At present, the diagnosis
of pneumoconiosis mainly refers to a reliable occupational exposure history of dust and
chest X-ray radiographs, lacking some objective and early stage biomarkers. Meanwhile,
as it generally takes 10–20 years to develop pneumoconiosis after exposure to dust and
pneumoconiosis is difficult to cure once you suffer from it, exploring biomarkers for early
diagnosis is also very essential for better prevention of CWP.

The etiologies of CWP have been confirmed, which is a pulmonary fibrosis disease
caused by exposure to various coal dusts [4–6]. The pattern and disease progression of
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CWP are directly related to the physicochemical properties, types and concentrations of
exposed coal dust or silica [7–10]. However, the complex dust etiology and long latent
period make it difficult to detect CWP early. At present, there is also a lack of sensi-
tive and specific biomarkers, so that it is difficult to dynamically observe the disease
evolution of CWP. Metabolomics, as a system biology method simultaneously detecting
thousands of metabolites with high throughput, focuses on the metabolic changes in
biological systems [11]. With the development of omics technology, metabolomics has
been widely used for biomarker discovery and mechanism exploration [12]. Meanwhile,
metabolomics is downstream of multiomics and is considered to be an extension of ge-
nomics and proteomics, making the amplified signal of metabolite easier to detect than
gene and protein [13]. The applications of machine learning have been widely carried out
in biomedicine toward improved diagnosis and treatment [14]. Machine learning combined
with metabolomics can more precisely screen potential biomarkers for disease such as early
stage lung adenocarcinoma from high-throughput data [15].

The present study aimed to identify potential sensitive serum biomarkers associated
with occupational coal workers’ pneumoconiosis (CWP) by a case–control study using
metabolomics combined with a machine learning (ML) strategy. Untargeted metabolomics
was conducted in high-performance liquid chromatography–mass spectrometry (HPLC–MS)
to analyze the changes in serum metabolite profiles of occupational pneumoconiosis pa-
tients compared with healthy controls. The potential biomarkers of CWP were screened
from differential metabolites by a series of machine learning methods.

2. Materials and Methods
2.1. Study Design and Subjects

This case–control study included 150 coal workers’ pneumoconiosis (CWP) patients
with different stages from two representative occupational disease specialist hospitals in
Beijing, China from January to December 2021. In addition, 120 healthy controls from
an authoritative health examination institution in Beijing were also included. All study
subjects were involved according to the strict inclusion and exclusion criteria. The inclusion
criteria for the case group were clinically diagnosed CWP patients with clear occupational
dust exposure history covering stage 1, stage 2 and stage 3 that represents the severity of
CWP. The staging of CWP was mainly distinguished by the appearance of X-ray in the
national pneumoconiosis diagnostic criteria. The subjects in the control group were all
healthy people with no occupational dust exposure history in Beijing, who matched the case
group with age, smoking, drinking, gender and place of residence as much as possible. The
exclusion criteria for the case and control group were the exclusion of subjects with lung
cancer and various other diffuse pulmonary fibrosis diseases; exclusion of subjects with
recent history of major respiratory diseases, including chest trauma or surgery affecting
the lungs in the past 1 year, pneumonia, pleurisy, emphysema anda asthma; and limiting
subjects with nonrespiratory chronic diseases. Information on demographic characteristics
such as age, gender, smoking and drinking, as well as occupational history and working
age were investigated by a detailed questionnaire. The present study was approved by the
Peking University Third Hospital Medical Science Research Ethics Committee (Approval
number: M2024504), and informed consent was obtained from each subject.

2.2. Serum Sample Collection

Serum samples were collected from all subjects by drawing morning fasting blood
from the cephalic veins in the arm. Each subject was given 2 mL of venous blood. Then,
blood samples were allowed to stand at room temperature for 3 h and centrifuged for 7 min
(3000 rpm) to obtain serum. Before use, the final serum sample was placed in a cryotube
and immediately stored in a refrigerator at −80 ◦C.
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2.3. Serum Metabolomics

Sample preparation. At first, 100 µL serum was added to 400 µL precooled chlo-
roform/methanol (2:1) solution. After centrifugation (14,000× g, 4 ◦C) for 15 min, the
supernatant was transferred to a new centrifuge tube and vacuum freeze-dried. Each
sample was redissolved in 50 µL acetonitrile (50%) before testing on the machine. Finally,
10 µL of each sample was taken for sample detection and 5 µL of each sample was taken
for quality control (Qc) samples.

HPLC–MS analysis for untargeted metabolomics. A high-performance liquid
chromatography–mass spectrometry (HPLC–MS) system (U3000, Thermo, Waltham, MA,
USA) was used for untargeted metabolomics analysis. The parameters of the chromato-
graphic column (Xbridge amide column, Waters, Milford, MA, USA) were as follows: the
temperature was 30 ◦C; the flow rate was 0.5 mL/min; mobile phase A was 5 mmol/L
ammonium acetate, 95% water, 5% acetonitrile; mobile phase B was acetonitrile. The elution
gradient was as follows: 0 min, 90% B; 3 min, 30% B; 12 min, 2% B; 15 min, 2% B; 16 min,
90% B; and 23 min, 90% B. An electrospray ionization (ESI) carried out the ionization
of mass spectrometry. Positive and negative ion modes were implemented. Meanwhile,
both primary and secondary mass spectra were collected. The primary mass spectrometer
collects all metabolite information in the range of 50–750 m/z (resolution, 30,000), and then
the 10 strongest peaks in the primary mass spectrum were selected for secondary mass
spectrum acquisition. The dynamic collision energies were 15, 30 and 45, and the resolution
was 15,000.

Annotation of mass spectrometry data. After raw data preprocessing by MS-DIAL
software, annotation of the MS data was conducted by the MassBank database. The error
ranges of primary mass spectrometry and secondary mass spectrometry were set as 0.01 Da
and 0.05 Da, respectively. The cutoff score for final identification was 70%. The metabolite
codes were searched in the human metabolomics database (HMDB).

Data analysis of metabolomics. Multivariate analysis of metabolomics data was car-
ried out by SIMCA15.0.2 software. The principal component analysis (PCA) as a supervised
model was conducted to show the different trends of metabolomics characteristics between
the CWP case group and control group. The orthogonal partial least squares discriminant
analysis (OPLS-DA) as an unsupervised model was performed at the same time, along
with permutation tests to verify the stability. Univariate statistics including student’s
t test or Mann–Whitney U test was also performed to analyze the differential metabolites
between the CWP case group and control group. The differential metabolites were shown
by volcano plots, regarding false discovery rate (FDR) p < 0.05, absolute value of log2
fold change (FC) > 0.25 and the variable importance in the projection (VIP) value > 1 as the
criteria. Meanwhile, metabolic pathway analysis consisted of pathway enrichment analysis
and pathway topology analysis. Through the differential metabolites from metabolomics
data of CWP cases and pathway data in Homo sapiens (Human) pathway libraries (hsa), sig-
nificantly affected metabolic pathways were distinguished by Metaboanalyst 4.0, regarding
p < 0.05 and pathway impact > 0.20 as the criteria.

2.4. Biomarker Screening by Machine Learning Strategy

Potential biomarkers of CWP were further screened from the differential metabolites
analyzed by metabolomics. Machine learning (ML) strategy was used to rank importance
in order to reduce dimension. Three ML methods, including random forest (RF), support
vector machines (SVM) and boruta, were combined. The theoretical basis of random forest
(RF) is to combine a series of weak learners (multiple decision trees) through integrated
learning, so as to obtain a strong learner with significantly improved performance. The
importance of features and their ranking can be obtained by RF. In this study, the mean
decrease Gini index was used within RF to quantify, rank and screen the importance of each
metabolite (the top three important metabolites). The greater the index of metabolites, the
more important the metabolites are for the model to distinguish different groups. Support
vector machine (SVM) can reduce over fitting risk by properly selecting kernel function and
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regularization. The linear kernel was used as the default kernel function. SVM recursive
feature elimination algorithm was used in this study, referring to the previous literature [16].
The general process of the algorithm was as follows: (1) A SVM model was fitted using
the specified differential metabolites as independent variables and grouping information
as dependent variables; (2) Calculate the importance weight of each metabolite; (3) If
the number of remaining metabolites is less than the specified number of metabolites,
end the screening and return the importance weight of each metabolite; (4) Eliminate the
metabolites with the lowest weight; (5) Repeat (1)–(4). The specified number of metabolites
is set to 10 by default. Boruta is an RF based feature screening method, selecting key
features that have significant discrimination ability than random displacement features.
The maximum number of RF runs was 1000. When temporary features were included,
secondary selection would be carried out to judge whether some metabolites with large
fluctuation should be included in the selected features. The differential metabolites as
potential biomarkers of CWP must be confirmed by boruta.

At last, the top three metabolites of RF and SVM results as well as the top three
metabolites confirmed by boruta results were combined as potential biomarkers of CWP.
Then, to adjust for the influence of potential confounding factors, including age, smoking,
drinking and chronic diseases, multiple logistic regression analysis was conducted to
confirm the association between the potential biomarkers and different stages of CWP.
Finally, the receiver operating characteristic (ROC) curve of the final CWP biomarker was
analyzed. The sensitivity and specificity were judged by the area under the curve (AUC).

2.5. Statistical Analysis

Data were expressed as the means ± SD or quantity (percentage). SPSS 20.0 software
was used to analyze the data other than metabolomics. Statistical differences in contin-
uous variables between two independent groups were analyzed by the Student’s t test
or Mann–Whitney U test. Statistical differences in categorical variables were determined
by comparing the rates using Pearson χ2 test. The p < 0.05 was considered as criteria for
determining statistically significant differences.

3. Results
3.1. The Characteristics of Subjects

A total of 150 male coal workers’ pneumoconiosis (CWP) cases and 120 male controls
were involved in the present study. The characteristics of the subjects in these two groups
were shown in Table 1. The results showed that there were significant differences in age,
smoking status and chronic diseases between the two groups (p < 0.05), but no difference
existed in drinking status. The subjects in the CWP case group had a higher average
age and higher smoking and chronic disease rates than the controls. The CWP patients
all had a coal-related occupation history, with an average working experience age of
24.70 ± 8.48 years. The cases included stage 1, stage 2 and stage 3 CWP, accounting for
62.7%, 31.3% and 6.0%, respectively. Meanwhile, only 26.0% of cases had no complications,
while the complications of tuberculosis, COPD and chronic bronchitis accounted for 12.7%,
21.3% and 37.3%, respectively. There were also four (2.7%) cases of two complications. Both
the CWP cases and controls were male, and both were from Beijing, who lived and worked
in Beijing most of the time.

3.2. Differential Metabolites between the CWP Case Group and Control Group

The differences in metabolomics profiles between the CWP case group and control
group were analyzed, and then differential metabolites were distinguished to screen po-
tential biomarkers. There were 345 metabolites identified by annotation of MS data in
the serum of subjects. Significant overall differences in metabolomics profiles between
the case and control groups were found in both PCA (Figure 1A) and OPLS-DA results
(Figure 1B). In both supervised and unsupervised models, there was an obvious separation
trend between cases and controls. Meanwhile, the results of permutation test demonstrated
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that the unsupervised OPLS-DA models were very good (Figure 1C). Then, a total of
68 differential metabolites were identified from the intersection of 105 differential metabo-
lites from the multidimensional statistics (Figure 1D) and 117 differential metabolites from
the univariate statistics (Figure 1E). The detailed information including name, class and a
series of statistical indicators on these 68 identified differential metabolites (Figure 1F) was
shown in Table S1 (Supplementary Materials). The standard score (Z score) map showed
that the relative expression of 39 differential metabolites (57.4%) increased in the CWP
case group, while other 29 differential metabolites (42.6%) decreased (Figure S1). The top
seven metabolites with the greatest difference (fold change (FC) > 4 and log2FC > 2) were
propylparaben, (s,s)-(+)-tetrandrine, benzamide, N-methyl-2-pyrrolidone, aminopyrine,
perfluorooctanoic acid and salicylic acid (Figure S2). Compared to the control group, the
relative expression of these top seven metabolites all increased in the CWP case group.

Table 1. The descriptive analysis of characteristics of subjects in the coal workers’ pneumoconiosis
(CWP) case group and control group.

Control Group
(n = 120)

CWP Case Group
(n = 150) p

Age (years) 56.63 ± 3.03 69.02 ± 9.07 <0.001 *
Gender

Male 120 (100%) 150 (100%)
Female 0 0

Smoking n (%) <0.001 *
Yes 63 (52.5) 125 (83.3)
No 57 (47.5) 25 (16.7)

Dinking n (%) 0.934
Yes 69 (57.5) 87 (58.0)
No 51 (42.5) 63 (42.0)

Chronic disease n (%) <0.001 *
Yes 51 (42.5) 106 (70.7)
No 69 (57.5) 44 (29.3)

Pneumoconiosis stage n
(%)

1 94 (62.7)
2 47 (31.3)
3 9 (6.0)

Working age (years) 24.70 ± 8.48
Complication n (%)

Tuberculosis 19 (12.7)
COPD 32 (21.3)

Chronic bronchitis 56 (37.3)
Two complications 4 (2.7)
No complication 39 (26.0)

* p < 0.05, significant difference between the two groups.

3.3. Pathway Analysis of Serum Metabolomics

Pathway analysis of serum metabolomics was shown in Figure 2. Only the phenylalanine
metabolism pathway was enriched, but it was not significantly impacted (pathway impact = 0)
in the pathway topology analysis. The pathway map of phenylalanine metabolism from
KEGG was shown in Figure S3 (Supplementary Materials). However, after Holm or FDR
correction to reduce the false positive rate, it was found that the change in the phenylalanine
metabolism pathway was not statistically significant. Therefore, although a variety of
differential metabolites were found in CWP cases, it was unable to focus them on certain
metabolic pathways.
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Figure 1. Multidimensional analysis of metabolomics profiles between the coal workers’ pneumo-
coniosis (CWP) case group and control group. Score scatter plot of the PCA model (A) and OPLS-
DA model (B) for total metabolites. The red point: control group (C); the blue point: CWP case group 
(T). Significant overall differences in metabolomics profiles were found in both PCA and OPLS-DA 
results. The permutation test demonstrated that the unsupervised OPLS-DA models were very good 
(C). Differential metabolite selection between the control group and CWP case group from multidi-
mensional statistics (D) and univariate statistics (E). For multidimensional statistics, the selection 
criterion of differential metabolites was a VIP (variable important in projection) value > 1. For uni-
variate statistics, the selection criteria were FDR p < 0.05 and log2FC > 0.25. Finally, the intersection 
of differential metabolites from the multidimensional statistics (OPLS-DA) and univariate statistics 
were taken, as shown in the Venn diagram (F). 

Figure 1. Multidimensional analysis of metabolomics profiles between the coal workers’ pneumoco-
niosis (CWP) case group and control group. Score scatter plot of the PCA model (A) and OPLS-DA
model (B) for total metabolites. The red point: control group (C); the blue point: CWP case group (T).
Significant overall differences in metabolomics profiles were found in both PCA and OPLS-DA results.
The permutation test demonstrated that the unsupervised OPLS-DA models were very good (C).
Differential metabolite selection between the control group and CWP case group from multidimen-
sional statistics (D) and univariate statistics (E). For multidimensional statistics, the selection criterion
of differential metabolites was a VIP (variable important in projection) value > 1. For univariate
statistics, the selection criteria were FDR p < 0.05 and log2FC > 0.25. Finally, the intersection of
differential metabolites from the multidimensional statistics (OPLS-DA) and univariate statistics were
taken, as shown in the Venn diagram (F).
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Figure 2. Pathway analysis of serum metabolomics between the CWP case and control groups.
CWP-related metabolic pathways were shown in the pathway bubble plot, which was mapped by
the combination of pathway enrichment analysis (p value of Y-axis) and pathway topology analysis
(pathway impact of X-axis). Only the metabolic pathway of phenylalanine metabolism was enriched,
but its pathway impact equaled 0.

3.4. Screening Potential Biomarkers of CWP

Potential biomarkers of CWP were further screened from the differential metabolites
by machine learning (ML) strategy. Three ML methods, including RF, SVM and boruta,
were used to rank importance. The top three metabolites of RF results were benzamide,
tetrazosin and propylparaben (Figure 3A). The top three metabolites of SVM results were
propylparaben, benzamide and N-methyl-2-pyrrolidone (Figure 3B). Then, boruta was
used for further screening, and 50 differential metabolites were confirmed, among which
benzamide, tetrazosin and propylparaben were the top three (Figure 3C). In summary, the
three ML methods identified the four most important metabolites, propylparaben, benza-
mide, terazosin and N-methyl-2-pyrrolidone, as potential biomarkers for CWP. Moreover,
the results of the three methods had strong consistency, which increased the reliability
of the results. However, after adjusting for confounding factors including age, chronic
diseases, smoking and drinking, logistic regression analysis confirmed that CWP was only
significantly related to the relative expression of propylparaben.
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Figure 3. Screening potential biomarkers for coal workers’ pneumoconiosis (CWP) using machine
learning (ML) strategy from differential metabolites in serum. Three ML methods were analyzed
simultaneously for differential metabolites. Then, the top three metabolites of RF (A), SVM (B) and
boruta (C) results were combined. Finally, four potential biomarkers were screened out, including
propylparaben, benzamide, tetrazosin and N-methyl-2-pyrrolidone. RF: random forest; SVM: support
vector machines.

3.5. Effect of CWP Stage on the Biomarker Screening

According to the above analysis strategy, three different stages of CWP (stage 1,
stage 2 and stage 3) were analyzed for biomarker screening. The results showed that
the metabolomics profiles of all stages of CWP were different from the control group
(Figure 4A). Differential metabolites between the two groups showed crosses (Figure 4B).
More importantly, it was found that the above potential biomarkers for CWP all belonged
to the cross of three CWP stages. Furthermore, after adjusting for the influence of con-
founding factors, multiple logistic regression analysis confirmed that CWPs at different
stages were only significantly related to propylparaben (Figure 4C). The relative contents of
propylparaben in the control group and CWPs at different stages were shown in Figure 4D,
which showed a good increasing trend with the severity of the disease. This result indicated
that the increase in this biomarker may also reflect the severity of CWP.
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Figure 4. Metabolomics analysis of different stages of coal workers’ pneumoconiosis (CWP). Compar-
ison of metabolomics profiles and analysis of differential metabolites between the different stages of
CWP case groups and control group. PLS-DA (A) plots showed the different metabolomics profiles
between different groups. The distribution of differential metabolites in different groups was also
shown in the Venn diagram (B). T1: stage 1 CWP case group; T2: stage 2 CWP case group; T3: stage 3
CWP case group; C: control group. (C) After adjusting for the influence of confounding factors,
including age, smoking, drinking, chronic diseases and other potential biomarkers, by using multiple
logistic regression analysis, only the relative content of propylparaben was significantly related to
the CWP at different stages. (D) The more serious the CWP disease was, the higher the content of
propylparaben was. * p < 0.05, significant difference compared with the control group.

3.6. Diagnostic Analysis of Potential Biomarkers for CWP

Diagnostic experiments were conducted for the key potential biomarker of CWP. As
shown in Figure 5, the receiver operating characteristic (ROC) curve for propylparaben
was drawn. The results showed that the area under the curve (AUC) reached 0.777 (95% CI:
0.717–0.837), indicating good sensitivity and specificity for the differential metabolite of
propylparaben as a potential biomarker of CWP.
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4. Discussion

This study focused on biomarkers of pneumoconiosis and achieved satisfactory results
by using a case–control design and serum metabolomics detection. Significant changes
in the metabolic profile in the serum occurred between the CWP patients and healthy
controls. The contents of 68 metabolites changed significantly in the CWP case group.
Through further analysis by machine learning strategy, the four most important differential
metabolites, including propylparaben, benzamide, terazosin and N-methyl-2-pyrrolidone,
were screened. However, after adjusting for the influence of confounding factors, this study
identified propylparaben as a good biomarker of CWP. At the same time, the contents
of serum propylparaben in different stages of CWP had a good progressive relationship,
which increased with the severity of the disease. The ROC curve also confirmed the good
sensitivity and specificity of this serum metabolite as a CWP biomarker.

Metabolomics is a very suitable method to explore biomarkers [17]. In recent years,
metabolomics has been widely used in the screening of biomarkers of diseases, including
cancer [18,19], cardiovascular diseases [20], liver diseases [21], respiratory diseases [22], di-
abetes mellitus [23] and even mental illness [24]. This research not only screened out a good
biomarker that could reflect CWP and its severity but also suggested that metabolomics
combined with ML strategy may be an effective way to explore biomarkers in complex
diseases such as pneumoconiosis. Pneumoconiosis currently lacks good objective biomark-
ers because the main basis for CWP diagnosis is still X-ray chest radiography, which has
certain subjectivity. Meanwhile, the diagnosis of pneumoconiosis involves occupational
disease compensation in China, making the diagnosis more sensitive and potential conflicts
of interest. Therefore, good objective biomarkers are very important and practical for
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these complex diseases, such as pneumoconiosis, and this study provides a universal and
practical method for their exploration.

Propylparaben is an organic compound, also known as propyl chemosept or propyl
parasept, belonging to the class of benzene and substituted derivatives. The sources of
human exposure to propylparaben are diverse, and the exposure time is long. Food,
cosmetics and drugs are considered as the main exposure sources, accounting for 1.3%, 66%
and 33%, respectively [25]. Liao et al. [26,27] detected various kinds of parabens with an
average content of 39.3 ng/g in almost all foods in China and the United States (USA), and
the average proportion of propylparaben was approximately 10%. Guo et al. [28,29] tested
the content of parabens in many types of cosmetics in China and the USA. They found that
all cosmetics contained parabens, among which methylparaben and propylparaben were
the most abundant. Given that propylparaben is widely used in cosmetics, and women
use more cosmetics, gender is indeed a potential confounding factor. However, due to
the particularity of coal workers’ pneumoconiosis (CWP) patients, the cases are basically
male. Both cases and controls included in this study were male. Cosmetics are used less
in men, so we did not collect the information of cosmetic use. In addition, propylparaben
also appeared in drugs [30], water [31] and indoor dust [32]. Extensive environmental
exposure to propylparaben has resulted in the general situation of human intake and made
it a common exogenous metabolite in the human body [33].

Propylparaben in the human body can be metabolized in the intestine and liver, par-
tially keep the prototype, and finally be excreted from the body through urine, bile and
feces. The known metabolic pathways of propylparaben may include hydrolysis, transes-
terification and hydroxylation [34,35]. However, many previous studies have reported that
complete parabens can be detected in human serum, urine, placenta, breast milk and breast
tumor tissue [36–40]. Ye et al. found that the median values of propylparaben in human
serum and urine could reach approximately 10 µg/L, which indicated that propylparaben
could keep the prototype after being absorbed, avoiding the degradation of skin vinegar
enzyme and intestinal or liver metabolic systems [36,39]. The present study found that
the prototype propylparaben showed different levels in the serum of CWP patients at
different stages, which may be related to changes in its metabolism. However, research
on the relationship between the metabolism of propylparaben and CWP development
has not been reported. Pneumoconiosis is closely related to the oxidative stress of the
body, and redox imbalance may interfere with the metabolism of propylparaben [41,42].
Therefore, we speculated that CWP-related redox imbalance may be one of the reasons for
the metabolic disorder of propylparaben. However, the specific mechanism is still unclear
and needs further study.

Currently, clinical identification and diagnosis of pneumoconiosis mainly rely on
radiological images, but they are more or less subjective and late. Biomarkers of pneumo-
coniosis for early detection or diagnosis are of great significance for early identification
and intervention of diseases. Although there have been many studies on the biomarkers of
pneumoconiosis, the biomarkers with good sensitivity and specificity are still very limited,
especially those verified by population studies. Many potential biomarkers are proposed
based on toxic effects and underlying mechanisms following exposure to coal dust or silica,
such as glutathione, glutathione peroxidase activity, TNF-α and IL-8, etc. [43]. However,
these oxidative, inflammatory and immunological biomarkers are usually not very specific.
Further studies also found serum Clara cell protein-16 (CC16) and l-selectin levels could
be good biomarkers of pneumoconiosis effect, and neopterin levels in urine and serum
may be good exposure biomarkers [44]. However, large sample epidemiological studies
and are still needed for population verification, especially in combination with a large
number of different types of people, including pneumoconiosis, healthy control and even
nonpneumoconiosis workers exposed to occupational dust. In this study, a case–control
study design and advanced metabolomics combined with machine learning methods were
used to screen biomarkers of CWP, which had certain initiative and innovation. A recent
multiomics study [45] that was integrated with transcriptomics and metabolomics analyses
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of silicosis was reported, which revealed that several metabolites were significantly upreg-
ulated in silicosis mouse lungs, such as prostaglandin D2 (PGD2) and thromboxane A2
(TXA2). The authors of this article believed that arachidonic acid (AA) pathways, especially
PGD2 and TXA2, may be potential therapeutic targets for silicosis. However, the biomarkers
proposed in this study still need to be tested for validity and feasibility in further studies.

The potential biomarker of propylparaben for CWP was screened by metabolomics
and a series of bioinformatics analyses. Practices have indicated that these methods have
great advantages and applicability. Metabolomics has been considered an excellent high-
throughput method to explore biomarkers and even explore mechanisms [12,17,46]. Subtle
metabolomic changes could appear before significant functional cellular damage [47],
which confirmed the good sensitivity of metabolomics. However, the problem with a suffi-
ciently sensitive method is the dimensionality reduction screening of the most important
biomarkers. In the present study, ML strategy was used for precise screening. Firstly,
68 differential metabolites were analyzed by univariate and multivariate statistics from
hundreds of identified metabolites in serum metabolomics. Secondly, ML methods were
further used to screen more important differential metabolites. Three ML methods, includ-
ing RF, SVM and boruta, have their own advantages and disadvantages [16]. RF is simple,
easy to implement, fast and shows strong performance in many real tasks. However, the
RF model is not easy to explain, and it may fall into “over fitting” when the sample size is
small and there are many characteristics. The performance of SVM is not as good as that
of neural network model and random forest. In addition, SVM is difficult to solve multi
classification problems. When sample size in the metabolomics is small and differential
metabolites are many, the complex kernel function may increase over fitting risk. Therefore,
three ML methods were used together to identify the most important potential biomarkers.
As the influence of confounding factors must be considered in epidemiological research,
logistic regression analysis was performed to confirm the relationship between CWP and
the relative expression of potential biomarkers after adjusting for the influence of age,
chronic diseases, smoking and drinking. In this way, only one potential biomarker was
retained, which was propylparaben. Finally, the sensitivity and specificity of propylparaben
as a CWP biomarker were evaluated by drawing the receiver operating characteristic curve
(ROC), and it was proven to have good performance. This series of methods has good effec-
tiveness through the practice of this study and may play a role in the study of biomarkers
of other diseases.

The potential public health implications of this study lie in providing biomarkers
for early screening of CWP. This has important practical significance for pneumoconiosis,
which has a very long incubation period and is still incurable. In addition, the metabolite
biomarkers obtained in this study can also be used to complement potential laboratory
diagnostic indicators of CWP, which may have better objectivity than X-ray observations.
At the same time, the series of detection and data analysis methods used in this study can
also provide a paradigm for the biomarker screening of other complex environment-related
diseases. However, some limitations existed in the present study. The first limitation was
the mismatch between the case group and the control group. Although the inclusion of the
control group and the case group tried to match age, chronic diseases, living environment,
smoking, drinking and other factors in the initial stage of the study design, a complete
match could not be achieved in the research process. The case and control were chosen from
the same area in Beijing, so we thought that the influence of the living environment was
basically controlled. However, patients with CWP were older, and smoking or suffering
from chronic diseases were more common than the control, so these aspects could not be
completely matched in the two groups. Therefore, in the end, we must adopt statistical
methods (multiple logistic regression analysis) to control their influence as much as possible.
Secondly, the sample size may be also a limitation. The current sample size may be
acceptable for metabolomics research and we did find a significant difference between the
case group and the control group under this sample size. However, to increase the strength
of the evidence for the conclusions of this study, a larger sample size study is still needed.
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Subsequent verification in more CWP patients would be of great significance. Finally, the
complications of CWP patients and the more common chronic diseases due to older age
may lead to the fact that the biomarkers screened in this study may not specifically reflect
the effects of CWP. However, we believe that at least the biomarkers should be the result of
the combined effect of CWP and other factors, as it is a common feature of pneumoconiosis
patients. Moreover, the difference between metabolic perturbations, mainly referring to the
differential expression of metabolites in metabolomics, and clinically significant changes in
diseases cannot be ignored.

5. Conclusions

In conclusion, the present study found that the serum metabolomics profile of CWP
patients changed significantly. A total of 68 differential metabolites were identified in the
serum of CWP cases compared to the control group. A series of statistical analyses, includ-
ing machine learning methods, demonstrated that the serum metabolite propylparaben
should be an excellent potential biomarker of CWP. At the same time, the propylparaben
content was also significantly positively correlated with the stage of CWP, which could
reflect the severity of the disease. However, the biological basis of this potential biomarker
is still unclear. Metabolomics combined with a machine learning strategy should be an
effective tool to explore biomarkers for complex diseases, including pneumoconiosis.
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pneumoconiosis group and the control group.
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