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With the rise of automated and autonomous agents, research examining Trust in 
Automation (TiA) has attracted considerable attention over the last few decades. Trust is 
a rich and complex construct which has sparked a multitude of measures and approaches 
to study and understand it. This comprehensive narrative review addresses known 
methods that have been used to capture TiA. We examined measurements deployed in 
existing empirical works, categorized those measures into self-report, behavioral, and 
physiological indices, and examined them within the context of an existing model of trust. 
The resulting work provides a reference guide for researchers, providing a list of available 
TiA measurement methods along with the model-derived constructs that they capture 
including judgments of trustworthiness, trust attitudes, and trusting behaviors. The article 
concludes with recommendations on how to improve the current state of TiA measurement.
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INTRODUCTION

A critical factor of the success of human-machine teaming is the trust that the human teammate 
possesses in their machine teammate. Automation and autonomous systems offer greater 
consistency and accuracy than a human could provide, often in tasks that are too repetitive, 
fast, or dangerous for humans to perform. With these new teammates comes the opportunity 
for greater team performance – if the human operator trusts their autonomous teammate, the 
human may focus on their own tasks and strengths. The uncertainty and vulnerability that 
comes with trusting these machine partners fulfills the classic definition of trust as “…the 
attitude that an agent will help achieve an individual’s goals in a situation characterized by 
uncertainty and vulnerability” (Lee and See, 2004, p.  54). This definition parallels earlier 
definitions of trust in including risk and incentives at stake (Mayer et  al., 1995). Given how 
crucial trust is to effective teaming and the increasing ubiquity of autonomous and automated 
teammates, interest in studying trust in those systems has correspondingly increased. These 
automated systems are the focus of applied research by their builders and basic research 
performed by academics who now have greater access to these tools.

The research approaches to the subject of trust are as varied as the products intended to 
inspire trust. In consequence, trust research is no longer the sole domain of a limited number 
of trust in automation (TiA) experts and is often performed by those who have direct access 
and an immediate interest in autonomous and automated systems. While the proliferation of 
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this topic is a boon for the field, prior work has established 
that trust is too often measured by a small set of popular 
self-report measures (Kohn et al., 2020) or by popular measures 
that may be flawed (Gutzwiller et al., 2019). Novice researchers 
also have a troubling tendency to use custom measures that 
have not been previously validated (Kohn et al., 2020). Similarly, 
researchers may mis-conceptualize the constructs that they are 
capturing. TiA is a multi-faceted latent concept that defies 
easy conceptualization, yet trust measurement often purports 
to capture the simple construct “trust,” defying the complexity 
of this concept as established in existing trust models (e.g., 
Mayer et  al., 1995; Lee and See, 2004; Hoff and Bashir, 2015). 
As a result, the selected trust measures used may be insensitive 
to the trust manipulation or may provide inconsistent or 
non-replicable results because they are capturing a facet of 
trust other than what the researchers intended.

Developing expertise in TiA research should not be necessary 
in order for researchers and practitioners to utilize trust measures. 
Rather, the field should provide reference tools that make 
selection and discussion of appropriate measures easier. Despite 
the many recent reviews and meta-analyses that have lent 
legitimacy to the topic of TiA and its sibling human-robot 
trust (See: Lee and See, 2004; Hancock et  al., 2011; Hoff and 
Bashir, 2015; Schaefer, 2016; de Visser et  al., 2020; Chiou and 
Lee, 2021), these reviews do not thoroughly review or discuss 
trust measures nor offer guidance about when or how different 
trust components may be  captured. Researchers may turn to 
one of the new trust measurement methods that are introduced 
every year, but these works often only review the alternative 
measurement options in order to point out their deficiencies 
in comparison to the new method.

Therefore, we  present a review work that serves as an 
educational tool, as well as a reference for those seeking to 
measure TiA – whether novices or experienced practitioners. 
This work will objectively examine and compare existing methods 
of measuring TiA, identify the facets of trust captured by each 
measure by contextualizing them within Mayer’s popular model 
of trust (1995), and describe the advantages, disadvantages, 
and usage of each category of trust measurement. A review 
of this magnitude has not been previously performed for trust 
measurement and is needed to improve the state of measurement 
in the field. This review intends to grant greater insight into 
what is being captured by this TiA measurements and make 
recommendations for improved accuracy and appropriateness 
of trust measurement.

Focus of This Review
This review focuses on the measurement of TiA. TiA, as defined 
by Lee and See (2004, p.  54), will play an increasingly large 
role in our interactions with technology given the rapidly 
broadening capabilities of said technology. Automation is defined 
as “the execution by a machine agent (usually a computer) 
of a function that was previously carried out by a human” 
(Parasuraman and Riley, 1997, p.  231), while autonomy has 
been defined as systems that are “generative and learn, evolve 
and permanently change their functional capacities as a result 

of the input of operational and contextual information” (Hancock, 
2017, p.  284). The primary differentiator between automation 
and autonomy is self-governance (Kaber, 2018). The current 
review focuses on the operator-automation dyad, a single 
operator supervising one or more automated agents (Parasuraman 
and Riley, 1997; Parasuraman, 2000). Examples include an 
operator using a bag-screening tool to detect hazards, a pilot 
supervising the auto-pilot of a plane, a driver interacting with 
the automated driving capabilities of a car, or an operator 
supervising multiple unmanned vehicles or interacting with a 
robot leader that in turn supervises other agents (e.g., Chen 
and Barnes, 2014). While the automation may consist of many 
component systems, this review focuses on operators collaborating 
with single instances of automation or automation that is viewed 
as a collective (See Geels-Blair et al., 2013, for a larger discussion 
of trusting automation as individual components versus a 
collective system). This interaction stands in contrast with the 
human-autonomy team, which focuses on teams of humans 
and autonomous agents which have distinct roles and 
interdependence in activities and outcomes (O’Neill et  al., 
2020). The operator-automation dyad and human-autonomy 
have been empirically found to be distinctly different (Walliser 
et  al., 2019). With this contrast in mind, all discussion of 
trust measurement refers to the operator-automation dyad unless 
otherwise stated.

The automation may have a variety of characteristics: It 
may be  solely expressed in software or may be  embodied, 
such as a robot. It may possess a design that inspires 
anthropomorphism through facial features (DiSalvo et al., 2002; 
Phillips et  al., 2018), labeling (Waytz et  al., 2014), voice (Nass 
et al., 1997; Muralidharan et al., 2014), or etiquette (Parasuraman 
and Miller, 2004; de Visser and Parasuraman, 2010), among 
many other characteristics. Automation may also handle a large 
variety and complexity of tasks, in many different environments, 
some of which may be  interpreted as more or less appropriate 
for automation (Hertz and Wiese, 2019) and thereby 
influence trust.

Regardless of these variations in design, TiA only becomes 
relevant when the human is uncertain that their teammate 
will perform competently and reliably and when risks are tied 
to that performance. Without either, trust is replaced with 
certainty and control (Das and Teng, 2004). Prior research 
has introduced uncertainty and vulnerability in a variety of 
ways with a variety of tasks, such as pasteurization controllers 
with performance bonuses at stake (Lee and Moray, 1994), 
health decision aids with patient health at risk (Pak et  al., 
2012), or convoy route planning aids with the risk of a simulated 
attack (Lyons and Stokes, 2012). In these scenarios, the operator 
must determine whether the automation is worthy of their 
trust, given that failure and harm are possible whether they 
rely on the automation or rely on themselves. Given the 
uncertainty and vulnerability involved in trusting an automated 
teammate, it is crucial for the operator’s trust to be  properly 
calibrated, neither trusting the automation too much nor too 
little for the situation and its ability (Lee and See, 2004). 
Mis-calibrated trust between humans and automation may lead 
to misuse or disuse of automation, each with their own set 

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Kohn et al. Measurement of TiA

Frontiers in Psychology | www.frontiersin.org 3 October 2021 | Volume 12 | Article 604977

of consequences to safety and efficiency (Parasuraman and 
Riley, 1997).

Capturing the current level of trust is not a simple task: 
Trust is commonly conceptualized as a latent variable that 
cannot be directly observed but rather must be inferred. Trust 
is dependent on the interplay between analytic, analogical, 
and affective processes, especially emotional responses to 
violations or confirmations of expectations (Lee and See, 
2004). These affective responses mean that trust is not solely 
a cognitive process, but also an emotion which varies over 
time (Fine and Holyfield, 1996). Trust can vary due to a 
variety of factors, including factors of the automated partner, 
the environment in which the task is occurring, and 
characteristics of the human interaction partner (Schaefer 
et  al., 2016). Furthermore, the  nature of trust itself changes 
during an interaction, shifting  rapidly from trust due to the 
disposition of the human interaction partner to trust due to 
interaction with the automation (Merritt and Ilgen, 2008; 
Hoff and Bashir, 2015).

In consequence, TiA can be  difficult to accurately measure. 
Likert-type scales employ an ordinal indicator of the participant’s 
trust in the automation, but these scales abridge trust into a 
simple value that may not properly capture the contextual 
nature of trust, its fluidity over time, or external biases. If 
we  envision trust as a process, as proposed by Mayer et  al. 
(1995), then the dynamic nature of trust is even less well-
suited for capture by infrequent Likert scales. Some authors 
suggest that trust may be  context- and task-specific (Lewicki 
et al., 1998) and that trust and distrust can exist simultaneously 
(Lewicki et  al., 2006). These arguments further complicate the 
waters of self-report trust measurement. Despite these difficulties, 
it is crucial for designers and researchers to be able to measure 
TiA. Accurate measurement can give context to user behavior 
and help direct the design of automation, yet researchers 
currently lack a reference work/educational tool that empowers 
them to pick trust measures for their research and understand 
precisely what is being captured by each measure. The resulting 
review consists of:

 1. A constructive inventory of prior TiA research’s measurement 
of trust;

 2. A synthesis of existing trust measurement methods that 
examines which component of trust from Mayer et  al.’s 
(1995) trust model is being measured by each method; and

 3. A discussion and critique of TiA measurement and potential 
solutions to identified deficits.

To grant greater context to these topics, we  provide an 
overview of Mayer et  al. (1995) process-oriented model of 
trust and the approach that was taken to survey existing 
methods of trust.

Models of TiA
Background
The empirical measurement of human trust is relatively new, 
even within behavioral psychology. One of the first such 
measurements captured perceptions of the ethos (including 

trustworthiness as a character trait) in humans delivering a 
speech (McCroskey, 1966). Scales of interpersonal trust were 
developed and began to be  widely used in the 1970s and 
1980s (Rotter, 1971; Rempel et  al., 1985). The concepts of 
trust in computers and automation promptly manifested when 
those concepts became widespread. While mechanical automation 
has been around for centuries (i.e., temperature regulators 
invented by Cornelis Drebbel in the 1620s and electromechanical 
analog fire control computers in the second World War), the 
rise of personal computers in the 1980s began to expose 
exponentially more people to increasingly capable and complex 
automation. This automation was more flexible than the highly 
specialized automation of earlier eras, and – as a consequence 
of greater uncertainty and vulnerability associated with the 
use of these devices – required greater trust from its users. 
TiA is relatively similar to trust in other humans, in that both 
represent a situation-specific attitude that is relevant when 
something is exchanged in a cooperative relationship 
characterized by uncertainty (Hoff and Bashir, 2015). While 
the differences may seem subtle, they are crucial and manifold, 
affecting the inception of trust through to its evolution and 
recovery (Madhavan and Wiegmann, 2007; de Visser et  al., 
2016). Therefore, there is a strong need for empirical trust 
research specific to automation, which began in earnest with 
seminal works by Muir (1983, 1987) and Lee and Moray (1991). 
As the quantity of research on this topic increased, so did 
the capability to generate mature and informed models and 
conceptualizations of TiA.

Conceptualizations of trust have become increasingly unified 
in recent decades, but there is no single universally accepted 
definition or model of TiA, perhaps due to the contextual 
nature of trust. Lack of a unitary model means that the concept 
of “trust” being measured may vary based on the intent and 
conceptualization of the individual researcher – assuming said 
researcher has couched their measurement within a model at 
all. This is understandable, given that most models of trust 
do not sufficiently specify how trust measurement is related 
to the overall model or its components. The disconnect of 
measurement and models prevents systematic scientific inquiry 
of the trust topic. For example, the highly influential and 
useful Lee and See (2004) and Hoff and Bashir (2015) models 
do not relate their conceptual models explicitly to different 
types of trust measurement. Meta-analyses for human-
automation trust (Schaefer et al., 2016) and human-robot trust 
(Hancock et al., 2011) do relate to measurement as a consequence 
of requiring trust measures in the studies that inform their 
models. Yet even in those analyses, it is not always apparent 
which measures were used, because the results of multiple 
studies are presented in the aggregate. As a result, trust theories 
cannot be  sufficiently tested, because it is unclear which 
measures are appropriate to test the specific hypotheses derived 
from these theories. Similarly, a lack of clearly defined measures 
as they connect to trust theory has also forced scientists to 
create their own ad hoc measures that capture trust as a 
monolith, rather than a targeted aspect of trust theory. As a 
result, it is often unclear how a given study’s results contribute 
and fit into the larger story about TiA. This may duplicate 
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efforts, wasting the time and resources of scientists interested 
in exploring trust because there is no coherent narrative and 
no clear “state of the art” for TiA research. Exceptions do 
exist to this critique: Some recent measures such as the TOAST 
(Wojton et  al., 2020) and multi-dimensional measure of trust 
(MDMT) (Malle and Ullman, 2021) explicitly and intentionally 
relate to existing models. These measures are some of the 
few exceptions that prove the general rule.

To frame our present discussion of trust measures and 
to directly address the above critiques, we  are focusing on 
Mayer et  al.’s process-oriented model of organizational trust 
(1995). While Mayer’s model was not originally intended 
for automation, it is a commonly used model of trust 
(Rousseau et  al., 1998) and has therefore been adopted to 
TiA as well (see Lee and See, 2004, for a discussion of 
said adaption). Discussing trust measurement within the 
context of a model that is often referenced in automation 
literature enables our analysis to delineate exactly which 
component of trust is being captured by each measure and 
to grant a consistent and familiar meaning to each measure. 
No single trust model cleanly envelopes all of the available 
trust measures, but Mayer’s model is popular and 
comprehensive, and the process-oriented nature of the model 
enables us to directly relate trust measures to different 
aspects of the trust process. This effort will assist practitioners 
in understanding what is being captured by each trust 
measure, what factors may influence the outcomes of each 
measure, and explain variations within these outcomes. 
Agnostic of models, trust is a complex combination of 
constructs, and many measurement methods capture a facet 
of trust rather than the entire concept – even if the measure’s 
creators did not originally draw that distinction. Thus, any 
discussion of trust measures must be  intelligibly couched 
within the context of these models.

Trust Model
Mayer et  al. (1995) created a process-oriented model of trust 
that has been widely adopted by the TiA community despite 
its original intent as a model of organizational trust (Mayer 
et  al., 1995). In part, this adoption may be  due to the clear 
differentiation between six primary components of trust. While 
the model at large is ostensibly a trust model, only one of 
the six components is trust itself – the others are antecedents, 
context, and products of trust. These components are not 
only crucial for understanding trust as an attitude and behavior, 
but also establish the uncertainty and vulnerability cited in 
Lee and See’s (2004) trust definition. Furthermore, while trust 
measures often do not self-identify as capturing a specific 
component of any given model, we  have found that many 
trust measures fit cleanly within one or more of the components 
defined by Mayer. To persuasively communicate this argument, 
we will describe each component within this model and relate 
how they could theoretically be  captured by different 
measurement methods. Figure  1 broadly displays which 
categories of trust measures capture which trust model 
components, while Table  1 provides a granular breakdown 
of how each component may be  measured.

Trustworthiness
The first component of Mayer’s model is the three Factors of 
Perceived Trustworthiness: ability, benevolence, and integrity. 
Ability is skills and competencies; integrity is the degree to 
which the trustee adheres to a set of principles that are acceptable 
to the trustor; and benevolence is the extent to which the 
trustee’s motivations are aligned with the trustors. Notably, 
this first component is the one that translates least cleanly 
between automation and the original organizational focus of 
this model. Both automation and humans possess ability, though 
automation suffers from some assumptions in regard to its 
latent ability (Automation Bias, Parasuraman and Riley, 1997; 
and the Perfect Automation Schema, Dzindolet et  al., 2002). 
The same is not equally true for integrity and benevolence, 
and prior research suggests that some agents may not 
be perceived as possessing these qualities. See Malle and Ullman 
(2021) for a discussion of moral trust in agents.

Lee and See (2004) have provided an automation-friendly 
translation of these three factors: performance (how well the 
automation is performing), process (in what manner and with 
which algorithms is it accomplishing its objective), and purpose 
(why the automation was built originally). Regardless of the 
iteration used, this component of the trust model captures 
perceptions of the system’s trustworthiness-related characteristics 
prior to, or during, interaction. The primary method of capturing 
these perceptions is self-report – asking participants to answer 
survey questions concerning their assessment of the agent’s 
ability, integrity, and benevolence. While some surveys explicitly 
capture these three factors (Mayer and Davis, 1999), most 
capture a set of dimensions which obliquely include these 
factors in addition to other trustworthiness queries: For instance, 
the Checklist for Trust (Jian et  al., 2000) has questions that 
closely map to ability, integrity, and benevolence, in addition 
to others which address trustworthiness in a more oblique 
manner. Other surveys focus on trustworthiness as a singular 
construct without component factors (Lee and Moray, 1992, 
1994). Notably, the predictive effect that ability, benevolence, 
and integrity perceptions have on trust changes over time with 
accumulated experience (Serva et  al., 2005), making repeated 
measurement of these component factors crucial.

Trustor’s Propensity
Participants’ perceptions of ability, integrity, and benevolence 
(and thus trustworthiness at large) are influenced by their 
innate propensity to trust – static traits caused by culture, 
experiences, and personality types that moderate how perceptions 
of trustworthiness translate to trust attitude. Propensity to trust 
is stable over time and impacts whether a trustor will trust 
their partner before they have shared any experience: Trustors 
enter the relationship with a pre-established conception of the 
trustee’s trustworthiness. This mental schema is most often 
captured by self-report measures. Notably, the effect of trustors’ 
propensity has a waning effect as the trustor accumulates 
experience with the trustee, which may be captured by measuring 
trust before and after the trustor has established a history of 
interaction (Merritt and Ilgen, 2008).
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Trust
Only one of the six primary constructs of Mayer’s trust model 
is trust itself. Within this model, trust is a cognitive stance 
or attitude that exists during interactions: the theoretical 
willingness to engage in trusting actions. As such, while it 
may be  inferred from the trustworthiness perceptions that 
precede it or from the behavioral expressions of trust that 
proceed from it, trust itself is a distinct construct. Consequently, 
measurement of trust attitudes is often conflated with measuring 
these accessory constructs. Appropriate methodology can attempt 
to capture a cleaner sample of trust attitudes via self-report 
or physiological methods, but both have distinct weaknesses. 
Asking trustors to self-report their own level of trust is extremely 
common within TiA research (Hancock et  al., 2011), yet 
establishing construct validity is difficult for such latent variables. 
Trust measurement via physiological methods may avoid self-
report’s issues with introspective (in-)ability by directly capturing 

trustors’ internal calculus. Unconscious mental calculations of 
conditional and unconditional trust (Krueger et  al., 2007), and 
moral character (Delgado et  al., 2005), and reputation (King-
Casas et  al., 2005) are reflected in neural activation, yet the 
promise of neurological measurement has not been substantially 
leveraged to capture TiA at this time.

Perceived Risk
As previously established by Lee and See’s definition of trust 
(2004), vulnerability is a crucial component of trust; trust in 
a situation that has no potential for negative consequences is 
effectively meaningless. The potential for said consequences is 
risk, which moderates the relationship between a theoretical 
willingness to trust versus trusting behaviors (Mayer et  al., 
1995). Accordingly, individuals are less likely to engage in 
trusting behaviors in situations where they perceive high risk 
(Ezer et  al., 2008; Lyons et  al., 2011; Satterfield et  al., 2017). 

FIGURE 1 | An annotated reproduction of Mayer’s organization model of trust (Mayer et al., 1995) noting which measurement methods (labeled brackets) are 
typically used to capture different constructs (rectangles) of the model.

TABLE 1 | Comparing trust models to process and measures.

Trust type Trust process step Measure category Experiment step

Factors of perceived 
trustworthiness

The perception of the system’s trustworthiness-related characteristics Self-report Before/during interaction

Trustor’s Propensity Effects of the individuals’ traits (culture, genetics, and age) Self-Report Before Interaction
Trust The trust stance or attitude that exists during interactions, continually 

influenced and updated by feedback
Self-Report; 
Physiological

During/After Interaction

Perceived Risk Effects of the individual’s understanding of the situation, including risk N/A Pre-Interaction, in environmental 
situation

Risk-Taking in Relationship The trust behavior that is expressed during interactions, continually 
influenced and updated by feedback

Behavior During/After Interaction

Outcomes The combination of system accuracy and user trust, that provides 
feedback and influences future trust attitudes

N/A During/After Interaction
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Given that risk is a situational moderator that is unaffected 
by perceptions of trustworthiness and unchanged by feedback, 
direct measurement of this construct is out of scope of the 
current review.

Risk-Taking in Relationship
Trustors balance the strength of their trust attitude with the 
situational risk they perceive. If trust outweighs risk, then the 
aforementioned theoretical willingness to trust will lead to a 
behavioral expression of trust: increased risk-taking in the 
relationship (Mayer et  al., 1995; Colquitt et  al., 2007). The 
trustor will behaviorally rely on the trustee in a manner that 
makes themselves vulnerable in hopes of supporting and meeting 
their goals. Risk-taking does not require trust to occur; individuals 
may take risks solely based on a probability-based gamble, 
but more risks will be  taken with the trustee after trust is 
established. As risk-taking is a behavior – typically taking the 
form of reliance or compliance with the trustee – it may 
be  captured and used to estimate trust states.

Outcomes
The trustor’s risk-taking interacts with the trustee’s reliability 
to produce an outcome. The value of that outcome – whether 
quantitative or qualitative, positive or negative – is assessed 
by whether it helped or hindered the trustor’s goals. This 
assessment is the primary feedback that influences future trust 
attitudes, informing evaluations of ability, benevolence, and 
integrity. These updated trustworthiness perceptions power the 
next cycle of trust and feedback. Thus, trust gradually develops 
from a mental calculus based on face values to trust based 
on experience and feedback (Lewicki et  al., 2006). While 
outcomes are a partial product of the trustor’s risk-taking, 
they are generally viewed as independent from trust itself and 
are not utilized as a trust proxy.

Relating Trust Measures to the Model
Mayer’s process-oriented model provides a clearly defined context 
for discussing trust measurement, as it delineates trust from its 
antecedents, context, and products. Such borders allow us to 
declare that a given measure is capturing a specific dimension 
or facet rather than a monolithic “trust.” Such an effort would 
help to better understand what is being measured, ensure the 
validity of these measures, and help explain discrepancies or 
variations within and across trust measurement. Toward this 
end, our prose breakdown of Mayer’s model defines each construct, 
Table  1 decomposes the trust process, and Figure  1 visually 
presents the model. The constructs discussed here will be  used 
to contextualize the trust measures presented in this review, 
contrast their products, and propose methodological improvements.

METHODOLOGY

Approach
This work follows the integrative narrative review methodological 
approach defined by Pautasso (2013) and outlined by Torraco 

(2005), wherein the trust measurement methods in question 
are inventoried and their value qualitatively – rather than 
quantitatively – compared. Each measure is mapped to Mayer’s 
integrative model of organizational trust (Mayer et  al., 1995). 
A direct quantitative comparison of different methods of 
measuring TiA is impractical due to the varying purposes, 
timing, and components of trust being measured. Therefore, 
while this review will not dictate which measure is best, our 
inventory will explain how each trust measure is applied, as 
well as which constructs of trust are captured by each measure.

Keywords
The authors iteratively developed a set of keywords to capture 
the maximum quantity of relevant literature. The core concept 
keywords were “Trust AND Automation OR Autonomous,” 
which represented the concepts of interest. Keywords surrounding 
robotics were excluded to constrain the scope of this work 
and limit irrelevant works. This constraint is acceptable given 
that (1) automation may be  embodied in a robot, but robotics 
is not definitionally automated; and (2) works concerning 
automated robots were included via our supplementary reference 
search and subject matter experts (SME) solicitation as explained 
below. Specific search keywords were added to these core 
concepts. These specific keywords were based on exemplar 
TiA papers, in addition to any keywords that were subjectively 
determined to be  relevant.

Searches strings were initially iterated within the PsychINFO 
and ACM databases, with subjective assessment confirming that 
the search results included relevant works and that the original 
exemplar papers were included in the search results. Collection 
criteria were limited to journal articles, conference publications, 
and early access works published on or after 1970, with a 
publication cutoff of June 2020. Only the Booleans “AND” and 
“OR” were used. The resulting 37 search strings each included 
“Trust AND Automation OR Autonomous” and a specific 
keyword added with an “AND” Boolean. The keywords used 
are listed in Table  2, and the databases utilized are as follows: 
PsychINFO, ACM, and IEEE. These databases were selected 
for their range of peer-reviewed works and the stable, replicable 
nature of searches performed there. Searches were performed 
using the broadest possible advanced settings in each database.

TABLE 2 | Keywords used.

Core concept Keywords, used following “AND”

Trust Subjective, Confidence, History, 
Disposition, Forgiving, Avoidance, 
Revenge, Reciprocity, Reliance, 
Compliance, Complacency, “Take-over,” 
“Take over,” Allocation, Allocate, 
Verification, Verify, Dependence, “Eye-
Tracking,” “Eye Tracking,” Neural, Brain, 
Cognitive, Neuroimaging, 
Neuroeconomics, Neuroergonomics, 
Neuroscience, MRI, fMRI, ERN, ERP, Pe, 
tCDS, Oxytocin, Cortisol, Hormones, 
Peptide, Neuropeptide

AND Automation OR Autonomous
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Selection Criteria
The searches were performed in June 2019 – with follow-up 
searches in June 2020 to capture 2019–2020 publications 
– and produced 41,923 results: 16,569 from PsycINFO, 6,458 
from ACM, and 18,896 from IEEE. Due to the intentionally 
broad nature of the initial keywords and searches, the majority 
of the resulting works were irrelevant and were iteratively 
excluded using the selection criteria below. To limit subjectivity, 
works that could not be  concretely excluded were jointly 
assessed by authors SCK, EJdV, and THS to determine 
whether they met the inclusion criteria. The criteria are 
as follows:

 ▪ The work was empirical;
 ▪ The work was available in English;
 ▪ The work concerned the interaction of humans and automation 

or autonomous systems;
 ▪ The work intended to measure the human’s TiA or 

autonomous systems;
 ▪ The work reported significance testing (frequentist or 

subjectivist) for the trust measure.

To maximize the completeness of our works, we  also 
performed a secondary set of inclusions. The reference lists 
of three exemplar works (Hoff and Bashir, 2015; Schaefer 
et  al., 2016; de Visser et  al., 2020) were reviewed to find 
papers that were not included in the initial database searches. 
This process uncovered 27 additional papers which adhered 
to inclusion criteria. TiA SMEs was solicited via e-mail 
for any works that they determined were relevant. Four 
SMEs responded, providing more than 300 relevant works, 
many of which were redundant with the existing list of 
publications. Notably, several of the exemplar work and 
SME-recommended trust measures were developed for use 
with robots, rather than non-embodied automation. Due 
to these measures’ flexibility and applicability to automation, 
we  included these works under the condition that they 
had been at least once applied to measure trust in 
non-embodied automation as well.

Exclusions
This review is potentially limited by several factors related to 
which sources were sampled. The scope of the sample was 
restricted to works concerning automation or autonomous 
systems and did not include “machine” or “robot” as keywords 
as those keywords exponentially increased the count and 
irrelevance of results: Machines and robots may be  automated 
or autonomous but are not required to possess that characteristic. 
Regardless, some trust in robot surveys were included in our 
review for reasons previously referenced. Our search terms 
were also based on search terms within known publications. 
The searches themselves are subjected to the limitations of 
the databases used, which may not include all preferred 
publications. The reference list review and SME solicitation 
are intended to resolve such gaps. In consequence, we  are 
confident that the current review is proportionately representative 
of how TiA is typically measured.

MEASURES OF TiA

Thirty measures of trust, applied to TiA, were uncovered 
in this review. These measures spanned self-report, 
behavioral, and physiological measures of trust. Each 
measure has been applied to TiA, though not all were 
originally intended for this narrow trust context – some 
measures were originally developed to capture interpersonal 
trust or trust in robots or autonomous systems. These 
measurement methods capture several different constructs 
of trust as defined by Mayer and delineated in Figure  1 
and Table  1, respectively. The adjudication for mapping 
each measure onto a relevant construct from Mayer’s trust 
model (1995) was performed by the authors of this review, 
except when the creators of each measure explicitly identified 
the construct the measure intends to capture. Those few 
cases are discussed in the description of each measure. 
The measures themselves are described below and listed 
in Tables 3–5.

TABLE 3 | Self-report measures of trust.

Measure Originating Source Relevant construct from 
Mayer et al. (1995)

Checklist for Trust Jian et al. (2000) Factors of Perceived 
Trustworthiness; Trust

Complacency Potential 
Rating Scale

Singh et al. (1993) Trustor’s Propensity

Custom Scales None Trust
Dynamic Reporting of 
Trust

Desai (2012) Trust

Human-Computer Trust 
(HCT) Questionnaire

Madsen and Gregor 
(2000)

Factors of Perceived 
Trustworthiness; Trust

Individual Differences in 
Trust in Automation

Varied Trustors’ Propensity

Integrated Model of 
Trust

Muir and Moray (1996) Trust

Measures of Trust & 
Trustworthiness

Mayer and Davis (1999) Factors of Perceived 
Trustworthiness; Trust; 
(Propensity & Outcomes not 
frequently used)

Multi-Dimensional 
Measure of Trust 
(MDMT)

Malle and Ullman (2021) Perceived Trustworthiness; 
Trust;

Self-Reports of 
Automation Qualities 
(Reliability, Accuracy)

None Factors of Perceived 
Trustworthiness

Trust & Self-Confidence 
Scale

Lee and Moray (1994) Trust

Trust in Automated 
Systems Test (TOAST),

Wojton et al. (2020) Factors of Perceived 
Trustworthiness

Trust in Automation 
Scale

Körber et al. (2015) Factors of Perceived 
Trustworthiness; Trust

Trust Perception Scale 
for Human-Robot 
Interaction (HRI)

Schaefer (2016) Factors of Perceived 
Trustworthiness; Trust

Trust Scale, Lee & 
Moray

Lee and Moray (1992) Trust

Trust Scale, Merritt Merritt (2011) Factors of Perceived 
Trustworthiness; Trust
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Self-Report Measures
The self-report measures are defined as measures in which 
respondents report on their own behaviors, beliefs, attitudes, 
or intentions by receiving a question or prompt and selecting 
a response. Surveys and questionnaires are the typical method 
of self-report. Many such measures utilize Likert or sliding 
scales, which require respondents to report these qualities 
along an ordinal or interval scale. Sixteen different types 
of self-report methods for capturing TiA are identified 
below in Table  3 and are defined in more detail below in 
alphabetical order. The origin of each measure is reported 
in the table.

Checklist for Trust Between People and 
Automation
The most frequently used self-report measure of TiA measurement 
with a cited source is inarguably Jian et  al. Checklist for Trust 
between People and Automation (2000) (Jian et  al., 2000). This 
scale is distinct in that it measures trust and distrust as polar 
opposites along a single dimension rather than simple 
unidimensional trust. Therefore, the output may be  a single 
all-encompassing trust value or separate values for the trust 
and distrust dimensions. This 12-item set of Likert scales includes 
a variety of items sampling distrust, such as perception of the 
automation’s deceptive nature or the likelihood of harmful 
outcomes if it is used. These items must be  reverse-coded if 
used to create a singular trust score. The trust items on the 
scale include assessments of reliability, integrity, and overall trust. 
Several of these items are conceptually similar to the Factors 
of Perceived Trustworthiness defined by Mayer et  al. (1995). 
Due to the length of the survey, this survey is typically deployed 
only after each experimental block or at the end of the task.

Complacency Potential Rating Scale
The seminal complacency scale developed by Singh et al. (1993) 
captures complacency toward automation, characterized by 
whether an operator is likely to ignore automation based on 
the belief that the system is, and will remain, in a satisfactory 
state (Singh et al., 1993). The 20-item survey captures attitudes 
toward automation in general and three items capturing trust. 
Similar to dispositional trust surveys, this measure captures 
trust prior to interaction and therefore excludes the influence 
of trust learned or calibrated through interaction with the 
automation. Similarly, this scale may be  administered prior to 
almost any type of task.

Custom Scales
The most frequently used method of TiA measurement – cited 
or otherwise – is custom self-report scales. These scales are 
distinct in that they either explicitly identify themselves as a 
custom creation or simply did not cite a source. In some 
instances, these scales cite inspirational sources, but in those 
instances, the end product scale is modified beyond the original 
sources to a degree that it can no longer be  attributed to any 
origin scale.

Custom measures ranged widely in intent, labeling, number 
of measures, and placement within the experimental task. As 
such, they are not identified as collectively representing a 
component or components within the Mayer et  al. (1995) 
trust model. However, the vast majority of these custom 
creations are Likert or sliding scales, often with only a single 
item. This single item was typically a theme on “To what 
degree do you  trust [this autonomous/automated system]?.” 
Despite the lack of citation, this item is functionally similar 
to the trust item used in Lee & Moray’s trust and self-confidence 
measure (1994): “How much did you  trust the automatic 
controller of the steam pump?.” The overlap is unlikely to 
be  intentional in most instances. Due to the typically 
parsimonious nature of these custom scales, they were easily 
integrated into many different types of tasks and often repeated 
throughout the task.

Dynamic Reporting of Trust
Dynamic reporting of trust fills a particular niche in the 
self-report measures, enabling participants to respond at 
extremely frequent intervals with minimal interruption to 

TABLE 5 | Physiological measures of trust.

Measure Representative source Relevant construct from 
Mayer et al. (1995)

Electrodermal Activity Akash et al. (2018) Trust; Perceived Risk
Eye Gaze Tracking Hergeth et al. (2016) Trust
Heart Rate Change & 
Variability

Waytz et al. (2014) Trust; Perceived Risk

Neural Measures de Visser et al. (2018) Factors of Perceived 
Trustworthiness; Trust

TABLE 4 | Behavioral measures of trust.

Measure Representative source Relevant construct from Mayer et al. (1995)

Combined Team Performance de Visser et al. (2016) Outcomes
Compliance/Agreement Rate Chancey et al. (2017) Risk-Taking in Relationship
Decision Time Yuksel et al. (2017) Risk-Taking in Relationship
Delegation Xie et al. (2019) Risk-Taking in Relationship
Economic Trust Game: Stakes Invested Berg et al. (1995) Risk-Taking in Relationship
Intervention Itoh et al. (1999) Risk-Taking in Relationship
Reliance Rice (2009) Risk-Taking in Relationship
Response Time Körber et al. (2018)
Verification Ho et al. (2005) Risk-Taking in Relationship
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the ongoing task (Desai, 2012). Responding at a particular 
cue or at will, participants indicate whether their trust has 
increased, remained the same, or decreased compared to their 
prior response (Desai, 2012; Desai et  al., 2013). Therefore, 
trust is measured relative to the prior report rather than 
relative to a static scale, which mandates repeated sampling 
to make the output truly meaningful. Some of these measures 
were deployed in a fashion that enabled participants to freely 
respond at the moment that they were aware of their own 
trust changing. While this minimalistic sampling method 
could be  applied to most types of experimental tasks, the 
mandate to sample frequently means that this measure should 
only be  deployed when near-real-time trust is required and 
can be  analyzed to preserve its temporal specificity.

Human-Computer Trust Questionnaire
The human-computer trust (HCT) questionnaire developed by 
Madsen and Gregor (2000) focuses on capturing trust in 
computer systems, specifically artificially intelligent decision 
aids (Madsen and Gregor, 2000). Five facets of trust (perceived 
understandability, perceived technical competence, perceived 
reliability, personal attachment, and faith) are captured using 
five items each, for a total of 25 survey items. While the score 
for each facet may be used to analyze trust in detail, an average 
score across all 25 items is often used to represent overall trust.

Individual Differences in TiA
Perception of a teammate’s trustworthiness is influenced in 
Mayer’s model by the operators’ innate propensity to trust. 
This is distinguished from all other factors within Mayer’s 
model, in that it is solely the product of the operator’s disposition, 
not their history of interaction with the teammate. There is 
a wide range of disposition components that may be  captured 
using self-report TiA measures, including the following: operators’ 
tendency to be  complacent toward automation (Automation-
Induced Complacency Potential Rating Scale, Singh et al., 1993); 
operators’ high expectations for the automation (Perfect 
Automation Schema, Merritt et al., 2015); and operators’ tendency 
to trust automation (Merritt and Ilgen, 2008). There is also 
substantial evidence that personality influences TiA (Szalma 
and Taylor, 2011). All of the cited surveys have been frequently 
used to contextualize TiA behaviors. As they are administered 
prior to interaction, these measures may be  applied to almost 
any type of task without disrupting the experiment. One of 
the most common surveys is Merritt and Ilgen’s six-item capture 
of dispositional trust (2008), which is designed to be administered 
before and after the experiment. In doing so, it captures both 
trustors’ propensity and trust, enabling comparison of trust 
due to individual differences and trust influenced by a history 
of interaction.

Integrated Model of Trust
Muir and Moray’s prior trust model (1994) set the stage for 
a simple two-item measure of trust proposed in 1996 (Muir 
and Moray, 1996). This survey had a single item capturing 
trust on a 100-point scale and an item that captured the 

participant’s confidence in their own rating of trust. While 
the measure was intended for use with automated factory 
plant machinery, it was also used to capture trust in other 
types of non-automated systems. Potentially due to the fact 
that the confidence item simply qualifies the trust scale rather 
than providing any unique measure of the automation, many 
researchers who chose to implement this survey chose to 
omit that item in favor of the trust item alone.

Measures of Trust and Trustworthiness
Mayer’s trust model (1995) decomposed trust into several distinct 
constructs, which were later captured by Mayer and Davis’ (1999) 
survey (Mayer and Davis’ 1999). This survey separately captured 
ability, benevolence, integrity, propensity, trust, accuracy, and 
outcome instrumentality, enabling a direct comparison to the 
original trust model. Notably, only the measures of trust and 
trustworthiness have been widely used within TiA, often modified 
to fit the automation context (e.g., the use of Mayer’s trust-
specific measures in Lyons and Guznov, 2019).

Multi-Dimensional Measure of Trust
The MDMT is a multi-dimensional measure of trust, designed 
to capture trust in robots, rather than automation (Malle 
and Ullman, 2021). However, the authors explicitly identify 
the performance dimension of trust as being central to 
human-automation trust, while the moral aspect is more 
aligned with robots. This measure is particularly apt as it 
recognizes that not all dimensions will be  applicable to all 
agents nor all interactions – the MDMT enables participants 
to decline to answer any of the 16 questions if they are 
not applicable to the agent. This flexibility makes this survey 
more aptly convertible to human-automation trust.

Self-Reports of Automation Qualities (Reliability, 
Accuracy)
Self-reports of the participants’ perception of the automations’ 
competence have been used to infer trust. While these methods 
have no specific cited source nor identical wording, these 
self-reports (e.g., in Wiegmann et  al., 2001; Yuksel et  al., 
2017) capture a family of concepts related to automation 
competence. These typically single-item surveys asked 
participants to evaluate the automation’s reliability or accuracy 
and used those subjective results in turn to infer the 
psychological construct of automation trust. While we caution 
against solely using these competence-based survey items to 
capture trust, these queries are similar to the ability construct 
identified within Mayer’s Factors of Perceived Trustworthiness 
(1995) or the predictability and dependability items used 
within Lee and Moray’s, 1992 trust scale.

Trust and Self-Confidence Scale
A set of paired questions regarding trust in the partner performing 
the task and self-confidence in performing the task provides 
greater context for trust and reliance/compliance decisions 
in  Lee  and Moray’s (1994) measure (Lee and Moray’s (1994). 
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Taken together, these metrics proport to predict allocation strategy 
with an automated teammate: If trust exceeds self-confidence, 
the operator will rely on the system. This context is crucial, 
given that reliance does not always change in response to changes 
in trust (Lee and Moray, 1992). This lack of change may be due 
to differences in self-confidence.

Trust in Automated Systems Test
The Trust in Automated Systems Test (TOAST) scale developed 
by Wojton et  al. (2020) captures two dimensions of trust: 
understanding the system and system performance (Wojton et al., 
2020). The scale was tested for model fit and validated against 
existing measures of trust. The resulting nine survey items 
represent these two proximate causes of trust, conceptually similar 
to the Factors of Perceived Trustworthiness (Mayer et al., 1995).

TiA Scale
The TiA scale developed by Körber et  al. (2015) captures five 
subscales (Reliability/Competence, Familiarity, Trust, Understanding, 
and Intention of Developers) containing between two and four 
items, for a total of 19 items Körber et  al. (2015). Each facet 
may be  analyzed independently, and prior studies have focused 
on the reliability and trust facets. A calculated score of all 19 
items may also be  used to represent overall trust. The original 
scale is in German, yet has been translated for English language 
applications by the original authors (see supplemental materials 
in Körber, 2018, or access directly at https://github.com/
moritzkoerber/TiA_Trust_in_Automation_Questionnaire).

Trust Perception Scale for Human-Robot 
Interactions
The trust scale developed by Schaefer (2016) is notable for 
several reasons (Schaefer, 2016). As implied by the title, this 
scale is developed for interaction with robots, rather than 
generic machines or automation. While the scale has been 
used with automation, some of the items may be  more suited 
to embodied robots than software alone. Schaefer provides a 
14-item sub-scale within the larger scale that happens to be more 
appropriate for automation.

Both scales bypass the traditional method of asking the 
participant to self-report their own attitudes and instead 
capture trust by asking participants to estimate percentages 
of the time that a given robot will meet specific criteria 
or possess certain attitudes of its own. Finally, this scale 
is relatively unique in that it is intentionally designed to 
capture trust before and after interactions, capturing both 
initial dispositional trust that is the focus of Merritt’s surveys 
(e.g., 2008) and trust that is learned via interaction with 
the system (see: Hoff and Bashir, 2015 for a discussion of 
learned trust). While most self-report scales can capture 
those facets of trust, few are designed with the explicit 
intent of pre-post interaction trust capture. Due to the 
substantial length of this survey, the full 40 items are ideally 
administered pre-post interaction and not during the 
experiment. The same limitation applies, to a lesser degree, 
to the 14-item scale.

Trust Scale
Lee and Morays trust scale was based on prior work by Muir 
(1989) and captures predictability and dependability of the 
automation system as well as faith and trust in the system, 
with one item per dimension (Lee and Moray, 1992). These 
four items in combination represent the larger construct of 
trust, and indeed, the individual items for predictability and 
dependability mirrored the results for the independent trust 
item. Perhaps for this reason, many researchers who deployed 
this trust scale used only the single trust-specific item.

Trust Scale
Merritt’s trust scale (2011) was a custom creation that captures 
both the general construct of trust, but also the trustworthiness 
components of ability and benevolence per Mayer’s model 
(1995) (Merritt, 2011). These six Likert-scale items are readily 
adapted for measuring TiA and have been used or adapted 
periodically in other studies.

Self-Report Discussion
Self-report is a traditional and well-established method of 
capturing participants’ attitudes and beliefs in both interpersonal 
relationships and in interaction with machines. These measures 
seek to capture the participant’s perception of the automation’s 
ability, integrity, and benevolence (Mayer’s Factors of 
Trustworthiness, 1995), as well as their perception of their 
own Propensity to Trust and their internal Trust attitude. The 
latter is, of course, a latent variable that is difficult to directly 
measure or for a participant to precisely estimate. These three 
constructs are captured via surveys, some of which are precise 
in targeting and measuring a given construct, whether by 
intentional or by coincidental mapping to trust models. However, 
many trust surveys indirectly capture a single construct or a 
blend of multiple constructs and identify the result as being 
the monolithic construct of trust. Despite these potential issues, 
there are a large quantity of trust surveys of varying qualities. 
Their pros and cons are discussed here, as well as a larger 
critique of various approaches used by these surveys. A discussion 
of popular measures and their quality is also provided.

Critiques, Considerations, and Recommendations 
for the Use of Self-Report Measures
The trust self-report measures available to researchers range 
from the extremely brief (e.g., Desai’s (2012) stepped measure 
or Lee and Moray’s (1994) two-item trust and self-confidence 
survey) to very thorough (Madsen and Gregor’s, 2000 25-item 
HAT survey). Self-report measures are extremely easy to integrate 
into existing tasks, often with mild intrusiveness and little 
alteration of the existing task. Moreover, self-report measures 
of trust, whether unidimensional or multi-dimensional, tend 
to have better face validity as the measure has been intentionally 
developed to capture trust as a construct. Due to these reasons, 
they can be applied to nearly any experimental task in a variety 
of contexts.

While self-report is the most often used measure of trust, 
it is not without its limitations. First, administration of the 
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scales requires interruption of the task, which can alter the 
nature of the task and lead to performance decrement (Moroney 
et  al., 1995). Furthermore, as self-report generally requires 
pausing the task, the surveys are often infrequently administered 
and therefore may not capture the full evolution of trust. The 
self-report scale may alternatively be  administered after the 
task has been completed, but it is then subject to memory 
failures and operator bias.

Second, self-report results do not consistently and perfectly 
align with actual trust behavior. These measures are correlated 
and sensitive to changes in automation reliability but are not 
well calibrated with each other (Wiegmann et  al., 2001). A 
portion of this discrepancy may be  due to self-report and 
behavioral measures capturing different components of trust, 
yet both measure types are likely subject to biases and do 
not perfectly capture their intended construct.

Third, recent analysis has uncovered some weaknesses in 
popular self-report measures of trust. In particular, the Checklist 
for Trust (Jian et al., 2000) has been found to have less sensitivity 
than other measures (Schaefer, 2016) as well as a positivity 
bias (Gutzwiller et  al., 2019). Further questions have been 
raised about whether the underlying trust-to-distrust dimension 
underpinning this scale is accurate or whether trust and distrust 
are orthogonal. Prior work has explored trust and distrust as 
a two-dimensional construct versus the default unidimensional 
concept (Lewicki et  al., 2006), while some research has found 
that trust and distrust load onto different factors (e.g., Chien 
et  al., 2014). Some authors have suggested that distrust may 
be  independent and more sensitive than trust-based scales 
(Tenhundfeld et  al., 2019). Jian’s checklist has drawn particular 
focus and critique due to its overwhelming popularity within 
TiA (Gutzwiller et  al., 2019; Kohn et  al., 2020), but these 
critiques are not unique to this scale. Researchers should 
be  cautious when deploying self-report measures and ensure 
that the scales they are using have been previously validated 
and are appropriate for the given task and analysis goals. 
Despite these limitations, the ease, accessibility, and relative 
accuracy of self-report measures have fueled their ubiquity. 
For many researchers and tasks, self-report may be  the best 
option, yet there is substantial room for improving the measures 
and their application.

In reviewing the self-report measurements in use, we  found 
that custom measures were extremely common – more so 
than any other form of trust measurement, self-report, or 
otherwise. As insinuated in the introduction, the prevalence 
of custom measures may be  an artifact of researchers not 
knowing what methods are available to them. However, some 
of these custom measures were likely created because the most 
readily available measures were insufficient. This implies the 
need for better measures or better use of those measures. 
Regardless, the outcome of using custom measures is a lack 
of external confidence in the trust findings and difficulty in 
translating trust findings between studies.

While many new contenders have proposed improved 
measures that explicitly relate to trust models (Wojton et  al.’s 
TOAST, 2020; Ullman and Malle’s MDMT, 2021) existing 
measures may be  sufficient if used more appropriately. 

Yang  et  al.  (2017) proposes that trust is better quantified by 
the “area under the trust curve” which captures changes in 
trust over time and in comparison with the automation’s 
reliability. Such a measure requires frequent sampling of trust, 
such as the single-item trust scale used by Yang et  al. (2017) 
or the even simpler increase/same/decrease indicator deployed 
by Desai et  al. (2013). These very brief scales enable trust to 
be captured dozens of times per experimental block and better 
capture dynamic variations in trust. While these measures 
provide greater granular sensitivity and less task interruption, 
they might be  less reliable and valid than robust measures 
such as the Checklist for Trust (Jian et  al., 2000). However, 
reduction in quality is not a guaranteed feature of short surveys; 
a single self-report item was shown to be  just as accurate in 
measuring cognitive workload as much larger surveys (e.g., 
Monfort et al., 2018). Indeed, within custom measures of trust, 
we found single-item surveys to be overwhelmingly predominant. 
Single-item surveys can be  acceptable if you  consider that 
single items extracted from larger unidimensional scales are 
often equally able to predict relevant outcomes as compared 
to the larger scale in its entirety (Bergkvist and Rossiter, 2007, 
2009; Monfort et  al., 2018). However, single-item custom 
measures of trust are not necessarily derived from more well-
established scales of trust. Moreover, the use of any single-item 
assessment remains somewhat controversial, as many researchers 
depend on measures of internal consistency to accurately assess 
scale validity. While custom scales may offer more practical 
advantages over longer scales, care must be  taken to ensure 
consistency in the literature and that researchers are adequately 
capturing the construct of trust. It is thus recommended that 
in situations where trust needs to be  assessed quickly and 
unobtrusively, the sample items should be extracted from larger 
scales and cited appropriately or that previously validated scales 
should be  used. Future research should examine the degree 
to which single-item TiA scales are reliable and accurate 
compared to more thorough multi-item measures, in order to 
inform and support the use of the parsimonious measures.

Notably, the dimensionality of trust is a substantial point 
of debate on its own. Most self-report measures – especially 
single-item measures – utilize a unidimensional conception of 
trust. The scale may place trust and distrust on opposites ends 
of the scale as conceptualized by Jian et al. (2000) or conceptualize 
trust to no trust (Lee and Moray, 1992) However, there is 
contradictory evidence supporting trust and distrust as orthogonal 
constructs, with differing impacts on attitudes and behaviors 
(Lyons et  al., 2011). Despite this evidence, unidimensional 
scales are standard in TiA research and form the theoretical 
basis of most trust models, including those discussed in detail 
in the introduction. While a complete analysis of trust’s 
dimensions is out of scope of the current work, it must be  a 
consideration for anyone developing or evaluating scales.

In conclusion, the best scale to use is a matter of choice, 
but the context and trust construct must be  considered. If a 
researcher was interested in evaluating the “trustworthiness” 
of a new technology, it may be the case that the well-established 
“Checklist for Trust” scale (Jian et  al., 2000) or the less widely 
used “trust perception scale” (Schaefer, 2016) is perfectly 
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adequate. If a researcher was interested in the dispositional 
trust of the operator (i.e., how a person typically trusts any 
technological agent), it is more appropriate to use the propensity 
to trust scale (Merritt et  al., 2013). The takeaway message is 
that researchers should prioritize the aspect of trust that they 
are measuring – Trust attitude, Trustor’s Propensity, or the 
Factors of Perceived Trustworthiness – and the frequency of 
sampling needed and use those elements to determine the 
most appropriate measure.

Behavioral Measures
Behavioral measures involve the observation and systematic 
recording of participants’ behavioral processes or tendencies. 
In the context of the current studies, behavioral measures 
capture interaction with the automated or autonomous system. 
However, that behavior includes a large variety of activities, 
encompassing those that may be  intentional and active to 
unconsciously influenced and passive. To make sense of behavior 
over time, most of these measures are sorted into blocks or 
time periods. Nine different types of behavioral measures of 
TiA are reported here. These behavioral measures of trust are 
listed in Table  4 and defined in greater detail below, in 
alphabetical order. Representative sources are provided for each 
measure – these sources are commonly cited, but are not 
necessarily the origin of the behavioral TiA measure in question.

Combined Team Performance
If an automated teammate is consistently reliable and always 
accurate, then human teammate performance will be  largely 
a product of the human’s trust, and therefore compliance, in 
the automation. Therefore, the combined team’s performance 
has been previously used as a proxy for behavioral trust in 
strictly controlled circumstances where the automation is reliable 
and performance is scored on the team’s correct or incorrect 
decision-making (e.g., de Visser et  al., 2016). Performance is 
an indirect proxy, as it is subjected to external constraints 
and the competence of the human: An operator could theoretically 
avoid compliance with the automation while making correct 
decisions on their own. On an individual basis, or in uncontrolled 
scenarios, combined team performance may not accurately 
capture the human teammate’s trust. However, if all factors 
are controlled, then an increase in team performance suggests 
that the operator trusts and relies upon the unerring automation.

Compliance and Agreement Rate
Compliance is an active form of agreement, wherein the operator 
follows recommendations given by the system or positively 
responds to system alarms (Lee and Moray, 1994; Meyer, 2004). 
Compliance is typically calculated as the rate of agreement 
with system recommendations, warnings, or alarms over a 
given block of time or number of interactions. Compliance is 
sometimes distinguished from agreement by only counting 
instances when a human choice and an automated 
recommendation do not match, in situations when humans 
make an assessment prior to automation (Van Dongen and 
Van Maanen, 2013; de Visser et  al., 2016).

Decision Time
Decision time refers to the length of time that it takes the 
participant to make a decision concerning the automation, 
often whether to comply with a recommendation. Faster decisions 
imply greater trust, while slower decisions imply the desire 
to consider or evaluate options before complying, thereby 
indicating distrust or a lack of trust (e.g., Yuksel et  al., 2017). 
Some authors suggest that decision times may be  a product 
of the mental evaluation method applied by the participant, 
with short and long decision times using different trust heuristics 
(see Alarcon and Ryan, 2018 for a processing model).

Delegation
Delegating a task to automation, when the task could 
be  performed by a human operator, is a strong indication of 
trust in that automation. This behavior is characterized by the 
participant ceding control to the agent, rather than taking it 
away as in intervention. This measure is relatively novel but 
has been used to capture TiA in tasks where delegation to 
the automation is feasible (Xie et  al., 2019).

Economic Trust Game: Stakes Invested
The Trust Game, invented by Berg et  al. (1995), measures 
trust using economic decisions. The participant is paired with 
a teammate, given a quantity of money, and informed that 
sending money to their teammate may result in the sent value 
being tripled. The amount of money invested in the teammate 
is used as a proxy for trust. This measure is well-established 
even within the field of human-machine interaction (de Melo 
et  al., 2013) and has recently been used to capture TiA (e.g., 
Mota et  al., 2016; Wijnen et  al., 2017). This task is often 
independent from the primary interaction with the automation 
and occurs following periods of interaction. As such, the trust 
expressed during this game represents the trust built up during 
the interaction. There are many other alternative trust games 
to Berg’s Economic Trust Game (1995) such as the ultimatum 
game (Güth et  al., 1982), yet these have seen limited use in 
TiA research, despite a history of validation in interpersonal 
trust research. A discussion of alternative trust games is provided 
in Alarcon et  al. (2021).

Intervention
Intervention is a behavioral opposite of Reliance, in which 
participants intervene and take over control from the teammate. 
This measure is identified as “takeover” by some authors. For 
example, recent work examined the degree to which drivers 
intervened in the operation of an automated parking system, 
which was associated with the degree of distrust in the system 
(Tenhundfeld et  al., 2019, 2020). The act of intervention may 
be prompted by external events or a change in the participant’s 
internal state. The period of intervention may last for a single 
interaction or for an extended period of engagement. Lee and 
Moray, 1994 proposed that operators have a bias toward manual 
control, yet are loathe to switch between manual and automated 
control. Therefore, the act of intervening is indicative of a 
state of distrust that exceeds this hesitancy barrier.
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Reliance
Reliance is a passive form of compliance, wherein the operator 
does not seek to correct or takeover the performance of the 
system (Muir, 1994; Meyer, 2004; Rice, 2009). Reliance is 
typically calculated as compliance to non-alerts – that is, the 
user not overriding automatic control in the absence of alert 
– over a given block of time or number of interactions. If 
the system is consistently reliable, then a strategy of reliance 
will increase team performance to 100%. Lee & See’s seminal 
study on trust and self-confidence with automated systems 
(1994) suggests that reliance is a behavioral product of operators’ 
trust in the automation exceeding their self-confidence at 
performing the task. Others have shown that high reliance 
can indicate a state of high or over-trust which is known as 
complacency (Parasuraman et  al., 2008; Parasuraman and 
Manzey, 2010). In these situations, reliance is measured by 
the rate of detection of automation failures (Parasuraman et al., 
1993). Yet, other authors have suggested that reliance may 
also be  affected by external factors such as workload (Biros 
et  al., 2004), where busy participants may default to reliance 
out of a deficit of mental resources as opposed to – or in 
addition to – a high level of trust.

Response Time
Response time refers to the length of time that it takes the 
participant to respond to an event, such as an alarm on a 
task that falls within the automation’s responsibility. The resulting 
reaction time between stimuli and response is an automatic 
process that largely bypasses conscious cognition. High trust 
results in longer reaction times because over-reliance on the 
automation causes the operator to be  unprepared to respond, 
requiring greater mental effort and duration to switch tasks 
(Beller et  al., 2013; Helldin et  al., 2013; Körber et  al., 2018). 
However, evidence for the effects of trust on response time 
has been mixed, and some authors recommend caution in 
using this measure (Chancey et  al., 2015).

Verification
Verification is the act of confirming the accuracy of a teammate’s 
actions or recommendations and may precede compliance, 
reliance, or intervention. This act of double-checking the 
teammate’s advice or monitoring their performance is an 
indication of distrust (Ho et  al., 2005) and may represent a 
relatively objective measure of trust (Moray and Inagaki, 2000; 
Bahner et  al. 2008; Walliser et  al., 2016). The incentive to 
verify before engaging in a trust behavior is often balanced 
by the cost of said verification: increased effort or lost time 
(Ezer et  al., 2008). Researchers who deploy this measure of 
trust may include artificial penalties to simulate this cost (e.g., 
30 s time penalties for verification in Pak et  al., 2012).

Behavioral Measures Discussion
The categorization “behavioral trust” belies great depth and 
diversity. Trust behaviors may be  passive (reliance), active 
(compliance), or engage in risk-taking in the relationship 
(posting stakes in the economic trust game). Trust behaviors 

even include active distrust, such as intervening or taking over 
from the automation. Trust is a predominant factor in both 
reliance decisions (e.g., Dzindolet et  al., 2003) and compliance 
decisions (e.g., Rice, 2009), but these are different behaviors. 
Reliance is a passive behavior where the operator does not 
interfere with the automation’s actions, where compliance is 
an active behavior consisting of agreeing with and accepting 
the actions of the automation, whether that is a recommendation 
or an alert. The time between the alert and the operator’s 
response or decision – identified in our results as “decision 
time” – is similarly an active behavior that reflects trust. Faster 
responses imply greater trust, while slower responses imply 
the desire to consider or evaluate before complying, thereby 
indicating distrust or a lack of trust.

Operators may also engage in active trust behaviors, taking 
risks such as investing monetary stakes in their partner in 
the economic trust game or delegating tasks to the automation. 
A wide variety of trust games other than the economic trust 
game is available to researchers – while many have not yet 
been validated in a human-automation trust scenario, they 
would expand the active trust measures available to researchers. 
See Alarcon et  al. (2021) for a discussion of these trust games. 
Whether using trust game or delegation action, these behaviors 
indicate a strong trust attitude, as each behavior represents a 
willingness to take on a great degree of risk and vulnerability 
in the hope that the teammate will have the ability to perform 
and the benevolence and integrity to reciprocate.

Using trust-related behaviors to capture trust is risky: 
Although trust affects behavior, it is not the sole influence. 
Complying or relying on automation may be  a consequence 
of high workload (Biros et  al., 2004) rather than a strong 
internal attitude of trust. Similarly, these behaviors may 
be  influenced by risk: Users become more self-reliant when 
risk is high (Ezer et  al., 2008). The behavioral trust measure 
of performance is similarly affected. While this measure 
captures the net performance of the automation and the 
human operator working together, over-reliance or compliance 
due to high workload may lead to the false conclusion of 
high trust. Conversely, the behavioral measures of verification 
and intervention are measures of distrust or lack of trust, 
as the operator should only interfere with the automation 
when their trust is lower than their self-confidence in manually 
performing the task (e.g., Lee and Moray, 1994). As with 
the prior behavioral measures, workload is an influencing 
factor, though in this instance intervention is more feasible 
when workload is low, not high. Indeed, there is even some 
evidence that verification may become the norm when the 
operator is under-stimulated (e.g., Walliser et  al., 2016).

Overall, these behavioral trust measures capture Risk-Taking 
in Relationship, as identified within Mayer’s trust model (1995). 
Strictly speaking, they are not measures of the Trust construct, 
as the influence of Perceived Risk and context help differentiate 
Risk-Taking in Relationship from the Trust construct. Regardless, 
as an indirect product of the internal trust attitude, behavioral 
measures are considered trust measures in common parlance. 
This discussion continues with a review of their pros and 
cons, as well as recommendations for their use.
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Critiques, Considerations, and Recommendations 
for the Use of Behavioral Measures
Regardless of whether trust behaviors are active or passive, 
experimenters must be aware of the advantages and disadvantages 
of such measures. Perhaps one of the greatest benefits of 
behavioral measures is the ability to integrate a robust and 
reliable measure of trust into experiments with minimal 
disruption: Compliance, reliance, response times, and rate of 
interventions are often fundamental features of tasks performed 
with automation or autonomous systems. The addition of these 
measures requires only a mechanism to record them for the 
sake of empirical measurement. Other behavioral measures, 
such as investment in the economic trust game or delegating 
to automation require intentionally designing the experiment 
to accommodate the behavior, yet offer a greater signal of 
trust state in exchange. Each behavior represents a willingness 
to take on a great degree of risk and vulnerability in the hope 
that the teammate will have the ability to perform and the 
benevolence and integrity to reciprocate. The act of delegation, 
for instance, requires the user to trust the automation more 
than their own ability to perform the task – this behavior is 
more active than other trust behaviors such as reliance, which 
may be  completely passive.

Most behavioral measures are capable of sampling trust at 
a much higher rate than many self-report measures, as they 
capture every trust behavior that occurs during the task. As 
such, behavioral measures offer the opportunity to more readily 
capture the “area under the trust curve” as defined by Yang 
et  al. (2017). However, utilizing this high sampling rate and 
capturing the dynamic variation of trust requires analysis 
methods that are less commonly used and debatably less 
accessible, such as bi-modal regression or other non-parametric 
analyses. Behavioral measures are often instead analyzed as 
mean rates of behavior over time periods, which reduces their 
time sensitivity in favor of easier parametric analysis – four 
instances of compliance and one instance of non-compliance 
can thereby be  transformed into a “trust rate” of 0.8 across 
the given five-decision-point block. This shortcut of converting 
frequency counts into proportions may introduce error into 
the statistical outcomes and represents only one of many 
methods by which behavioral trust measures may be  abused 
in analysis. Behavioral measures are also limited by the presence 
of extraneous variables such as workload and risk level, which 
are a threat to external validity. To a degree, this is manageable 
via traditional experimental controls, but many studies do not 
verify the validity of their behavioral trust measures beyond 
these controls. While these measures have been validated and 
are confirmed to be  capable of measuring trust, that is no 
guarantee that they will capture trust in every given study. 
Therefore, researchers should seek to capture and control known 
extraneous variables and confirm that the behavioral trust 
measure of choice correlates with other trust measures. Using 
validated self-report measures of trust may be  one way to 
establish convergent validity and offers the added benefit of 
providing insight into how perceptions of the automation’s 
trustworthiness influence these trust behaviors. These practices 
are relatively uncommon in the current state of research.

To further guarantee that trust is actually being measured 
and manipulated, researchers should ensure that the situation 
tested is one that produces a certain degree of uncertainty 
and vulnerability. Prior TiA studies has successfully introduced 
these characteristics, whether manipulating risk by threating 
virtual convoys with explosive attacks (Lyons and Stokes, 2012) 
or simulating escaping a burning building with a robot aid 
(Robinette et  al., 2016). In conjunction with standard 
experimental controls, these efforts can limit the effect of 
extraneous variables and amplify the influence of trust.

As mentioned earlier, there are several advantages offered 
by behavioral measures of trust, including the unobtrusive 
nature of acquiring relevant data, the robust nature of the 
response, and the ability to eliminate the bias associated with 
the use of self-report. However, behavioral indices of trust 
highlight why trust is difficult to measure directly. For example, 
it is highly likely that a user can distrust a system but still 
exhibit reliance behaviors, such as when inadequately trained 
or when workload is high. Trying to understand trust through 
behavior is a premier example of the inverse problem in 
psychology: trying to infer from a set of observed behaviors 
the causal factors that created those behaviors. Therefore, some 
authors have attempted to measure trust as an intention as 
opposed to a behavior per se (e.g., Lyons and Stokes, 2012). 
The issue is further compounded by the fact that trust behavior 
manifests differently depending on the “level of automation.” 
For example, with an automated decision aid, you  can decide 
to comply with the recommendation or not. It is far more 
complex of a decision in the case of an autonomous system. 
In this context, when there is distrust, the operator must decide 
whether they will assume complete control over the system. 
It could very well be  the case that there are multiple decision 
pathways involved in the latter and not the former, thereby 
rendering compliance and takeover behavior incomparable. 
Thus, due to the opaque nature of behavioral measures of 
trust, the authors recommend that behavioral measures – in 
whatever form they take – be  coupled with more direct 
measurements of trust such as self-report. This may help to 
parse out the variability in behavior that is likely due to “trust” 
and not some other factor (e.g., workload).

Physiological Measures
Physiological measures capture biological responses ranging 
from muscle movements to hormonal levels to neural activation. 
Eye movements are also included in this category. As these 
measures capture the results of complex cognitive processes, 
they must be  used in combination with context of when trust 
is relevant and with hypotheses concerning how these measures 
will change to reflect trust states. Otherwise, researchers may 
capture results that are orthogonal to trust or cannot be related 
back to trust states. Four different types of physiological measures 
of TiA are reported here. These physiological measures of trust 
are listed in Table  5 and defined in greater detail below, in 
alphabetical order. Representative sources are provided for each 
measure – these sources are commonly cited and archetypal 
uses of each method.
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Electrodermal Activity
Electrodermal activity (EDA) – also known as galvanic skin 
response – is the measurement of sweat gland activation via 
skin conductivity (see Sharma et  al., 2016). These methods use 
skin contact electrodes to detect increases or decreases in ionic 
activity triggered by sweat, where sweat increases due to strong 
states of emotional arousal, including positive emotional stimuli, 
stress, anxiety, and high cognitive workload (Nikula, 1991; Jacobs 
et  al., 1994). Measurement in the hand region is particularly 
sensitive to stress and engagement (Mower et  al., 2007). As 
such, EDA has been used as a proxy for TiA. EDA corresponds 
with increased engagement with robots (Bethel et  al., 2007), 
and the levels of EDA have been shown to be  affected by level 
of trust (Khawaji et  al., 2015), which provides support for their 
result use as a trust measure (e.g., Akash et  al., 2018). Placing 
electrodes on the hands does limit the interactions that can 
be  performed with this method, but minor task modifications 
or using the participant’s non-dominant hand reduce those 
limitations. Because EDA response requires emotional arousal, 
difficult or stressful tasks that may be  mitigated or exacerbated 
by the automation’s involvement are recommended to take full 
advantage of this method.

Eye Gaze Tracking
Eye movements, known as saccades, are a physical expression 
of attention (Zhao et  al., 2012) and therefore have been 
used as a measure of whether participants are monitoring 
the automation. Monitoring of an automated system has an 
inverse relationship with trust (Hergeth et  al., 2016) and a 
positive relationship with distrust (Tenhundfeld et  al., 2019) 
– Hergeth suggests that tracking gaze behavior provides a 
more direct measure of automation trust than many other 
behavioral measures.

The primary trust measures derived from eye gaze tracking 
– also known simply as eye tracking – are the frequency and 
duration of eye fixations in given areas of interest: If the 
participant looks at the visual area containing the automation’s 
process, task, or outcomes more often, they are perceived to 
have less trust in the automation (Hergeth et  al., 2016). As a 
caveat, participant’s glances into the area of interest are only 
relevant when trust in the automation is relevant. This measure 
is functionally a physiological expression of the behavioral 
measure of monitoring or verification behavior. Other measures 
have utilized the location and pattern of eye movements 
(saccades) to indicate trust (e.g., Gold et  al., 2015), but these 
results have been inconsistent.

Eye tracking may be  inserted into tasks which have distinct 
visual areas containing the automation or automation’s task. 
As such, this measure is well-suited to tasks performed by 
autonomous systems which have complete control over a given 
procedure, such as a factory process or self-driving vehicle, 
or where automation is responsible for a procedure on a discrete 
portion of the interface or environment. In both instances, 
glances into that area during periods when trust is relevant 
likely represents monitoring triggered by low trust or distrust, 
rather than the operator performing their primary task. The 

resulting data are recorded on a timescale of milliseconds and 
are often analyzed as a percentage during time blocks or after 
critical events. The quality and accuracy of said data often 
have an inverse relationship with the intrusiveness of the eye 
tracking hardware, but rapid improvements in eye tracking 
technology are replacing chin mounts, long calibration times, 
and heavy head gear with lightweight tools. Current generation 
eye trackers are minimally intrusive and can enable eye tracking 
in a real-world 3-D environment rather than a 2-D screen, 
expanding the possible applications of this measure.

Heart Rate Change and Variability
Heart rate may be used as a physiological expression of emotional 
or mental arousal, especially workload and stress (Payne and 
Rick, 1986). Given that an operator’s workload and stress should 
decrease if they are working alongside a teammate they can 
trust, variations of heart rate have been used as a measure 
of trust. Heart rate change was used successfully in a composite 
measure of TiA by Waytz et  al. (2014) under the hypothesis 
that humans who trust their self-driving vehicle will experience 
attenuated heart rate increases during a vehicular accident 
when the self-driving vehicle is in control.

Heart rate variability is a more complex measure focusing 
on the variation in time between each heartbeat. This variability 
is controlled by the autonomic nervous system and in turn 
the sympathetic and the parasympathetic nervous system. These 
systems are more popularly known as the fight-or-flight and 
relaxation responses and respond to stress and wellbeing. 
Stressed individuals are likely to have little variation between 
heart beats due to sympathetic activation, while relaxed 
individuals will have high variation as their heart beats quickly 
adapt to temporary physiological or psychological activation. 
Therefore, heart rate variability (HRV) has been used to 
extrapolate high levels of workload (Aasman et al., 1987; Wilson, 
1992), and in combination with other physiological metrics 
such as EDA, HRV has been shown to capture trust in other 
humans (Montague et  al., 2014). However, attempts at using 
this measure to capture TiA have found limited success (e.g., 
Petersen et  al., 2019). While heart rate-derived measures of 
trust would provide a relatively unobtrusive measure for high 
workload or high-stress tasks performed alongside automation, 
empirical support for this measure is mixed. When these metrics 
have been utilized to capture trust, they have either focused 
on trust between humans or with heart rate as part of a larger 
composite physiological-behavioral measure.

Neural Measures
The attitudes and behaviors related to trust have cognitive 
components, which can theoretically be  captured and used as 
a  measure of trust. However, the application of neural 
measures  to  trust is relatively new and somewhat exploratory, 
especially when it comes to TiA. The methods deployed include 
electroencephalogram (EEG), functional magnetic resonance 
imaging (fMRI), and functional near-infrared spectroscopy (fNIRS). 
While the methods differ, all capture the same thing: the location 
and degree of brain activity that is associated with TiA.
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The EEG is a tool used to locate and measure electrical 
activity in the brain using electrodes resting on the scalp 
(Jackson and Bolger, 2014). The fMRI, using a magnetic field, 
and fNIRS, using near-infrared light, both capture brain activity 
by detecting oxygenation and deoxygenation of the blood, as 
increased neural activity demands more oxygen and thereby 
increased blood flow (Sylvester et  al., 2003; Tsunashima and 
Yanagisawa, 2009). The fMRI uses a magnetic field for 
measurement, while the fNIRs uses near-infrared light. All 
three methods have different trade-offs in terms of regional 
accuracy, temporal specificity, and signal type and are often 
paired to establish convergent validity. These methods capture 
activity in brain regions and networks for regions that correlate 
with trust and are therefore used as a proxy for TiA. EEG 
signals have indicated surprise and violation of expectations 
while monitoring imperfect automation or algorithms (Akash 
et  al., 2018; de Visser et  al., 2018; Somon et  al., 2019) and 
can differentiate between human-like agents (Dong et al., 2015; 
Wang et  al., 2018; Jung et  al., 2019). fMRI signals have 
differentiated brain regions and networks associated with 
observation of errors with machines (Desmet et  al., 2014), the 
tendency to comply with automation (Goodyear et  al., 2016, 
2017), and differences between human-human trust and human-
machine trust (Riedl et  al., 2011, 2014). fNIRS has been used 
to characterize suspicion and trust (Hirshfield et  al., 2014). 
Neural measures of TiA have not yet been widely adopted, 
likely due to their exploratory nature and the mandate to use 
specialized hardware and training. However, these methods 
enable the real-time collection of high-quality data that likely 
captures trust attitudes and cognitive states that relates to 
trusting behaviors. The experiments cited above have deployed 
these measures in the types of interactive tasks that are common 
in human factors experiments and have required little adaptation 
or interruption of the task other than the set-up and deployment 
of the hardware. We  anticipate that this method will become 
more widespread as these measures are formalized, validated, 
and become more accessible to non-neuroscientists.

Physiological Measures Discussion
There are currently two broad types of physiological measures 
used to capture TiA: neural measures and several types of 
physiological reactions. Neural signals encompass activity in 
the brain captured by a variety of measures, such as fMRI or 
EEG, while physiological reactions encompass a wider range 
of measures, ranging from eye gaze tracking to heart rate 
change and EDA. Physiological measures provide a glimpse 
into the neural and physiological underpinnings and correlates 
of trust. As such, they may therefore provide direct measurement 
of the internal attitude of Trust and the mental processes 
underlying risk-taking, using the constructs defined in Mayer’s 
trust model (1995).

Critiques, Considerations, and Recommendations 
for the Use of Physiological Measures
Physiological measures have many potential advantages for 
trust researchers. They collectively represent an opportunity 

to measure trust in real-time, with potentially greater sensitivity 
than self-report or behavioral measures. In contrast to self-
report measures, they are less invasive in terms of disrupting 
the flow of interaction. In contrast to the artificial task scenarios 
used to enable behavioral measures, physiological measures 
facilitate a different and potentially broader set of tasks used 
to manipulate trust.

However, physiological measures have a unique set of 
disadvantages that lead many practitioners to eschew their use. 
Every one of these measures requires specialized hardware and 
training to use said hardware and organize the resulting data. 
Furthermore, outcomes must be  contextualized during periods 
where trust is active and relevant, and a priori hypotheses 
must be established concerning how these measures will change 
during trust episodes. Without this groundwork, researchers 
may be  unable to differentiate between variation caused by 
trust and that triggered by exogenous variables. Even worse, 
the latter may be  incorrectly identified as trust in the analysis. 
In short, physiological measures require a large amount of 
expertise and planning to apply correctly.

Despite these difficulties, the use of physiological trust 
measures is perhaps one of the fastest growing areas of TiA 
measurement, in part due to the plethora of pre-existing 
physiological measures that can be drawn from human-human 
trust measurement and the growing field of neuroergonomics 
that embraces this methodology (Parasuraman, 2003, 2011; 
Gramann et  al., 2017). Neural measures allow researchers to 
leverage the vast body of neuroscientific knowledge that has 
accumulated with respect to trust in humans (de Visser and 
Krueger, 2012; Bellucci et  al., 2017; Krueger and Meyer-
Lindenberg, 2019). Neuroscientific research using EEG and 
fMRI has previously established brain regions that contribute 
to the trust process (Krueger et  al., 2007) and signals that 
indicate intention to trust (Delgado et  al., 2005; King-Casas 
et  al., 2005) while using tasks that would be  easily transferred 
from human to automated partners. More specifically, researchers 
have proposed that neuroscientific measures can be informative 
for supervision and monitoring of errors (Fedota and 
Parasuraman, 2010; Berberian et  al., 2017), understanding the 
antecedent decision prior to trust interaction behaviors (Drnec 
et  al., 2016), assessing the effectiveness of human-automation 
etiquette (de Visser and Parasuraman, 2010; de Visser and 
Parasuraman, 2011), as an input for brain-computer interfaces 
(Strait and Scheutz, 2014), evaluating the viability of social 
robots (Wiese et  al., 2017; Henschel et  al., 2020), and 
understanding differences between humans and machines that 
have human-like properties (Krach et  al., 2008; Kircher et  al., 
2009; Saygin et  al., 2012; Wang and Quadflieg, 2015; Hoenen 
et  al., 2016; Özdem et  al., 2017; Rosenthal-von der Pütten 
et al., 2019; Moreau et al., 2020). While we should not minimize 
the effort required to formalize and validate these measures 
of trust, adapting them to automation avoids re-inventing trust 
measures and quickly expanding the neural measures available 
to TiA researchers.

Some researchers are attempting to expand physiological 
measures even further by exploring the role of hormones – 
particularly oxytocin – as a potential route of trust influence 
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and measurement. Oxytocin has previously been administered 
to enhance trust in humans (Kosfeld et al., 2005), and oxytocin 
measurement can indicate the degree to which people trust 
or bond with canines (Nagasawa et al., 2015). Such approaches 
have recently been applied to TiA or social robots. One study 
explored the effects of administering oxytocin on trusting 
human-like agents such as a computer, an avatar, or a simulated 
human that were either perfectly or 50% reliable. Results for 
this study showed that administration of oxytocin only influenced 
behavior toward a perfectly reliable avatar and not any of the 
other agents (de Visser et  al., 2017). Although there has been 
recent criticism of the oxytocin methodological and experimental 
approach due to reproducibility difficulties and the exploratory 
nature of this work (Christensen et  al., 2014; Nave et  al., 2015; 
Mierop et al., 2020), a validated hormone-based measure would 
present a third broad type of physiological trust measurement. 
Further research into smell and chemical signaling that influences 
trust in robots may extend this measurement further (e.g., 
van Nieuwenburg et  al., 2019). It is difficult to make a single 
recommendation for the use of physiological measures, given 
the diversity and relative novelty of measures contained within 
this category. Therefore, we  have reviewed the potential use 
of all four measures.

Eye tracking measures are thus far the most common 
physiological measure of TiA. This method is relatively flexible 
and can be  integrated into many existing tasks. Automation-
assisted driving is a common application (Hergeth et al., 2016), 
though any task that involves participants’ TiA – and enables 
the participant to visually monitor that automation during the 
task – is eligible for eye gaze tracking. Recent developments 
in headset-free eye gaze tracking make this measure even less 
disruptive to the original task, which makes it a prime candidate 
for measuring trust in real-world or non-artificial scenarios. 
The real-time nature of the measurement makes this method 
a valuable supplement to behavioral measures of trust. Eye 
tracking is also a much more established measure compared 
to other physiological measures, with researchers able to reference 
previously published works as a guide.

Electrodermal activity and HRV and change are relatively 
novel methods for trust measurement. While they promise a 
relatively real-time measure of trust, their use as a trust measure 
has been infrequent and the results unclear. These are sympathetic 
responses in reaction to stress, where stress is hypothesized 
to decrease when collaborating with a trusted partner. 
Theoretically, these measures would be  best applied in high-
stress situations where high trust would indeed reduce stress, 
providing a semi-real-time correlation to the internal trust 
attitude. However, we  caution that these measures remain 
exploratory and are unlikely to ever provide more than a 
moderate correlate of trust. They should be  combined with 
other proven measures of trust and used with caution until 
further empirical validation has been performed.

Neural measures purport to capture variations in trust attitude 
or cognitive processes that relate to trust attitude. If successful, 
a neurological measure of trust would be  the most sensitive, 
real-time capture possible for this latent variable. Sampling 
neural activity can pick up changes very shortly after they 

occur, without the decision-making delays of behaviors. They 
can capture implicit attitudes in contrast to the biases that 
influence self-report. Finally, neural measures are minimally 
task-invasive and require only that the participant can complete 
the procedure while burdened or confined by the requisite 
EEG, fMRI, or fNIRS hardware. While the hardware is 
constraining, the techniques referenced in this review theoretically 
enable trust to be  captured during most types of trust-reliant 
tasks. Regardless, we  recommend utilizing these methods with 
caution and a thorough understanding of the underlying 
literature. Neural measures of trust have a relatively long history 
of use within interpersonal research, but their application to 
automation is relatively novel, and often experimental.

These four physiological measures of TiA each have their 
own potential usage and have found varying degrees of success 
in capturing TiA using the same types of tasks that are widely 
used throughout the fields of human factors and human-machine 
interaction. Overall, we  recommend using these measures 
strategically to support behavioral and self-report measures of 
trust. Eye tracking measures are highly recommended for tasks 
that trigger behavioral expressions of trust, due to their real-
time data capture and ability to measure trust in ecologically 
valid scenarios. Due to the need for further validation, 
we  recommend neural measures primarily for experimenters 
who are exploring the mechanisms of trust itself or are otherwise 
limited by task type. These measures should likely be  avoided 
for routine trust experiments until further validation has been 
performed, given the level of effort and uncertainty required. 
Finally, we  recommend against relying on EDA, HRV, or their 
derivative measures as primary trust measures until more 
validation has been performed. These methods have theoretical 
potential, but limited success in practice.

Overall, we see substantial promise in physiological measures 
of TiA. While this research trajectory is in its relative infancy, 
these measures may be capable of capturing trust with minimal 
task alternation or interruption and in doing so may provide 
a real-time measure of trust that captures the moment-to-
moment variation that is intrinsic to the definition of trust 
as a process (e.g., Mayer et  al., 1995).

DISCUSSION

This review covers the methods used to capture and analyze 
TiA, accounting for self-report, behavioral, and physiological 
measures. To better understand how these measures are applied 
and the trade-offs inherent in each measure, we  discuss these 
categories of measurement in greater detail. Furthermore, 
we  provide recommendations regarding the application of 
trust measurements.

General Measurement Recommendations
With 30 different measures of TiA identified in this review, 
researchers have a plethora of methods available, arguably 
sufficient to capture trust in nearly any task and situation. 
Despite this, trust is too frequently poorly measured and new 
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measurement methods are being constantly created, often without 
validation or properly referencing prior works.

The discrepancy between the possible methods and the 
limited set of methods actually deployed suggests the simple 
need for awareness, as alluded in the introduction. Researchers 
should have a reference list of all types of measurement that 
are possible, facilitating their choice of the most appropriate 
method rather than the most familiar. This is especially salient 
given that researchers seem to be  creating their own new 
measures rather than using pre-validated measures – prior 
work found that 31% of reviewed measures used a custom 
Likert or slider scale to capture TiA, and most of these measures 
contained a single item (Kohn et  al., 2020). While we  do not 
claim insight into the cognition of other researchers, given 
that these custom single-item trust scales are similarly worded 
to established parsimonious scales (e.g., Lee and Moray, 1992, 
1994; Muir and Moray, 1996), it is likely that the perceived 
need to create entirely new scales is due to lack of a coherent 
reference guide rather than preference. This reference work 
would theoretically reduce some of this effort and redundancy.

Regardless, the issue of insufficient measurement remains. 
Based on our review and the process of contextualizing measure 
within models, we recommend the following actions to improve 
the deployment and discussion of trust measurement:

 1. Use measures that have face validity
 2. Contextualize experiments and measures within trust models
 3. Understand what the chosen measure captures before using it
 4. Understand that different trust measures may capture different 

facets of trust
 5. Establish convergent validity with multiple measures

This review provides the knowledge base required to achieve 
all five recommendations. Possible validated measures are listed 
for practitioners, each associated with specific model components 
that explain the facet of trust that they capture. While the 
original measure might have described the outcome as “trust,” 
our list defines that same outcome as specific components 
such as Factors of Perceived Trustworthiness (Mayer et  al., 
1995) or Risk-Taking in Relationship (Mayer et al., 1995). These 
concepts are indeed related to trust but grouping them as that 
singular construct belies the ground truth that these are different 
components influenced by different factors and will have different 
outcomes. Ignoring this complexity may lead researchers to 
view the outcomes of these different measures as contradictory 
and poor quality, when in fact the inconsistency between the 
outcomes of Jian’s Checklist for Trust (2000) and reliance exists 
because they capture different elements of the trust process. 
Future meta-analyses could use this taxonomy to understand 
and assess to what degree researchers have studied the different 
factors in the trust process, leading to a better understanding 
of the current state of TiA research.

Similarly, researchers and practitioners can now easily compare 
and contrast trust measures and deploy measures of trust that 
are either convergent or cover different components of trust. 
While the recommendation for convergent validity has not 
been thoroughly covered in this work, capturing multiple 

dimensions provides a more robust set of measurements that 
is more resilient against the effects of confounding variables 
and can explain participant behaviors in greater detail. A 
combination of behavioral and self-report measures, for instance, 
may serve to validate each other and provide greater evidence 
of the automation’s behavior on trust. Examining the current 
body of work, a great number of researchers deploy a single 
measure of trust – often behavioral – and declare that it is 
capturing trust without sufficient evidence or validation.

While we provide these recommendations and an educational 
tool with the goal of improving the state of trust measurement, 
there remain three systematic needs which beg for solutions: 
the need to understand whether single-item self-report trust 
measures are effective compared to longer surveys, the need 
to determine whether these measures work equally well for 
different levels of automation and robotic embodiment or social 
presence, and the need for a better categorization or model 
in which trust measurement may be  discussed.

First, we  believe that researchers may be  seeking lightweight 
and unobtrusive trust measurements, based on the aforementioned 
frequency of custom self-report trust measures, and the fact 
that most of those measures feature only a single query (Kohn 
et  al., 2020). Fortunately, this review work identifies several 
minimalistic self-report methods such as Lee and Moray’s two-item 
trust and self-confidence survey (1994) or Desai’s dynamic trust 
reporting (2012). These measures may be  sufficient for many 
researchers’ needs but should be  empirically compared to larger 
checklists such as the Checklist for Trust (Jian et  al., 2000) or 
the trust perception scale (Schaefer, 2016). With 12 and 14 
items, respectively, these longer surveys advertise thoroughness, 
reliability, and accuracy in trust measurement. While they likely 
have advantages over brief one- or two-item scales, the relative 
effectiveness of these options has not been thoroughly compared. 
For example, a single-item measure evaluated workload just as 
well as the six-item NASA-TLX (Monfort et  al., 2018). This 
study also found that repeated administration of the six-item 
scale increased workload itself by 18%. This demonstrates a 
significant cost for administering multi-item measures repeatedly 
in an experiment. In the meantime, however, researchers should 
consider utilizing alternative lightweight trust measures, such 
as behavioral or physiological measures.

Second, there is a substantial need to determine whether 
the trust measures reviewed here are effective across different 
levels of automation, physical or virtual embodiment, and mind 
perception. These factors have been shown to influence trust 
(e.g., Walliser, 2011; de Visser et  al., 2016, 2017; Pak et  al., 
2012) and may therefore influence the effectiveness of the trust 
measures themselves. This becomes an issue when trust measures 
intended for humans or robots are deployed for TiA or used 
to compare some combination of the above. We  suggest that 
these measures may not be  equally applicable to all agents: 
For example, all else being equal, automation can lack robots’ 
anthropomorphic characteristics and humans’ capacity for 
integrity. Some measures take account of these differences, 
such as Malle & Ullman’s MDMT measure (2021) which enables 
participants to opt out of answering if the term is not applicable 
to the current agent. Such measures are few and far between. 
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Effort should be  undertaken to understand whether popular 
trust questionnaires are equally applicable and universal or 
whether the results are dependent on the nature of the agent 
in question, independent from trust. Some initial efforts have 
been made to explore the efficacy of different trust questionnaires 
in different scenarios (e.g., Chita-Tegmark et al., 2021) – sufficient 
evaluation of available measures could enable the creation of 
an objectively based flowchart for selecting trust measures 
based on agent and task criteria.

Finally, while we  recommend that all measures should 
be  created and discussed in the context of trust measures, 
we  also recognize that existing models may not be  ideal for 
this discussion. Some of the most popular trust models are 
not empirically supported, and many do not easily map to 
existing measures of trust. Therefore, we  propose that a new 
model or categorization may be  required. However, the path 
toward this model is unclear. It would be  difficult to create a 
model that encompasses all facets of TiA, given its complexity 
and context-specific nature. We  do suggest one possible route: 
a model based on the measurable components of trust. The 
existing models and measures reviewed in this work are primarily 
centered around three components: judgments of trustworthiness; 
trust attitudes; and trusting behavior. Such components could 
be defined in detail and form the basis of a future parsimonious 
framework to discuss and categorize trust measures, minimizing 
the jargon and elaborate definitions inherent in many trust 
models. Ultimately, such a model may better integrate the many 
ongoing research efforts to investigate TiA and more efficiently 
advance our scientific understanding of this important topic.

SUMMARY AND CONCLUSIONS

Our review of existing methods of measuring TiA provides 
an educational tool for practitioners who are new to the field 
and for established researchers who would like to utilize the 
optimal method for their task and hypotheses, while 
understanding the limitations of different methods. We  also 
suggest the need for improved trust measurement beyond 
simply selecting better methods – trust-oriented research should 
sample trust more frequently to capture the “area under the 
trust curve” (Yang et  al., 2017) and use multiple measures for 

convergent validity. Furthermore, trust researchers should a 
priori identify and attempt to capture specific components of 
trust, such as those established in Mayer’s process-oriented 
trust model (1995). Identifying the specific component that is 
being captured will help researchers better predict and explain 
their data, as well as its place in a complex trust system. 
However, we  acknowledge that the tendency to claim that 
overall “trust” is being captured, rather than a specific component 
of trust, may be  due to an intrinsic weakness in many trust 
measures: The measures themselves claim to capture a monolithic 
construct of trust. Few explicitly or implicitly relate to specific 
components of any trust model. The onus of responsibility 
may lie on the creators of trust measures to relate them to 
existing models, or perhaps for a better model that coherently 
maps to trust measures. A model where each component is 
clearly defined and measurable could vastly improve the analysis 
and discussion of TiA. In the meantime, we  hope that this 
review – and the discussion within – will provide the tools 
for researchers to improve their own measurement of TiA.
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