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SUMMARY

Embryonic stem cells (ESCs) must transition through
a series of intermediate cell states before becoming
terminally differentiated. Here, we investigated the
early events in this transition by determining the
changes in the open chromatin landscape as naive
mouse ESCs transition to epiblast-like cells (EpiLCs).
Motif enrichment analysis of the newly opening re-
gions coupled with expression analysis identified
ZIC3 as a potential regulator of this cell fate transi-
tion. Chromatin binding and genome-wide transcrip-
tional profiling following Zic3 depletion confirmed
ZIC3 as an important regulatory transcription factor,
and among its targets are genes encoding a number
of transcription factors. Among these is GRHL2,
which acts through enhancer switching to maintain
the expression of a subset of genes from the ESC
state. Our data therefore place ZIC3 upstream of a
set of pro-differentiation transcriptional regulators
and provide an important advance in our under-
standing of the regulatory factors governing the early
steps in ESC differentiation.
INTRODUCTION

Early embryonic development involves the transition of pluripo-

tent embryonic stem cells through intermediate cell states into

the cell lineages that initiate subsequent development events.

Using defined in vitro conditions, several different states have

been identified for mouse embryonic stem cells (ESCs), starting

from the naive ground state and progressing through epiblast-

like cells (EpiLCs), to establish an epiblast stem cell (EpiSC) state

(Hayashi et al., 2011; reviewed in Kalkan and Smith, 2014). Sub-

sequently, EpiSCs can differentiate into the three germ layers:

mesoderm, ectoderm, and endoderm. Mouse ESCs can be

maintained in the naive ground state in defined media, which in-

cludes two kinase inhibitors (known as ‘‘2i’’) to block the MEK/

ERK and GSK3 signaling pathways (Ying et al., 2008; reviewed

inWray et al., 2010).Withdrawal of 2i, allows the cells to progress

to either EpiLCs or EpiSCs by altering culture conditions (Bet-

schinger et al., 2013; Hayashi et al., 2011). The naive ESCs are

thought to represent a model for the pre-implantation epiblast
Cell
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(embryonic 3.5 [E3.5]–4.5) whereas EpiLCs or EpiSCs cells are

models for the post-implantation epiblast (E5.5) (Kalkan et al.,

2017).

As ESCs progress from the naive ground state, large changes

are observed in their chromatin landscapes and underlying gene

expression programs (Marks et al., 2012; Factor et al., 2014; re-

viewed in Habibi and Stunnenberg, 2017). The pluripotent state

ismaintained through the action of a core set of transcription fac-

tors and chromatin regulators that include the well-studied

NANOG, KLF4, SOX2, and OCT4 (reviewed in Young, 2011).

However, comparatively less is known about the regulators con-

trolling the transition to EpiLCs and EpiSCs. Recently, OTX2 was

identified as a key transcription factor driving this transition,

partly through cooperative interactions with OCT4/POU5F1

(Acampora et al., 2013; Buecker et al., 2014; Yang et al.,

2014). Proteomics analysis also identified ZIC2/3 and OCT6/

POU3F1 as interacting proteins for OCT4, specifically in EpiLCs

(Buecker et al., 2014), suggesting a potential co-regulatory role

for these transcription factors in this context. Further changes

occur during the transition to EpiLCs, and in addition to tran-

scriptional regulators, other proteins have been shown to play

an important role during this transition such as the extracellular

signaling protein, Cripto, which controls metabolic reprogram-

ming (Fiorenzano et al., 2016).

To further our understanding of the regulatory networks con-

trolling the transition from the naive ESC state to EpiLCs, we

examined the chromatin accessibility changes accompanying

this early transition in mouse ESCs. We focused on areas of

dynamic chromatin opening and through DNA binding motif

enrichment and associated gene expression data analysis, we

identified the transcription factor ZIC3 as an important regulatory

transcription factor in this context. ZIC3 controls the expression

of EpiLCmarker genes such as Fgf5 andmany of the ZIC3 target

genes encode transcriptional regulators such as GRHL2, which

has an important role in enhancer formation in the transition to

EpiLCs. ZIC3 therefore is immediately upstream of a set of

pro-differentiation regulators that work together to establish

the EpiLC state.
RESULTS

Identification of Transcription Factors Involved in the
Transition to EpiLCs through Open Chromatin Profiling
Cell state transitions are accompanied by changes to the under-

lying regulatory chromatin landscape (Stergachis et al., 2013).
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Figure 1. Identification of Transcriptional Regulators of the ESC to EpiLC Transition by Open Chromatin Profiling

(A) Schematic of the experimental time course of the naive ESC to EpiLC transition.

(B) Heatmap of the ATAC-seq profiles across a 10-kb window of intergenic regions showing > 2.5-fold change in accessibility between any two conditions (right).

Average tag densities of each of four identified clusters (middle; blue = ESC, orange = d1EpiLCs, red = d2EpilCs) and average tag density profiles (z scored) are

shown across the time course (left). Medians (red) and data for individual peaks (gray) are indicated.

(C and D) University of Santa Cruz (UCSC) genome browser views of the ATAC-seq profiles around the Pou3f1 (C) and Esrrb (D) loci. Dynamically changing peaks

are boxed.

(E and F) Heatmap showing the enrichment of transcription factor binding motifs across each of the open chromatin cluster profiles (z-normalized p values) for

motifs enriched in cluster 1 (E) or cluster 3 (F).

(legend continued on next page)
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These changes can then be used to infer the potential roles of

upstream transcription factors (Sung et al., 2014). To begin to un-

derstand the regulatory events occurring during the conversion

of naivemouse ESCs to EpiLCs, we therefore profiled the acces-

sible chromatin landscape of mouse ESCs as they transition to

EpiLCs over a 2-day period (Figure 1A) using assay for transpo-

sase-accessible chromatin using sequencing (ATAC-seq). Gene

expression changes at matched time points were also profiled

using single-cell RNA sequencing (scRNA-seq) from 816 cells.

Biological replicates for ATAC-seq analysis were obtained for

each time point, which showed high concordance (Figure S1A)

and were therefore merged before peak calling for further anal-

ysis. Open chromatin regions were then identified at each time

point and the resulting peaks consolidated into a single refer-

ence dataset (238,236 peaks in total). These peaks were then

partitioned between promoter proximal (�2 to +0.5 kb), intra-

genic, and intergenic regions to examine whether genomic loca-

tion affected the overall changes in chromatin accessibility. We

then identified regions that showed differential accessibility be-

tween any two conditions, giving 3,041 (promoter), 16,510 (intra-

genic), and 17,306 (intergenic) differentially accessible regions.

These regions were then clustered into four broad patterns

based on their chromatin opening dynamics (Figures 1B, S1B,

and S1C): regions that increased accessibility at day 1 and

became further accessible at day 2 (cluster 1), regions that

decreased accessibility at day 1 and became even more inac-

cessible at day 2 (cluster 2), or regions that transiently opened

or closed at day 1 (clusters 3 and 4).

We next recovered the genes associated with each promoter

andmatched intergenic peaks to their likely associated genes by

using the nearest-gene model. Then, we compared the changes

in expression relative to the changes in open chromatin associ-

ated with each gene. By focusing on the differentially changing

ATAC-seq peaks and gene expression changes, we observed

a good concordance between chromatin opening and gene

expression changes (Figures S1D and S1E). These changes

become more marked after 2 days, as cells acquire the EpiLC

state. The changes we observed in chromatin accessibility

profiling therefore generally report on the activity status of

associated genes. To further examine whether these different

accessibility profiles reflected the underlying changes in gene

expression, we clustered the gene expression changes into

four similar patterns. We then took the open chromatin peaks

in each cluster, associated them with all genes located at

different peak-to-gene distances, and calculated the enrichment

of the resulting set of genes among the equivalent clusters

derived from scRNA-seq data. Overall, there was an excellent

correlation between the two datasets, with the best matches

occurring between similar cluster patterns (Figures S1F and

S1G). This was particularly marked for intergenic regions in clus-

ter 3, where there was very little enrichment with any other gene
(G) BaGFoot analysis of the open chromatin regions in ESCs and d1EpiLCs (using

from the whole plot (see Figure S4) is shown. Motifs showing significant increases

regions are shown in the dark (bag) or light (fence) blue-shaded regions.

(H) Average tag densities in a 100-bp window surrounding the ZIC3 binding mot

ATAC-seq peaks from cluster 3.

See also Figures S1–S5.
expression cluster other than cluster 3, irrespective of the dis-

tance to the transcription start site (TSS). Furthermore, each of

the ATAC-seq clusters was associated with groups of genes ex-

hibiting a unique set of Gene Ontology (GO) terms (Figures S2A–

S2D). For example, the cluster 1 and 2 regions are associated

with various developmental terms, as might be expected by their

sequential changes in the transition to EpiLCs. The regulatory re-

gions of genes encoding transcription factors associated with

the two cell states show expected changes during the transition

to EpiLCs; several peaks within the Pou3f1 locus (EpiLC tran-

scription factor) show sequential opening and are found in

cluster 1 (Figure 1C). Conversely, peaks in the Essrb locus

(ESC transcription factor) show progressive closing and are

found in cluster 2 (Figure 1D). In contrast, cluster 4 genes are

associated with various stem cell processes, consistent with

transient regulatory region closing as illustrated by the Nodal

locus (Figure S2F).

Having established the relevanceof openchromatin profiling to

gene expression changes,wenextwanted to identify the relevant

regulators. To that end, we searched the differentially accessible

regions for over-represented transcription factor binding motifs.

Each of the accessibility clusters has a different repertoire of mo-

tifs (Figures 1E, 1F, and S3A–S3F) with ZEB1, KLF4, ZIC3, and

TCF3 being the most enriched binding motifs for clusters 1–4,

respectively. Interestingly, OTX2 binding motifs were identified

in cluster 1 regions, which is consistentwith the fact that these re-

gions become sequentially more open in the transition to EpiLCs

and the known role for OTX2 in driving early ESC fate decisions

(Yang et al., 2014; Buecker et al., 2014). We were particularly

interested in cluster 3, as these regions are characterized by tran-

sient opening at day 1, suggesting an important role in the transi-

tion toward EpiLCs. To further interrogate the underlying tran-

scription factor networks in this cluster, we used Bivariate

Genomic Footprinting (BaGFoot) (Baek et al., 2017) to identify

transcription factor motifs that exhibit increased footprint

depth (and hence occupancy) and/or local DNA accessibility.

Numerous motifs were identified, including those for several ho-

meodomain and ZIC proteins (Figures 1G and S4A). ZIC binding

motifs had previously been associatedwithOCT4/POU5F1 bind-

ing regions inEpiLCs (Buecker et al., 2014); therefore,we focused

on this binding site and more closely examined the chromatin

accessibility surrounding this motif at the three differentiation

time points. Clear footprints were observed in open chromatin

clusters 1 and 3 around this motif in day 1 (d1) EpiLCs and the

depth and local accessibility mirrored the general accessibility

profiles of these clusters across different time points (Figures

1HandS4B).Wealso compared theopen chromatin of d2EpiLCs

to ESCs and applied a similar analysis.Multiplemotifswere again

identified as becoming more accessible and potentially more

occupied, including those for OTX2 and the ZIC transcription fac-

tors (Figure S5).
all dynamic intergenic peaks from clusters 1 to 4 in B). The top-right quadrant

in either local accessibility and/or footprint depth are labeled. Non-significant

if (bottom) in ESCs (blue), d1EpiLCs (orange), or d2EpilCs (red) are shown for
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Figure 2. Expression Profiles of Zic Transcription Factors in ESCs and EpiLCs

(A) qRT-PCR analysis of Zic2, Zic3, Zic5, and Otx2 expression in the indicated cell states (n = 3).

(B) Western blot analysis of ZIC3, OTX2, and ERK2 expression. The asterisk marks a non-specific band. Quantification of ZIC3 protein levels is shown below each

lane (n = 3).

(C) The scRNA-seq analysis of Zic2, Zic3, Zic5, and Otx2 expression. t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis of the entire scRNA-seq

dataset is shown on the right, with the originating cell types color coded. d1EpiLCs are circled.

See also Figure S6.
Together these results establish the dynamics of chromatin

accessibility changes accompanying the transition from ESCs

to EpiLCs and identify ZIC transcription factors as likely impor-

tant players in controlling gene regulation during this transition.

ZIC3 Is Transiently Upregulated during the Transition to
EpiLCs
There are multiple members of the ZIC transcription factor

family; therefore, we determined their relative expression levels

during the transition to EpiLCs. Zic1 and Zic4 are not expressed

to appreciable levels, whereas Zic2 and Zic5 show progressively

increased expression at d1 and d2 of the differentiation time

course (Figure 2A). However, Zic3 shows a transient increase

in expression at d1, which is even more pronounced at the pro-

tein level (Figure 2B). These findings are supported by scRNA-

seq analysis, where Zic3 expression is enriched in the d1EpiLCs

(Figure 2C). Importantly, although Zic3 RNA expression is heter-

ogenous at the single cell level, ZIC3 is expressed at the protein

level in all d1EpiLCs (Figure S6). In contrast, OTX2 expression

shows fewer dynamic changes and is increased at d1 and re-

mains at a stable level in d2EpiLCs (Figures 2A–2C). The ZIC

transcription factors therefore show dynamic changes in their

expression that accompany the transitions to EpiLCs, and the

transient expression kinetics of ZIC3 in particular indicates that

this is a likely candidate for controlling the transition phase. Inter-

estingly, ZIC3 has previously been implicated in themaintenance

of pluripotency in ESCs, suggesting that it may play a dual role

(Lim et al., 2007).

Determination of the ZIC3 Cistrome
Next, we focused on ZIC3. As a first step in determining its reg-

ulatory potential, we identified its genome-wide binding profile

using chromatin immunoprecipitation sequencing (ChIP-seq).
3218 Cell Reports 27, 3215–3227, June 11, 2019
Initially, we focused on the transition state on d1 and identified

4,724 high confidence ZIC3 bound regions (Figure 3A; Table

S1). The majority of these are located in inter- and intra-genic re-

gions, and the ZIC3 binding regions are associated with 5,216

target genes based on the nearest-neighbor model. Consistent

with a role for ZIC3 in cell fate changes, these target genes are

enriched in GO terms for many differentiation processes, and

signaling pathways such as the BMP and STAT pathways (Fig-

ure 3B). As expected, the ZIC binding motif is highly enriched

in these regions along with more moderate enrichment for

several other transcription factors, including ESSRB and SOX

proteins, which have previously been implicated in regulatory ac-

tivities in stem cells (Figure 3C).

To uncover ZIC3 binding dynamics and link these to the

changing chromatin accessibility profiles, we performed addi-

tional ChIP-seq experiments for ZIC3 in ESCs and d2EpiLCs.

Replicate experiments showed good concordance (Figure S7A)

and clustered together in principal-component analysis (PCA)

(Figure S7B). Overall, the binding dynamics showed transiently

increased occupancy of ZIC3 at d1, which was reduced back to

a lower level at d2 (Figures S7C and S7D). These occupancy

changes were accompanied by a transient increase in chro-

matin opening across the binding regions at d1 (Figures S7C

and S7D). This transient opening could be observed in more

detail when analyzing the cut frequencies around the ZIC3 bind-

ing motifs (Figure S7E). This was particularly marked when

considering the ZIC3 binding regions, which were not already

occupied in ESCs (d1 unique peaks; Figure S7E, right). To

gain further insight into the relationship between binding and

chromatin accessibility dynamics as ESCs transition to EpiLCs,

we focused on the chromatin regions showing changes in

accessibility between any two cell conditions (Figures 1B,

S1C, and S1D). ZIC3 binding across these regions generally
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Figure 3. ChIP-Seq Analysis of ZIC3 Genomic Binding

(A) Genome-wide distribution of ZIC3 binding sites in d1EpiLCs. Promoter is defined as �2.5 to + 0.5 kb.

(B) Gene ontology analysis of ZIC3-associated genes (biological process).

(C) Top five enriched motifs found in the ZIC3 binding regions.

(D) Heatmap of the ZIC3 ChIP-seq profiles across a 5-kb window of all inducible ATAC-seq peaks (> 2.5-fold change for intra- or inter-genic peaks and > 2-fold

change for promoter peaks) (left). The corresponding ATAC-seq signals at each ZIC3 binding region are shown on the right. Data are clustered (clusters c1-c4)

according to ATAC-seq signals.

(E) Average tag densities of ZIC3 binding peaks from each of four identified clusters in each cell population (blue = ESC, orange = d1EpiLCs, red = d2EpilCs) for

ZIC3 ChIP-seq signal (top) or ATAC-seq signal (bottom).

(F) Average ATAC-seq tag densities in an 80-bp window surrounding the ZIC3 motif (bottom) in cluster c1 (left), or cluster c3 (right). Data from ESCs (blue),

d1EpiLCs (orange), and d2EpilCs (red) are shown.

(G) UCSC genome browser views of the ATAC-seq (top) and ZIC3 ChIP-seq (bottom) profiles around the Grhl2 locus. Dynamically changing ZIC3 binding peaks

are boxed.

See also Figure S7 and Table S1.
mirrors the changes in chromatin accessibility (Figures 3D and

3E). For example, in cluster c3, ZIC3 binding is strongly

enhanced at d1, as chromatin accessibility increases, and is

lost again at d2 as chromatin accessibility decreases again.

However, in cluster c1, ZIC3 binding becomes reduced at d2
(consistent with its decreased expression) but chromatin

accessibility increases, indicating a disconnection between

ZIC3 binding kinetics and chromatin accessibility in these re-

gions. This may reflect other factors acting to maintain or

enhance the chromatin accessibility status at these regions.
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Figure 4. Identification of Zic3-Regulated Genes

(A) Volcano plot showing changes in gene expression in d1EpiLCs following Zic3 knockdown by small interfering RNA (siRNA). Gene names are color coded for

transcription factors (red for direct and blue for indirect targets) and signaling molecules (green). Pecam1 and Epcam are shown in purple.

(B) Gene ontology analysis of all ZIC3-regulated genes for the biological process (BP) category.

(C) Expression of Pecam1 and Epcam at single cell level. Data are plotted as log10 counts per cell, and superimposed on t-SNE analysis of the entire RNA-seq

dataset for three time points (right).

(D) Expression of Epcam and Pecam1 from aggregated scRNA-seq analysis in the indicated cell populations and shown as log2 counts per million base

pairs (cpm).

(legend continued on next page)
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The changes in chromatin accessibility were also revealed by

focusing on the cleavage events around the ZIC3motifs located

in the ZIC binding regions (Figures 3F, S7F, and S7G). When

considering all ZIC3 binding regions, both the depth and local

accessibility are transiently enhanced in d1EpiLCs (Figure S7F).

By focusing on different subclusters, different patterns could be

discerned (Figures 3F and S7G). For example, footprint depth

and local accessibility in regions belonging to cluster 3 show

the highest levels in d1EpiLCs, as expected from the increased

ChIP-seq signals in these regions. This behavior is exemplified

by theGrhl2 locus where several ZIC3 peaks are maximally pre-

sent in d1EpiLCs, and this transient increase is accompanied by

chromatin opening at the same loci (Figures 3G and S7H).

Collectively, these data reveal a dynamically changing ZIC3

cistrome during the transition from ESCs to EpiLCs. These dy-

namic changes are accompanied by underlying changes to the

open chromatin landscape surrounding their sites. However, it

should be noted that a large number of ZIC3 binding regions

exhibit little change in chromatin accessibility, raising the possi-

bility that ZIC3 has a role in ESCs in addition to its function during

the transition to EpiLCs.

ZIC3-Dependent Gene Regulatory Events
Having established the ZIC3 cistrome and its dynamic changes,

we next askedwhether ZIC3 influences gene expression through

these dynamic binding events. We depleted Zic3 (Figures S8A

and S8B) and determined the changes in transcriptome at the

d1EpiLC transition state. ZIC3 protein levels were reduced by

more than 80%. A total of 452 genes changed expression

(> 1.2-fold), with 53% showing reduced expression following

Zic3 depletion, which is consistent with a potential activator

role for ZIC3 (Figure 4A; Table S2). GO term analysis of the

ZIC3-regulated genes, revealed enrichment of categories in-

cluding cell adhesion alongside several developmental terms,

various signaling pathways, and ‘‘regulation of transcription’’

(Figures 4B and S8C). Indeed, among these genes, there are

numerous transcription factors and signaling pathway compo-

nents (Figure 4A), indicating large changes in the regulatory sys-

tems in the cells. Two additional notable examples are the genes

encoding the cell surface proteins, EPCAM and PECAM1, which

show reciprocal changes in expression following Zic3 depletion

(Figure 4A, highlighted in purple) and are usually expressed at

distinct times during the differentiation process, with PECAM1

being an ESC marker and EPCAM an EpiLC marker (Figures
(E and F) Pseudotime analysis of ESCs, d1EpiLCs, and d2EpilCs based on the enti

of the ZIC3 activated genes (n = 240) is plotted on top of these profiles (top) in cells

Pseudotime analysis was initially performed with all cells but in each case only c

(G) Boxplot showing the co-expression scores for the ZIC3-activated genes in

expressed or not. Horizontal lines represent the median score, and the dotted g

(H) Heatmaps showing the expression levels of genes categorized as uniquely ex

the corresponding expression levels in the aggregated scRNA-seq from ESCs, d

data from the ESC-derived cells at each of the expression clusters from mouse e

proportions of each of the stage-specific gene sets that are activated by ZIC3.

(I) Pie chart showing the proportions of ZIC3-activated lineage-specific genes fro

(J) Heatmap showing the effect of Zic3 depletion on the pre- and post-epiblast sta

gene expression levels in early embryonic developmental stages (left) or ESCs, d

Genes shown are from the red quadrants of the bottom two pie charts in (H). All

See also Figure S8 and Table S2.
4C and 4D). We next examined the expression of the ZIC3-acti-

vated genes across single cells that had been ordered by pseu-

dotime analysis (Trapnell et al., 2014) of scRNA-seq data. Each

cell was scored for expression of each target gene in a binary

manner and the overall fraction of genes expressed per cell

determined. There is a clear increase in expression of the ZIC3

regulon as cells progress toward d1EpiLCs and beyond (Fig-

ure 4E). However, this is not apparent in cells that do not co-ex-

press Zic3 (Figure 4F). This association is further reflected by the

increases in co-expression levels of the ZIC3-activated genes in

d1- and d2EpliCs, which is not observed in cells with low Zic3

expression (Figure 4G).

Finally,weaskedwhether theZIC3-regulatedgenesare relevant

in the context of early mouse embryonic development. We

analyzed the clusters of genes that exhibit peak expression levels

at each stage of embryonic development (Boroviak et al., 2015)

and first compared the data to our ownRNA-seq data fromaggre-

gatedsinglecell analysisofESCs,d1EpiLCs, andd2EpiLCs.Over-

all, there is good concordance between the datasets with ESCs

being most similar to the inner cell mass (ICM), d2EpiLCs resem-

bling the post-implantation epiblast, and d1EpiLCs representing

an intermediate state (Figure 4H). Next, we asked whether ZIC3

is involved in regulating the expression of any of these genes

that act as markers of early embryonic development. Importantly,

whenwe superimposed ourZic3depletion dataset on top of these

clusters, there was a sequential increase in the number of ZIC3-

activated genes among the marker genes expressed maximally

at each stage of embryonic development (Figure 4H, right; Fig-

ure 4I). Among these genes are known markers and regulators of

differentiation in the pre-epiblast and post-epiblast stages such

as Foxd3 and Fgf5 (Figure 4J) (Hanna et al., 2002; Khoa le et al.,

2016). Thus, ZIC3 activates the expression of a large number of

marker genes that are characteristic of the mouse pre- and post-

implantation epiblast.

Next, we identified the direct target genes for ZIC3. To achieve

this, and gain further insight into the likely direct roles of ZIC3, we

took our ChIP-seq data and associated ZIC3 ChIP peaks with

nearby genes. By intersecting this with our RNA-seq data, we

uncovered a total of 207 directly regulated target genes for

ZIC3 (Table S2). The majority of these are activated by ZIC3

(65%) (Figure S8D), suggesting a role for ZIC3 in upregulating

gene expression during the transition to EpiLCs. Indeed, the

directly activated ZIC3 target genes show an overall increase

in expression during the transition to EpiLCs and this is
re scRNA-seq dataset (bottom). The binarized expression (transformed z score)

that either show Zic3 expression (E) or lack the expression of Zic3 andOtx2 (F).

ells exhibiting the Zic3 expression characteristics are shown.

ESCs, d1EPiLCs, and d2EpilCs. Cells are split according to whether Zic3 is

reen line is the median score in ESCs.

pressed in ICM, pre-epiblast, or post-epiblast (right; Boroviak et al., 2015) and

1EPiLCs, and d2EpilCs (left). The heatmap is sorted based on the scRNA-seq

mbryos. Data are row z normalized for each dataset. The pie charts show the

m each stage of embryonic development.

ge-specific genes in d1EpiLCs (right) and the heatmaps for the corresponding

1EpiLCs, and d2EpilCs (center).

heatmaps are individually z normalized.
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Figure 5. The Direct ZIC3 Target Gene Network

(A) Boxplots of the expression of directly regulated ZIC3 target genes (i.e., bound by ZIC3) in ESCs, d1EpiLCs, and d2EpilCs for activated (top) or repressed

(bottom) genes. The proportions of direct ZIC3 target genes increasing and decreasing expression in d1EpiLCs upon differentiation from ESCs are shown in the

pie charts on the right.

(B) UCSC genome browser views of the ZIC3 ChIP-seq (top) and RNA-seq (bottom) profiles around the Pou3f1 locus. The major ZIC3 binding peak is boxed.

(C) AUCell analysis of the expression of the directly activated ZIC3 target gene regulon in ESCs, d1EPiLCs, and d2EpilCs. The percentage of cells is shown from

each stage of differentiation that exhibits co-expression of the ZIC3 regulon.

(D) An scRNA-seq analysis of the ZIC3 regulon expression. Data are mapped (blue marked cells; top) on top of tSNE analysis of the entire RNA-seq dataset

(bottom), with the originating cell types color coded. The d1EpiLCs are circled. Only Zic3 positive cells are shown.

(E) Uniform manifold approximation and projection (uMAP) analysis of the scRNA-seq ESCs, d1EPiLCs, and d2EpilCs using either the 135 ZIC3-activated direct

target genes in the ZIC3 regulon (top) or 135 randomly selected genes (bottom) to drive the clustering. Cells are color coded according to their known origins

(blue = ESCs, orange = d1EpiLCs, and red = d2EpiLCs).

See also Figure S8 and Table S2.
particularly marked in d1EpiLCs, with over 70% of these genes

showing upregulation (Figure 5A, left). Two notable directly acti-

vated target genes are Pou3f1, which is an important player

in ESC differentiation (Iwafuchi-Doi et al., 2012) (Figure 5B),

and Wt1, which encodes a bifunctional splicing factor and

sequence-specific transcription factor that is known to function

post-transcriptionally to regulate developmental RNAs in mouse

ESCs (Bharathavikru et al., 2017) (Figure S8E). Reciprocally, we

observe the opposite for the ‘‘directly repressed’’ genes, albeit to

a lower level of significance (Figure 5A, right), leaving open the

possibility that ZIC3 may be a bifunctional transcription factor.

We also examined co-expression of ZIC3 directly activated

genes using AUCell analysis, which is specifically designed to

identify co-expression across single cells (Aibar et al., 2017).

More frequent expression of the ZIC3 regulon was observed in

the d1EpiLCs (Figure 5D), consistent with a role for ZIC3 in con-

trolling gene expression at this transition point. Finally, we asked

whether the ZIC3 regulon has predictive potential in determining

cell types from scRNA-seq data and showed that the 135 directly

activated ZIC3 target genes are not only able to separate ESCs

from EpiLCs (Figure 5E) but are also able to segregate cells from
3222 Cell Reports 27, 3215–3227, June 11, 2019
different embryonic stages using scRNA-seq data derived from

mouse embryos (Mohammed et al., 2017), with E4.5 epiblast

cells forming a distinct compact cluster (Figure S8F).

ZIC3 is therefore involved in directly controlling the expression

of a set of target genes that are generally upregulated in the tran-

sition from ESCs to EpiLCs and in the pre- and post-epiblast

stages in the developing embryo.

ZIC3 Triggers a Complex Downstream Transcriptional
Regulatory Network
To further understand the mechanisms through which ZIC3 af-

fects downstream transcriptional programs that result in the

EpiLC phenotype, we examined the functions of several of its

target genes. Many of the ZIC3-regulated genes encode tran-

scription factors, suggesting that ZIC3 acts mechanistically to

trigger subsequent waves of changes in the transcriptome,

mediated by these intermediary transcription factors. A large

number of these are direct targets, including Wt1, Lef1, Grhl2,

and Pou3f1. Further analysis of the scRNA-seq data demon-

strates that a subset of these transcription factors is strongly

co-expressed in d1EpiLCs (Figures 6A, S9A, and S9B). This



E

Grhl2

“Naïve”

“Primed”

“Transi on”

ESC

d1EpiLC

d2EpiLC

ZIC3

GRHL2

TFx
ZIC3

ESC transcriptome 
maintenance in EpiLCs

TFx

New EpiLC
transcriptome

ZIC3

ZIC3

?

0% 10% 20% 30% 40% 50%

TCF12/TCF15

KLF5/WT1

ZIC3

POU5F1/POU3F1

OTX2

SOX2/LEF1

GRHL2

Percentage of peaks

10-36

Dynamic open regions in d2EpiLC activated genes (n=1445)

10-33

10-29

10-26

10-21

10-20

10-16
B

C

D
iff

er
en

ce
in

 fo
ot

pr
in

t d
ep

th

Difference in flanking accessibility

0.75

0.50

0.2 0.4 0.6 0.8-0.8 -0.6 -0.4 -0.2 0

0.25

0

-0.25

-0.50

-0.75 d2EpiLC vs d1EpiLC

POU3F1

GRHL2
WT1

BBX

LEF1
MAX

GM98 IRF1

ZBTB7B

A

CLipE1dCSE

Otx2

Lef1
Wt1
Pou3f1
Zic3
Tcf15
Max
Csrnp1
Bbx
Foxn2
Grhl2
Irf1
Gm13154
Skil
Aff4

Esrrb
Nanog
Zfp532
Zufsp
Nfrkb
Zfp654
Zfp423
Elf3
Gm98
E2f8
L3mbtl3
Zfp36l2
Id1
Zfp58
Bcl11a
Hopx
Zbtb7b
Gbx2
Zfp953

d2EpiLC
0 0.2 0.4

Otx2

Lef1
Wt1
Pou3f1
Zic3
Tcf15
Max
Csrnp1
Bbx
Foxn2
Grhl2
Irf1
Gm13154
Skil
Aff4

Esrrb
Nanog
Zfp532
Zufsp
Nfrkb
Zfp654
Zfp423
Elf3
Gm98
E2f8
L3mbtl3
Zfp36l2
Id1
Zfp58
Bcl11a
Hopx
Zbtb7b
Gbx2
Zfp953

Otx2

Lef1
Wt1
Pou3f1
Zic3
Tcf15
Max
Csrnp1
Bbx
Foxn2
Grhl2
Irf1
Gm13154
Skil
Aff4

Esrrb
Nanog
Zfp532
Zufsp
Nfrkb
Zfp654
Zfp423
Elf3
Gm98
E2f8
L3mbtl3
Zfp36l2
Id1
Zfp58
Bcl11a
Hopx
Zbtb7b
Gbx2
Zfp953

D

-1.8

-1.2

-0.6

0

0.6

Lo
g 2

(F
ol

d 
ch

an
ge

)

d1EpiLC
d2EpiLC

EpiLC (Grhl2 KO, Chen et al., 2018)

*

* * *

* * *
*

* p< 0.05

Dynamic open regions in d2EpiLC activated genes (n=16,529)

Figure 6. ZIC3-Regulated Transcription Factors Control Downstream Gene Expression Programs

(A) Jaccard’s similarity plots of the co-expression of the indicated transcription factor-encoding ZIC3-activated genes in ESCs (left), d1EPiLCs (middle), and

d2EpilCs (right). Direct ZIC3 targets are shown in red and the location of Zic3 is highlighted with an arrow.

(B) Enrichment of DNA motifs within open chromatin regions associated with genes that change expression > 2-fold from d1EpiLCs to d2EpiLCs. Only

dynamically opening inter- and intra-genic ATAC-seq peaks (i.e., from clusters 1 and 4; Figures 1B and S1C) were analyzed (n = 1,445). The percentages of each

motif present in each set of peaks (blue) and the genomic background (gray) are indicated, and the p values are shown next to each of the columns.

(C) BaGFoot analysis of all of the open chromatin regions in d2EpiLCs that are associated (125 to +125 kb; n = 16,529) with genes that increase in expression

(> 2-fold) in going from d1EpiLCs to d2EpiLCs. Motifs corresponding to binding sites for transcription factors encoded by ZIC3-activated genes are labeled.

(D) The expression of the indicated direct GRHL2 target genes (Chen et al., 2018) following depletion of Grhl2 (gray bars) or Zic3 in d1EpiLCs (orange bars) and

d2EpiLCs (red bars). Data are shown based on the fold changes seen in RNA-seq data. Asterisks show significantly changing expression levels (p value < 0.05)

and standard deviations are indicated (n R 3).

(E) Model showing the transcriptional events centered on ZIC3 during the transition from ESCs to EpiLCs. GRHL2 maintains the ESC transcriptome (Chen et al.,

2018) whereas other ZIC3-regulated transcription factors likely contribute to the newly established EpiLC transcriptome.

See also Figure S9.
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transcription factor network is largely absent in ESCs but is

maintained in d2EpiLCs. To begin to understand the impact of

these transcription factors on downstream gene expression pat-

terns, we asked whether we could find evidence for their DNA

binding motifs in open chromatin regions associated with genes

that show elevated expression in d2EpiLCs. We focused on re-

gions that show increases in accessibility during the transition

to EpiLCs (i.e., clusters 1 and 4 in Figure 1B) and found that a

number of motifs are over-represented in these regions,

including those for ZIC3 and OTX2 (Figure 6B). Importantly, mo-

tifs are also over-represented for a number of transcription fac-

tors encoded by ZIC3-activated genes, such as TCF15, WT1,

LEF1, GRHL2, and POU3F1 (Figure 6B), consistent with a poten-

tial role for these transcription factors in enhancing the expres-

sion of these genes in EpiLCs. As an alternative approach, we

used BaGFoot on all of the open regions that are associated

with the genes showing enhanced expression in the transition

from d1EpiLCs to d2EpiLCs and found that GRHL2 and

POU3F1 binding motifs were among the motifs showing strong

evidence for increased footprint depth and localized chromatin

opening in EpiLCs (Figure 6C). Given the strong presence of

binding motifs in the regulatory regions of potential target genes,

we next sought evidence for regulatory activity of the corre-

sponding transcription factors. We focused on GRHL2 as this

has recently been shown to play an important role in switching

enhancer usage during the transition of ESCs to EpiLCs (Chen

et al., 2018). GRHL2 is encoded by a direct ZIC3 target gene

(see Figure 3G), suggesting a potential functional hierarchy

with ZIC3 acting upstream of GRHL2 in a transcriptional

cascade. This hierarchy predicts that ZIC3 depletion should

have a similar effect on downstream gene expression profiles

as depletion of GRHL2. We therefore focused on a set of directly

activated GRHL2 target genes (i.e., bound by GRHL2), which

showed the largest decreases in expression in EpiLCs following

loss of GRHL2 expression (Chen et al., 2018). Importantly, the

majority of these were downregulated upon depletion of ZIC3

in d1EpiLCs and/or d2EpiLCs (Figure 6D), consistent with a tran-

scription factor relay network whereby ZIC3 controls GRHL2

expression to subsequently influence downstream gene expres-

sion. More generally, ZIC3 controls the expression of a set of

transcription factors that are able to generate a cascade effect

on gene expression at later stages of ESCdifferentiation. Indeed,

depletion of Zic3 in ESCs cultured in EpiLC differentiation media

leads to increased alkaline phosphatase positive colony forma-

tion when returned to 2i/leukemia inhibitory factor (LIF) media,

consistent with inefficient differentiation toward EpiLCs and the

retention of ESC-like properties (Figures S9C and S9D).

DISCUSSION

The transcription factor networks controlling maintenance of the

pluripotent state in ESCs are relatively well understood. How-

ever, it is less clear how naive ESCs begin differentiation by tran-

sitioning through the EpiLC state. The transcription factor OTX2

was previously shown to control enhancer activation during the

transition from naive ESCs toward EpiLCs (Acampora et al.,

2013; Yang et al., 2014; Buecker et al., 2014). Here, we took

an unbiased approach using ATAC-seq to uncover novel tran-
3224 Cell Reports 27, 3215–3227, June 11, 2019
scriptional regulators of this transition. We focused on ZIC3,

which exhibits transient expression kinetics and chromatin bind-

ing as cells change fate to EpiLCs. ZIC3 plays a key role in con-

trolling gene expression during differentiation to EpiLCs and, in

particular, a large number of genes encoding signaling mole-

cules and transcription factors. Through activating the expres-

sion of transcription factor encoding genes, ZIC3 acts at a pivotal

point in a transcriptional cascade, which determines the EpiLC

phenotype (Figure 6E). For example, the ZIC3-regulated tran-

scription factor GRHL2 has been shown to play an important

role in maintaining a stem cell-specific gene expression program

as cells progress to the EpiLC state through an enhancer switch-

ing mechanism (Chen et al., 2018). Other ZIC3-regulated tran-

scription factors play a role in controlling other gene expression

programs during differentiation such as TCF15, which has previ-

ously been shown to be important in priming EpiSCs for differen-

tiation (Davies et al., 2013).

Previous studies suggested that ZIC transcription factors are

likely involved in early developmental decisions in naive ESCs.

ZIC2 and ZIC3 were identified as interactors of OCT4 in EpiLCs,

suggesting a role in cooperative transcriptional regulation as

the OCT4 cistrome is remodeled in the transition from ESCs

(Buecker et al., 2014). Indeed, we provide further support for

this model as we identified an enrichment of OCT4-like binding

motifs in ZIC3 binding regions (Figure 3C). However, other motifs

are enriched in the ZIC3 bound regions, suggesting a broader

cooperativity with a wide range of transcription factors. Interest-

ingly, ZIC3 has also been implicated in the maintenance of plu-

ripotency in ESCs (Lim et al., 2007). However, in the latter study,

the ESCs were maintained in the presence of serum and LIF,

conditions that do not fully recapitulate the naive state. Our

data are therefore generally consistent with a role for ZIC3 in

ESCs, but point to ZIC3 acting at an early stage during the

transition from naive ESCs. ZIC3 knockoutmice exhibit early em-

bryonic developmental defects prior to gastrulation, leading to

defects in left-right patterning (Ware et al., 2006). Moreover, mu-

tation of ZIC3 in humans causes a syndrome known as X-linked

heterotaxy, where similar patterning defects are observed (re-

viewed in Bellchambers andWare, 2018). It is possible that these

developmental defects arise due to the changes we observe at

the earliest cell fate transitions from naive ESCs. Indeed, consis-

tent with this early role, many of the ZIC3-regulated target genes

showpeak expression during the transition from the ICM through

to the pre-and post-implantation epiblast in the embryo (see

Figure 4H).

ZIC transcription factors can bind similar DNA binding mo-

tifs (Badis et al., 2009; reviewed in Hatayama and Aruga,

2018) and hence there is the potential for further cross talk be-

tween these factors at the level of chromatin binding. As ZIC3

exhibits transient activation kinetics, and ZIC2/5 expression is

maintained at later stages, it is possible that some of the

functions of ZIC3 are maintained and/or expanded by these

factors as EpiLCs differentiate further. Indeed, ZIC binding

motifs still show increased occupancy and opening in d2Ep-

iLCs (Figure S5) and together these observations suggest a

pivotal role for ZIC transcription factors in maintaining the

EpiLC state. ZIC2 was previously shown to act in concert

with the Mbd3/NuRD complex in ESCs to cause transcriptional



repression and loss of ZIC2 affected subsequent ESC differen-

tiation (Luo et al., 2015). However, the ESCs in this study were

cultured in the presence of serum and LIF conditions that only

partially recapitulate the naive ESC state. Further work in ESCs

grown under these conditions also implicated ZIC2 as an

important player in maintaining the transcriptional regulatory

circuits in these cells (Iwafuchi-Doi et al., 2012; Matsuda

et al., 2017). Moreover, ZIC1 and ZIC2 have been shown to

play a role much later in development in the context of the

neuronal gene expression program in cerebellar granule neu-

rones (Frank et al., 2015). Future studies will be needed to un-

ravel whether ZIC3 functions in the early ESC transitions are

modified by other ZIC family members later in the differentia-

tion and development program.

It is unclear whether ZIC transcription factors are transcrip-

tional activator or repressor proteins. Work on ZIC2 suggests a

repressive role (Luo et al., 2015). In contrast, the majority of the

directly regulated ZIC3 target genes (65%) are activated by

ZIC3, although a substantive proportion are repressed. It is

possible that like many transcription factors, ZIC3 can adopt

different roles at different regulatory regions, and in this context

may poise genes in the transition state for subsequent activation

in EpiLCs. Nevertheless, through its transcriptional regulatory

activities, ZIC3 plays an important role in controlling the transi-

tion from naive ESCs to the more advanced EpiLC state.

Through activating genes encoding transcription factors such

asGRHL2 it contributes tomaintaining a plastic state that retains

stem-cell properties but is poised for subsequent differentiation.

It is highly likely that other ZIC3-regulated transcription factors

play equally important roles in creating this flexible regulatory

environment.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
B Cell Lines and Culture Conditions

d METHOD DETAILS

B Real-Time RT-qPCR

B Western Blot Analysis

B ATAC-Seq Assays

B ChIPmentation Assays

B RNA-Seq Assays

B Single-Cell (sc) RNA-Seq Assays

B Immunofluorescence Assays

B ESC Clonogenicity Assay

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Bioinformatics and Statistical Analysis

B ATAC-Seq Data Analysis

B ChIPmentation Data Analysis

B RNA-Seq Data Analysis

B Single-Cell Transcriptomics

B Statistical Analysis of the ESC Clonogenicity Assay

d DATA AND SOFTWARE AVAILABILITY
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

celrep.2019.05.026.

ACKNOWLEDGMENTS

We thank Karren Palmer and Mairi Challinor for excellent technical assistance;

Peter March in the Bioimaging facility, as well as staff in the Genomic Technol-

ogies and Bioinformatics facilities; and Catherine Millar, Hilary Ashe, and

members of our laboratories for comments on the manuscript and stimulating

discussions. This work was funded by the BBSRC (BB/M000630/1) and the

Wellcome Trust (103857/Z/14/Z; A.D.S. and S.M.B.) and MRC grants MR/

M008908/1 and MR/M012174/1 (M.I.).

AUTHOR CONTRIBUTIONS

The conception or design of the work was performed by S.-H.Y. and A.D.S.;

the acquisition, analysis, or interpretation of data by S.-H.Y., M.A., R.B.,

S.M.B., and M.I.; and the drafting of the work or revising it critically by

S.-H.Y., M.A., S.M.B., M.I., and A.D.S. All authors approved the manuscript

and are accountable for all aspects of the work.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: December 4, 2018

Revised: March 14, 2019

Accepted: May 6, 2019

Published: June 11, 2019

REFERENCES

Acampora, D., Di Giovannantonio, L.G., and Simeone, A. (2013). Otx2 is an

intrinsic determinant of the embryonic stem cell state and is required for tran-

sition to a stable epiblast stem cell condition. Development 140, 43–55.
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QIAshredder RNA Extraction Column QIAGEN Cat# 79654

RNeasy Plus Mini Kit QIAGEN Cat# 74134
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miniElute Reaction Cleanup QIAGEN Cat# 28204

TruSeq RNA library kit v2 Illumina Cat# RS-122-2001
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NEBNext high fidelity 2x PCR master mix NEB Cat# M0541

Ampure XP beads Beckman Coulter Agencourt Cat# A63881
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Deposited Data

ATAC-seq ArrayExpress ArrayExpress: E-MTAB-7207

ChIPmentation-seq ArrayExpress ArrayExpress: E-MTAB-7208

RNA-seq ArrayExpress ArrayExpress: E-MTAB-7206

Single cell (sc) RNA-seq ArrayExpress ArrayExpress: E-MTAB-7211

Experimental Models: Cell Lines

Mouse Rex1GFPd2 ES cells Yang et al., 2012 N/A
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ON-TARGETplus Mouse Zic3 siRNA Horizon, Dharmacon Cat# L-045667-00-0020

ON-TARGETplus Non-targeting Pool Horizon, Dharmacon Cat# D-001810-10

Software and Algorithms

Bowtie2 v2.3.0 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

SAMtools v1.3.1 Li et al., 2009 http://samtools.sourceforge.net/

Trimmomatic v0.32 Bolger et al., 2014 http://www.usadellab.org/cms/?page=trimmomatic

HOMER Heinz et al., 2010 http://homer.ucsd.edu/homer/

MACS2 Zhang et al., 2008 https://github.com/taoliu/MACS

BEDTools Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

Java treeview Eisen et al., 1998 http://jtreeview.sourceforge.net/docs/overview.html

edgeR Robinson et al., 2010 https://bioconductor.org/packages/release/bioc/

html/edgeR.html

R Mfuzz package (Fuzzy cMeans clustering) Kumar and Futschik, 2007 https://bioconductor.org/packages/release/bioc/

html/Mfuzz.html

STAMP tool Mahony and Benos, 2007 https://bio.tools/stamp

BaGFoot Baek et al., 2017 https://sourceforge.net/projects/bagfootr/files/

JASPAR Khan et al., 2018 http://jaspar.binf.ku.dk

FIMO Grant et al., 2011 http://meme-suite.org/doc/fimo.html

GREAT McLean et al., 2010 http://great.stanford.edu/public/html/

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

HTSeq Anders et al., 2015 https://htseq.readthedocs.io/en/release_0.11.1/

DESeq2 v1.18.1 Anders and Huber, 2010 https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

DAVID Huang et al., 2009 https://david.ncifcrf.gov

scater package (calculateCPM function) McCarthy et al., 2017 https://bioconductor.org/packages/release/bioc/

html/scater.html

t-SNE plot van der Maaten and Hinton, 2008 https://lvdmaaten.github.io/tsne/

UMAP plot McInnes et al., 2018 https://github.com/ropenscilabs/umapr

monocole (v2) package Trapnell et al., 2014 https://github.com/cole-trapnell-lab/monocle-

release

R package ade4 (Jaccard Similarity Index) Dray and Dufour, 2007 https://github.com/cran/ade4

R package Beeswarm N/A https://rdrr.io/cran/beeswarm

SCENIC R package Aibar et al., 2017 https://github.com/aertslab/SCENIC

Fiji-ImageJ National Institute of Health https://imagej.net/Fiji/Downloads
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Andrew

Sharrocks (a.d.sharrocks@manchester.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Culture Conditions
Mouse Rex1GFPd2 ES cells were maintained as described previously in NDiff 227 media (Takara Bio Europe SAS, Y40002) contain-

ing 2i inhibitors (CHIR99021 and PD0325901; Miltenyi Biotec, 130-106-539 and 130-106-549) on dishes coated with gelatin (Milli-

pore, ES-006-B) (Yang et al., 2012). The d1EpiLCs were created by plating 2.5x104 cells/cm2 on dishes coated with bovine plasma

fibronectin (5 mg/ml; Sigma, F1141) and then growing for 1 day in NDiff N2B27 media containing bFGF (12ng/ml; R&D system, 233-

FB-025), activin A (20 ng/ml; Peprotech,120-14E-10), and KnockOut Serum Replacement (1%; ThermoFisher, 10828010) (Hayashi
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et al., 2011). For d2EpiLCs, the half volume of medium was removed and replenished with freshly prepared medium, and growth

continued for a further day. RNAi was performed as described previously (Yang et al., 2012).

METHOD DETAILS

Real-Time RT-qPCR
Real time RT-qPCR was carried out as described previously (O’Donnell et al., 2008). Data were normalized for the geometric mean

expression of the control genes hmbs and ppia. The primer-pairs used for RT-PCR are listed in Table S3.

Western Blot Analysis
Western blottingwas carried out with the primary antibodies; Erk2 (137F5; Cell Signaling, 4695), Otx2 (ProteinTech., 13497-1-AP) and

ZIC3 (Abcam, ab222124). All experiments were carried out in 12-well plates. The lysates were directly harvested in 2xSDS sample

buffer (100 mM Tris.Cl pH 6.8, 4% SDS, 20% glycerol, 200 mM DTT and 0.2% bromophenol blue) followed by sonication (Bioruptor,

Diagenode). The proteins were detected using a LI-COR Odyssey Infrared Imager as described previously (Yang et al., 2012).

ATAC-Seq Assays
The cells were dissociated from the plates with Accutase (Sigma, A6964) for 3minutes at 37�C. ATAC-seq samples and libraries were

generated as described previously (Buenrostro et al., 2015) except the nuclei were prepared using 100 ml of ice cold Nuclei EZ lysis

buffer (Sigma, N3408). The nuclei pellets were resuspended in 10 ml H2O and nuclei were counted. The tagmentation reaction was

performed with 50 thousand nuclei and 2.5 ml of Tn5 transposase (0.5 mM) in 25 ml reaction volumes for 30 mins at 750 rpm at 37�C.
The tagmented genomic DNA was purified by using miniElute Reaction Cleanup kits (QIAGEN, 28204) and eluted in 10.5 ml. The li-

braries were generated by 9 cycles of PCR reaction using adaptor primers (Nextera Index kit; Illumina, FC-121-1012) and NEBNext

high fidelity 2x PCR master mix (NEB, M0541), followed by two-sided size selection by Ampure XP beads purification (0.4x reaction

volume then 1.2x reaction volume; Beckman Coulter Agencourt, A63881). The typical yield is between 150-300 ng. The sequencing

was performed on an Illumina Next-seq genome analyzer according to the manufacturer’s protocols.

ChIPmentation Assays
For ChIP-seq using the ChIPmentation method (Schmidl et al., 2015), the cells (1.4-2 3 107 cells sufficient for 5 ChIPmentation ex-

periments) were dissociated with Accutase (Sigma, A6964) for 3 mins at 37�C and fixed in 1% formaldehyde in 0.03%BSA/F12 for

10 min at room temperature. After quenching with 0.125M glycine, cells were pelleted and the pellets were washed with 0.03%BSA/

PBS. The nuclei were lysed in lysis buffer (10 mMTris-Cl pH 8.0, 10mMNaCl, 0.2%NP40 and 1 tablet of Complete protease inhibitor

cocktail (Thermo Scientific) per 50mL for 20mins at 4�C. The nuclei were counted, snap frozen in liquid N2 and stored at�80�C. Prior
to ChIPmentaion, nuclei pellets were resuspended in H2O and topped upwith 0.25%SDS (25x106 cells/ml; 130 ml/aliquot). The nuclei

solution was then sonicated 3 times, 10 cycles (30 s on/off) at 4�C (Bioruptor, Diagenode). The IP solution was prepared through

sequential dilution by adding 1.5 volumes of equilibration buffer (10 mM Tris.Cl pH8.0, 140 mM NaCl, 0.6 mM EDTA, 1% Triton

X-100, 0.1% Na-deoxycholate and 0.1% SDS) and 0.92 volumes of TopUp buffer (10 mM Tris-Cl pH8.0, 140 mM NaCl, 1 mM

EDTA, 1% Triton X-100, 0.1% Na-deoxycholate and 0.05% SDS).

ChIPmentation assays were performed essentially as described previously (Schmidl et al., 2015). Briefly, 100 ml of ZIC3 antibody

solution (1 mg; Abcam, ab222124) was cross-linked to the protein A beads were incubated with 100 ml IP solution (1.2x106 nuclei) at

4�C overnight. The beads were sequentially washed twice with 250 ml of low salt buffer, high salt buffer, LiCl wash buffer and once in

150 ml of 10mMTris-Cl pH 8.0. Next, the tagmentation reactions (25 ml) were performed with 1 ml of Nextera Tn5 transposase (Nextera

kit; Illumina, FC-121-1030) in tagmentation buffer (33 mM Tris-OAc pH 7.8, 66 mM potassium-OAc, 10 mMMg-OAc and 16% DMF)

at 1200 rpm at 37�C for 10 mins. Ice cold low salt buffer (150 ml) was immediately added to stop the enzymatic reaction on ice for

5 mins. The beads were then washed twice with 150 ml of low salt buffer and TE. The tagmented ChIPed samples were then resus-

pended in 48 ml of ChIPmentation elution buffer (10 mM Tris.Cl pH8.0, 300mMNaCl, 5 mM EDTA and 0.4% SDS) and incubated with

2 ml of proteinase K (20mg/ml; Ambion, AM2546) at 55�C for 1 hr and then at 65�Covernight. The beadswere further incubated for 1hr

at 55�C with proteinase K (1 ml 20 mg/ml)/ChIPmentation elution buffer (19 ml). The combined eluates were topped up with 300 ml of

ERC and ChIPed DNA purified by a mini Elute kit (QIAGEN). ChIPed DNA was eluted in 10.5 ml of EB buffer. The sequencing libraries

were generated by 12 cycles of PCR reaction using adaptor primers (Nextera Index kit; Illumina, FC-121-1012) and NEBNext high

fidelity 2x PCRmaster mix (NEB, M0541), followed by two-sided size selection by Ampure XP beads purification (0.65x reaction vol-

ume then 1.2x reaction volume; Beckman Coulter Agencourt, A63881). The typical yield is between 150-300 ng. The sequencing was

performed on an Illumina Hi-seq 4000 genome analyzer according to the manufacturer’s protocols.

RNA-Seq Assays
Total RNA was prepared using RNAeasy Plus Mini kit (RNase-free DNase set; QIAGEN, 74134) according to the manufacturer’s pro-

tocols except extra ‘‘in column’’ DNase digestion was performed (QIAGEN, 79254). Libraries for RNA-seq were generated using the

Illumina TruSeq RNA library prep kit v2 (Illumina, RS-122-2001) and sequencing was performed on an Illumina Hi-seq 4000 genome

analyzer according to the manufacturer’s protocols (ArrayExpress accession: E-MTAB-7206).
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Single-Cell (sc) RNA-Seq Assays
Single cell RNA-seq was performed on the ICELL8 single-cell RNA-seq system as described previously (Goldstein et al., 2017)

except that cryogenically frozen cells were used (ArrayExpress: E-MTAB-7211).

Immunofluorescence Assays
Cells were seeded on 24 well-plate acid-treated glass slides at 2.5x104/cm2 in EpiLC media for 1 and 2 days (d1EpiLC, d2EpiLC).

Cells were washed twice with PBS and fixed with 4% paraformaldehyde treatment for 10 min at room temperature (RT). Following

washing three times with PBS, the cells were permeablised with 0.1% Triton X-100/PBS 20 min at RT then washed three times with

PBS. The cells were then blocked with 5% normal goat serum/PBS for 45 min at RT, and then stained with diluted primary ZIC3 anti-

body (2 mg/ml final) in blocking solution at 4�C overnight. The cells were then washed four times with PBS, and then incubated with a

secondary antibody (1/500 dilution, Alexa Fluor 488 goat anti-rabbit) in blocking solution at RT for 1 hr. The cells were then washed

four times with PBS, and mounted in Prolong Gold antifade reagent with DAPI (Invitrogen P36941).

ESC Clonogenicity Assay
To identify alkaline phosphatase positive ESC-like clones, we used themethod described previously (Kalkan et al., 2017). Naive ESCs

were reverse-transfected with siRNA at 100 nM in fibronectin-coated 12 well-plates in EpiLCmedia. Cells were re-seeded 15 hr after

transfection at 800 cells per well in gelatin-coated 6-well plates in 2i/LIF media. Six days later, plates were fixed and stained for AP

(Sigma, 86R-1KT). Images were taken by microscope and colonies were counted using FiJi-ImageJ.

QUANTIFICATION AND STATISTICAL ANALYSIS

Bioinformatics and Statistical Analysis
All software was run with default settings, unless otherwise indicated. Raw sequencing reads (76-nt length; paired end) were trimmed

and filtered using Trimmomatic v0.32 with paired-endmode to remove adapters, truncated reads (30) and readswith < 25 nucleotides

(TRAILING:5 SLIDINGWINDOW:4:15 MINLEN:25; Bolger et al., 2014). Filtered reads were mapped against National Center

for Biotechnology Information build 37/mm9 of mouse genome using Bowtie2 v2.3.0 (allow up to two mismatches, -X 2000 and

–dovetail; Langmead et al., 2009). Unmapped pairs (- F 4) were discarded using SAMtools v1.3.1 (Li et al., 2009). Reads were

then de- duplicated using the MarkDuplicates function of the Picard tools (http://broadinstitute.github.io/picard/). Only reads that

were uniquely mapped to the genome were preserved (MAPQ R 30). The reads mapped to the mitochondrial genome (sed

‘/chrM/d’) and overlapping with mm9 blacklist regions (intersectBed –v) were removed. The normalized tag density profiles were

generated using HOMER (annotatePeak.pl; Heinz et al., 2010) and were plotted using a customised R script. Heatmaps were gener-

ated using Java treeview (Eisen et al., 1998). The UCSC tracks were generated by genomeCoverageBed for ATAC-seq normalized to

total reads in peaks (RIPs) (BEDtools; Quinlan and Hall, 2010), MACS2 for ChIPmentation normalized to total tags (Zhang et al., 2008)

or RSeQC for RNA-seq (Wang et al., 2012).

ATAC-Seq Data Analysis
Data from two biological replicates were first compared to check for concordance (R2 > 0.96; Figure S1), and then merged into a

single read file for each time point. ATAC-seq peaks (open-chromatin regions) were then called using MACS2 (Zhang et al., 2008)

on individual replicates with the following parameters: -q 0.01–nomodel–shift �75–extsize 150. The high confidence peak sets

were selected from biological replicates using the intersectBed function from BEDTools (Quinlan and Hall, 2010) with parameters

-f 0.50, -r. This ensures a reciprocal overlap of > 50% between the two peaks being selected. To get a union set of peaks from all

three conditions (ESC, d1EpiLC and d2EpiLC), high confidence MACS peaks from each condition were merged using mergePeaks

module from HOMER (d = 100; Heinz et al., 2010) so only a single peak was retained when two or more peaks from different condi-

tions had peak to peak distance < 100 bp). All downstream analysis was based on this union set of 238,236 peaks.

For identifying differentially accessible regions and fuzzy cMeans clustering, the union set of peaks was divided into promoter

(�2 kb to +0.5 kb), intragenic- (defined by peaks located within mm9 protein coding regions) and intergenic-regions (all remaining

peaks). Read counts for all peaks in the union set were obtained using the annotatePeaks module of HOMER package (Heinz

et al., 2010) and were quantified using edgeR (Robinson et al., 2010). Fuzzy cMeans clustering using the R Mfuzz package (Kumar

and Futschik, 2007) was then performed on each set of ATAC-accessible peaks identified in the Promoter, Intergenic and Intragenic

regions, respectively. Initially, the Fuzzy cMeans clustering was performed to classify peaks into 12 clusters, which were subse-

quently merged into 4 clusters upon manual inspection. The final differentially accessible peaks were filtered based on EdgeR

analysis (minimal CPM R 4 in any of the three conditions), q < 0.05 and fold change R 2 (promoter peaks) R 2.5 (intergenic- and

intragenic-peaks) (on at least one pairwise comparison between conditions).

To determine motif enrichment in clustered regions, over represented transcription factor motifs in each of the four clusters were

identified using findMotifsGenome module of the HOMER package (Heinz et al., 2010). Motifs were then clustered using Fuzzy

cMeans clustering and were also assigned to their respective families using the STAMP tool (Mahony and Benos, 2007). The relative

enrichment scores of the clustered motifs were then transformed to Z-scores and plotted as heatmaps using the R pheatmap

package.
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To identify the transcription factors undergoing substantial changes in occupancy levels and chromatin accessibility around their

binding sites between the transition states we used BaGFoot (Baek et al., 2017) software on the clustered ATAC-seq peaks. ATAC-

seq peaks from all 4 clusters were merged for a reliable detection of footprint depth with robust statistical significance. We collected

transcription factors from the JASPAR (Khan et al., 2018) database, which were manually curated to exclude transcription factors

from non-vertebrate species, giving us 872 transcription factor motifs. Themouse genome (mm9) was scanned for motif occurrences

of these transcription factors using Find Individual Motif Occurrences (FIMO) (Grant et al., 2011) as recommended by the software

(1.5Mmotif threshold count). We performed pairwise comparisons for the transition states (d1EpiLC versus ESC and d2EpiLC versus

ESC) and calculated the changes in accessibility and footprint-depth. Results are displayed as bagplots.

ChIPmentation Data Analysis
ChIPmentation data was compared to input chromatin and peaks were called on each replicate using MACS2 v2.1.1 using param-

eters: –keep-dup all -q 0.01 -g mm -f BAMPE -B–SPMR–call-summits (Zhang et al., 2008). The high confident peak set (peaks iden-

tified in both biological replicates) was selected usingmergePeaksmodule fromHOMER (d = 400, peak summit distance = 400; Heinz

et al., 2010). Similarly, the mergePeaks (d = 250, peak summit distance = 250) was used to subset peaks that overlapped with

differential accessible ATAC-peaks.

Motif discovery and the significance of discovered motifs was performed by HOMER (findMotifsGenome.pl; Heinz et al., 2010) us-

ing the sequences within ± 100 bp around the binding region summits, using the default background setting i.e., sequences randomly

selected from the genome with the same GC content as the target sequences.

Nearest genes were assigned to peaks and the Gene Ontologies (GO) were analyzed using GREAT (McLean et al., 2010). Genomic

distributions were determined using HOMER (Heinz et al., 2010).

RNA-Seq Data Analysis
Amanually curated gtf file was built for expression quantification of all datasets. Briefly, the gtf (vM1) file for mm9 from the GENCODE

website was downloaded and genes specified by transcript_type (protein_coding, lincRNA and antisense) were retained. In addition,

genes missing from the GENCODE gtf file but in ENSEMBL gtf file were added to our list. After manual filtering and inspection, the gtf

file comprises of 25,875 unique ensembl id’s and 25,753 unique gene symbols.

Filtered paired-end reads were mapped to the mouse genome (mm9 assembly) using STAR v2.5.3a (Dobin et al., 2013) with the

manually curated mm9-gtf file and default parameters. Ribosomal RNA (rRNA) reads were removed from the mapped files. Read

counts for each sample were quantified using HTSeq v0.9.1 (Anders et al., 2015), which estimates number of reads mapped to

each gene. The raw read counts from the HTSeqwere subsequently used to quantify the differential expression levels for genes using

DESeq2 v1.18.1 (Anders and Huber, 2010). Data were taken as significant if a fold change of > 1.2 and p value < 0.05 was obtained.

Additional genes were included in our analysis above this p value threshold if they changed expression in a consistent direction in

paired samples and also exhibited a mean fold change > 1.2. For volcano plots, log2 fold changes (FC) of differentially expressed

genes were plotted against their log10 p- values using the inbuilt function of the R statistical package. The Gene Ontology (GO) an-

alyses were performed using DAVID (Huang et al., 2009).

Single-Cell Transcriptomics
Single cells from three samples (ECS, d1EpiLCs and d2EpiLCs) were captured and isolated using the ICELL8 single cell system. A

custom script was used to perform assignment and error correction of cell barcodes/UMIs, low quality reads trimming and to run a

cross species contamination checking. After the QCs, reads were aligned to a customized mouse reference genome of mm9 using

STAR aligner (v2.4.2a). Reads aligning to genes were counted using HTSeq (v0.6.1.p1) with setting the stranded option to ‘‘yes.’’ This

count matrix was then used for the downstream analysis of the dataset using statistical computing programming language R.

We implemented two measures of cell quality control (cell QC) based on library size and number of expressed genes. If the total

read count of a cell is below 3x median absolute deviation (MAD) of the dataset then the cell was filtered out. Similarly, if the total

number of genes expressed by a cell is lower than 3x MAD those cells were also filtered out. A further QC was done to filter out

any cells that are outliers in terms of library size on the higher end as this could indicate doublets of cells. After all these filtering steps,

a total of 816 cells (from 869) were left for downstream analysis.

Subsequently, the lowly expressed genes were filtered out if their average counts are less than 0.05 (raw counts) meaning a gene

has to be expressed in at least 5% of cells with 1 read count or higher counts in smaller number of cells still accounting for 5% equiv-

alent cells, which gave us 12,695 genes for downstream analysis. The normalized count data is represented as counts per million

where the size factors are used to calculate the effective library size. These size factors were defined from the actual library size after

centering to unity. We used the calculateCPM function from the scater package (McCarthy et al., 2017) to perform this normalization.

To identify the highly variable genes (HVGs) we first estimated the total variance in expression of each gene which is then decom-

posed into technical and biological components. We fitted a mean-variance trend to the expression of endogenous genes and then

took those genes that have a larger biological variance component with an FDR value less than 0.05 as our HVGs. 283 genes were

identified as HVGs for this dataset. These HVGs were then used to construct dimensionality reduction processes using PCA. For the

t-SNE plot (van der Maaten and Hinton, 2008), 10 principal components from this PCA are given as input and the perplexity is set to
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60. In addition, the theta (a parameter for speed/accuracy tradeoff) is set to 0.01 to increase the accuracy of the plot. For generating

the Uniform Manifold Approximation and Projection (UMAP) plots (McInnes et al., 2018), 10 PCs are taken as input.

We used the monocole (v2) package to perform the pseudotime estimation (Trapnell et al., 2014). As we know the three stages of

cells in our samples we use this information to identify the order of the genes. Genes that are differentially expressed between ESCs,

d1EpiLCs and d2EpiLCs with a q-value less than 7.5e-08 were identified and subsequently used to order cells. We then apply

DDRTree method to reduce the dimension of the dataset (Qiu et al., 2017). The pseudotime trajectory is visualized in the reduced

dimension.

Co-expression scores across single cell RNA-seq data were calculated by first giving a binary score to the expression of each gene

in each cell. These binary scores were summed for each cell, and then z transformed. The data are shown as boxplots for ESCs,

d1EpiLCs and d2EpiLCs in Figure 4G after correcting for the numbers of cells at each condition.

To examine the Jaccard Similarity Index (JSI), Jaccard’s distance was computed for the binary co-expression matrix of all ZIC3

activated TFs in each cell type (ESC, d1EpiLC, and d2EpiLC2) using the R package ade4 (Dray and Dufour, 2007). The dissimilarity

matrix was then converted to a similarity matrix by using the expression JSI = 1- (JD)2 (where JD = Jaccard’s distance) and the JSI

based data were plotted as heatmaps. First, the d1EpiLC data was clustered on both row and columns using hierarchical clustering

using heatmap.2 from R gplots package. The heatmaps generated for ESC and d2EpiLC data were plotted using the same gene

ordering that was obtained from clustering of the d1EpiLC data.

TheMatthew’s Correlation Coefficient (MCC) for the co-expression data of ZIC3 activated genes that encode transcription factors,

were computed using a custom R script. The correlation matrix for d1EpiLC was then ordered for the first principal component using

R package corrplot (Wei and Simko, 2017) and plotted as a heatmap after clustering the rows and columns. As in the JSI plots, the

gene order from the d1EpiLC heatmap was retained and the heatmaps for ESC and d2EpiLC data were plotted without further

clustering.

Beeswarm plots for Jaccard Similarity Indices of ZIC3 activated target genes in each cell type were plotted using R package Bees-

warm (https://rdrr.io/cran/beeswarm).

To interrogate the co-expression of genes in the ZIC3 regulon (ZIC3 targets) in our scRNA-seq data, the AUCell module from SCE-

NIC R package was used (Aibar et al., 2017). AUCell calculates the enrichment of gene-sets (regulon) as area under the recovery

curve (AUC) based on the rankings of all genes expressed in a particular cell. The AUC threshold was then determined and subse-

quently used to mark whether the cells contained an active- or inactive-regulon. This binary data was then visualized by superimpos-

ing onto t-SNE plots.

To verify the importance of the ZIC3 regulon during mouse embryogenesis, a scRNA-seq dataset generated during early mouse

gastrulation was used (Mohammed et al., 2017). The raw reads were mapped to the same custom mm9 gft file and analyzed as

described above. HVGs were used to generate the PCAs and 14 PCs were used as input for the t-SNE plot. For the t-SNE plot,

the perplexity was set to 60 and theta to 0.01. In addition, 135 direct ZIC3-activated genes were selected as input to cluster cells

using the t-SNE plot with the same perplexity and theta value. As a control, 135 randomly selected genes were used.

To generate pseudo-bulk RNA datasets from single cell data, the aggregated counts of each gene from each cell of the scRNA-seq

were generated and quantified using the edgeR (Robinson et al., 2010). The Fuzzy cMeans clustering was performed to generate 4

broad expression clusters as described above. 8659 genes were selected for further downstream analysis (CMPR 2, fold change >

1.5 at any pairwise comparison).

To correlate Fuzzy cMeans-generated clusters of ATAC-seq and RNA-seq data (Figures S2E and S2F), we first identified genes

whose TSSs lie within a given genomic distance constraint from any peak within a given cluster of ATAC-seq peaks (Ai). Next we

take the RNA-seq based gene clusters (Rj), and calculate the intersection of Rj with Ai (observed set). The expected set of genes

was defined as all genes within a given genomic distance of an ATAC-seq cluster from a randomly selected number (according to

comparator expression cluster size) of genes extracted from the background population (all mm9 genes). The p values for the enrich-

ment were subsequently calculated using a hypergeometric test between the observed and expected datasets. This calculation is

repeated for all to all combinations between ATAC-seq peak clusters and gene expression clusters, and for each of pre-defined set of

genomic distances relative to the TSS (8 bins within the range of ± 10 kb to ± 250 kb from the center of the peak). The resulting p

values are log-transformed (-log10(p values)) and shown as heatmaps in figures.

Statistical Analysis of the ESC Clonogenicity Assay
A Student’s t test was done to compare the significance of the differences in colony numbers following treatment with control siRNA

or Zic3 siRNA under parameters with paired conditions and a 1-tailed test (n = 4).

DATA AND SOFTWARE AVAILABILITY

ATAC-seq data have been deposited in the ArrayExpress repository under accession number: ArrayExpress: E-MTAB-7207. ZIC3

ChIPmentation-seq has been deposited in the ArrayExpress repository under accession number: ArrayExpress: E-MTAB-7208.

RNA-seq data have been deposited in the ArrayExpress repository under accession number: ArrayExpress: E-MTAB-7206. Single

cell (sc) RNA-seq data ArrayExpress: E-MTAB-7211).
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