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Vascular wilt, caused by Verticillium dahliae and V. longisporum, limits the

quality and yield of agricultural crops. Although quantitative real-time PCR

(qPCR) has greatly improved the diagnosis of these two pathogens over

traditional, time-consuming isolation methods, the relatively poor detection

sensitivity and high measurement bias for traceable matrix-rich samples need

to be improved. Here, we thus developed a droplet digital PCR (ddPCR) assay

for accurate, sensitive detection and quantification of V. dahliae and V.

longisporum. We compared the analytical and diagnostic performance in

detail of ddPCR and the corresponding qPCR assay against the genomic

DNA (gDNA) of the two fungi from cultures and field samples. In our study,

the species specificity, quantification linearity, analytical sensitivity, and

measurement viability of the two methods were analyzed. The results

indicated that ddPCR using field samples enhanced diagnostic sensitivity,

decreased quantification bias, and indicated less susceptibility to inhibitors

compared with qPCR. Although ddPCR was as sensitive as qPCR when using

gDNA from cultures of V. dahliae and V. longisporum, its detection rates using

field samples were much higher than those of qPCR, potentially due to the

inhibition from residual matrix in the extracts. The results showed that digital

PCR is more sensitive and accurate than qPCR for quantifying trace amounts of

V. dahliae and V. longisporum and can facilitate management practices to limit

or prevent their prevalence.
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Introduction

Substantial losses in quality and crop yield are caused by

soilborne pathogens such as Verticillium dahliae and V.

longisporum, which cause severe vascular wilt diseases

characterized by plant stunting, discoloration, wilting, and

death, across a broad host range (Isaac, 1946; Xiao et al.,

1997). These wilt diseases result in 10–50% yield loss and an

annual economic loss of USD 3 billion worldwide (Depotter

et al., 2016). No fungicides are effective against these fungi

because they are present in the host vasculature and the soil.

The preferred and most economically efficient management

strategy is to block the transport of V. dahliae and V.

longisporum during the early stage of infection (Anguita-

Maeso et al., 2021). Thus, accurate, sensitive quantitative

detection methods are needed to assess risk and outbreaks as

early as possible.

Traditional methods used to identify V. dahliae and V.

longisporum include isolating the pathogen and observing its

morphology, which is laborious, time-consuming, and lacks

specificity (Mahanty, 1970). PCR, based on differences in the

characteristics between fungal genomic and specific DNA

fragments, has been applied to distinguish Verticillium species

(Robb et al., 1993; Mercado-Blanco et al., 2002; Moradi et al.,

2014). Quantitative real-time PCR (qPCR) is superior in

comparison with traditional methods in terms of accuracy,

specificity, and quantification range; therefore, it is commonly

used for monitoring Vertici llium spp. in plant and

environmental samples (Dan et al., 2001; Gayoso et al., 2007;

Duressa et al., 2012). However, qPCR assays are generally

sensitive to PCR inhibitors in field samples, which may lead to

false negative results (Aljawasim and Vincelli, 2015). Moreover,

accurate quantification relies on standard curves obtained using

serial dilutions of standards, and marked variations in

amplification efficiency often result in poor reproducibility and

inconsistencies between different laboratories (Bustin et al.,

2009; Cao et al., 2013).

Digital PCR (dPCR) is increasing in popularity due to its

high sensitivity, increased tolerance to some PCR inhibitors, and

improved accuracy and repeatability (Hindson et al., 2013;

Pavsǐč et al., 2016). As a calibration-free method, it directly

quantifies the absolute copy number concentration of targets in

samples, based only on the frequency of positive droplets and an

approximation of Poisson distribution (Pinheiro et al., 2012).

Because of these benefits, dPCR has been used for purposes such

as reference material development and clinical diagnostics (Pohl

and Shih Ie, 2004; Milosevic et al., 2018; Li et al., 2020).

Compared with the abundant studies on qPCR, which is

routinely utilized in various applications, studies on digital PCR

for plant pathogen detection are limited. Therefore, a systematic

comparison of digital PCR and qPCR performance is required.

Here, we developed a droplet digital PCR (ddPCR) assay for
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quantitative detection of V. dahliae and V. longisporum. We

further evaluated the performance of both methods in terms of

species specificity, analytical sensitivity, quantification limits,

measurement precision, quantitative correlation, and influence

of the residual matrix using cultured and field samples.
Materials and methods

Fungal, bacterial, soil, and plant samples

The V. dahliae strain (highly virulent defoliating V991) was

stored in our laboratory. We obtained isolates of 11 species of

fungi (V. longisporum, V. nonalfalfae, V. alboatrum, V.

nigrescens, Magnaporthe oryzae, Bipolaris maydis, Exserohilum

turcicum, Rhizoctonia cerealis, Meloidogyne incognita, Fusarium

pseudograminearum , and Fusarium oxysporum f. sp.

conglutinans [Foc]) and 6 isolates of bacteria (Ustilaginoidea

virens, Acidovorax citrulli, Xanthomonas oryzae pv. oryzae

[Xoo], Pseudomonas syringae, Ralstonia solanacearum, and

Xanthomonas campestris pv. campestris [Xcc]) from the

Chinese Academy of Agricultural Sciences and China

Agricultural University. All samples were stored in 25%

glycerol at -80°C.

Fresh cotton roots were collected from an experimental field

(Langfang, Hebei Province, China, 39˚51’N, 116˚60’E) and

quickly frozen in liquid nitrogen. Soil samples were collected

from the surface of cotton roots (10-20 cm), air-dried, then

brushed through a 2-mm mesh sieve. We collected 500 mg of

field soil and 500 mg of fresh cotton roots for each sample.
Phylogenetic tree construction

Intergenic spacer (IGS) sequences from V. dahliae and V.

longisporum were downloaded from the National Center for

Biotechnology Information (NCBI) database. IGS homologs

from the genomes of eight Verticillium fungi, including V.

nonalfalfae, V. albo-atrum, V. alfalfae, V. zaregamsianum, V.

nubilum, V. isaacii, V. tricorpus, and V. klebahnii were obtained

from the NCBI online BLAST tool. A phylogenetic tree was

constructed based on the sequences using MEGA 11.0 software

with the neighbor-joining method and 1000 bootstrap replications.
DNA extraction and molecular
identification of fungi and bacteria

Biological samples were cultured in complete medium/

Luria-Bertani broth at 25/37°C. The cultured samples were

harvested at 3000 × g for 10 min, and the genomic DNA

(gDNA) was extracted using a commercial kit and the
frontiersin.org
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instruction manual (KG203, Tiangen, Beijing, China). gDNA of

cotton roots was extracted using a Hi-DNAsecure Plant Kit and

the instructions (DP350, Tiangen). gDNA of soil samples was

extracted using another kit and the provided protocol (DP336;

Tiangen). The quality and concentration of gDNA was

determined using 1% agarose gel electrophoresis and a

NanoDrop Spectrophotometer (ThermoFisher, USA). Then, all

samples were aliquoted and stored them in a refrigerator at -80°

C as templates to develop the qPCR and ddPCR assays.

For the above fungal and bacterial samples, the internal

transcribed spacer (ITS) of the 18S ribosomal DNA (rDNA) was

amplified using the specific primer pair 5’-TCCGTAGGTGAAC

CTGCGG-3’/5’-TCCTCCGCTTATTGATATGC-3’. The 16S

ribosomal RNA (rRNA) gene was amplified with the bacterial

universal primer pair 27F (5’-AGAGTTTGATCCTGGCTCAG-

3 ’)/1492R (5 ’-GGTTACCTTGTTACGACTT-3 ’) . The

amplicons were sequenced by Sangon Biotech Co., Ltd.

(Shanghai, China), and the obtained sequences results were

aligned using the Basic Local Alignment Search Tool (https://

blast.ncbi.nlm.nih.gov/Blast.cgi) (Wu et al., 2002; Su et al., 2021).
Evaluated primer/probe sets

Sequences of primer/probe sets for the qPCR and ddPCR

experiments were designed based on published references

(Table 1) and synthesized by Shanghai Sangon Biotech Co.,

Ltd. (Shanghai, China). The qPCR assays were done using

previously reported protocols. Stock solutions of the primers

were made at 100 mM and diluted to 10 mM as the final

working solution.
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qPCR assay

The qPCRs were done using an ABI 7500 Fast Real-Time

PCR system (Applied Biosystems, USA). The 20 mL reaction

mixture contained 2×AceQ Universal U and Probe Master Mix

V2 (Vazyme Biotech Co., Ltd, Nanjing) (10 mL), forward and

reverse primer (each 0.4 mL), probe (0.2 mL), gDNA (2 mL), and
nuclease-free water (7 mL). The thermal cycling conditions were

denatured at 95°C for 5 min, followed by 40 cycles of

denaturation at 95°C for 10 s and annealing and elongation at

60°C for 30 s. Quantification cycle (Qc) values were calculated

using 7500 software v2.3 (Applied Biosystems). We used distilled

water as the template for the negative control.

The standard curves for qPCR were constructed using 10-

fold serial dilutions of V. dahliae and V. longisporum gDNA as

templates, the concentration of which we measured on a

Nanodrop (Thermo Fischer Scientific, USA). Three

independent experiments were carried out with four reactions

of each concentration to generate the standard curves. We

plotted the standard curve by the Cq values of the qPCR

assays against the corresponding logarithm (base 10) of the

concentrations of these dilutions.
ddPCR assay

The ddPCR assay was performed using ddPCR™ Supermix for

Probes (Bio-Rad Laboratories, USA) on a QX200 Droplet Digital

PCR System (Bio-Rad Laboratories, USA) according to the

manufacturer’s instructions. The 20 mL ddPCR reaction

contained 10 m L of 2x Supermix, 2 mL of gDNA, forward and
TABLE 1 Primers and probes used in this study.

Name Target Oligo sequence (5’-3’) Product length (bp) Reference

Vdl-1 IGS (AF104926) F: CGTTTCCCGTTACTCTTCT 159 (Bilodeau et al., 2012)

R: GGATTTCGGCCCAGAAACT

P: FAM CACCGCAAGCAGACTCTTGAAAGCCA BHQ-1

Vdl-2 b-tubulin (AY354459) F: CTCGATCGTCGTCAACC 155 (Pasche et al., 2013)

R: TGGTGGTGAGAGTGTTG

P: FAM-TACGACAACGACTTCGCCATC BHQ-1

Vdl-3 V357I (DQ266246) F: GGCTCAAGTTAACTACGG 123 (Maurer et al., 2013)

R: CTGTCATGTATATAAGATACTACTG

P: FAM-AGGTATAAGGTCCATATCCAACACGAG BHQ-1

Vdl-4 VDAG_05595 F: GGCTCAAGTTAACTACGG 104 (Duressa et al., 2013)

R: TTGGACTTCACATTGTCGATCGT

P: FAM-TTGGAAGTCGAATCATCC BHQ-1

Vdl-5 IGS (AF104926) F: GGGAAGAGAGAGCGAGAG 113 (Feng et al., 2014)

R: GTAGGCGGCCGTGACAG

P: FAM-GCGCCTTGCTCTAGCGACCT BHQ-1
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reverse primer (each 0.4 mL), probe (0.2 mL), and 7 mL of nuclease-

free water. We performed thermal cycling at 95°C for 10 min

(denaturation), followed by 40 cycles, each at 94°C for 30 s and 56°C

for 1 min, and a final 10 min incubation at 98°C. The ramp rate was

2°C/s. The distilled water was used as the template for the negative

control. We analyzed each assay in four reactions in triplicate runs

for the linearity analysis.

The annealing temperature and primer/probe concentrations

of the ddPCR protocol were optimized. And the thermal gradient

was optimized ranging from 54, 56, 58, 60, and 62°C on a Veriti™

96-Well Thermal Cycler (Applied Biosystems, USA) using the

gDNA of cultured V. dahliae and V. longisporum. The primer/

probe concentrations ranged from 600 nM/400 nM, 500 nM/250

nM and 400 nM/100 nM were optimized with the identical

annealing temperature at 56°C.
Determination of limit of quantification
(LoQ), limit of detection at 95%
probability (LoD95%), and precision
of measurement

The gDNA extracted from cultured V. dahliae and V.

longisporum strains was used to determine the LoQ, LoD95%,

and measurement precision of each assay.

The LoQ of the qPCR and ddPCR is the lowest template

concentration that an assay can accurately quantify based on the

linearity of the standard curve. The relative standard deviation

(RSD) of the LoQ value should be ≤25% (Kralik and Ricchi,

2017). To obtain the LoQ of the ddPCR and qPCR assays, we

tested a series of 2-fold dilutions of V. dahliae and V.

longisporum DNA, ranging from 1.2 to 296 copies/reaction (V.

dahliae) and 1.6 to 400 copies/reaction (V. longisporum). Three

independent experiments were done over two consecutive days,

with 10 replicates of each concentration on each day.

The LoD95% for ddPCR and qPCR is the lowest

concentration at which the probability of detecting the target

is 95% (Burns and Valdivia, 2008; Kralik and Ricchi, 2017). To

determine the LoD95% of both ddPCR and qPCR, we used the

series of two-fold dilutions of gDNA at concentrations close to

the detection limits as templates in each assay. We then assessed

the LoD95% using a probit analysis of the assay results, with the

target concentration (dilution level) as an explanatory variable

and the detection of the sample (positive/total) as a response

variable. Three independent experiments were done over two

consecutive days, with 10 replicates of each concentration on

each day. The probit analysis with 95% confidence intervals

(95% CI) was done using SPSS 17.0 software (Chicago, IL, USA).

The measurement precision was evaluated by calculating the

RSD of the measured value at each dilution level (Kralik and

Ricchi, 2017). For each concentration, we did three independent
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experiments over two consecutive days, with 10 replicates of

each concentration on each day.
ddPCR and qPCR inhibition by residual
matrix

The inhibitory effect of the residual matrix on both ddPCR and

qPCR assays was estimated by quantifying a constant amount of

gDNA in the presence of different quantities (2 to 6 mL) of cotton
root and soil extracts. We spiked the reactions with the same

amount of gDNA of the two Verticillium species and evaluated the

influence of extracts relative to the measured value for each sample

without inhibitors. A Student's t-test was applied to evaluate the

significance level of the ddPCR and qPCR assays. The preparation

process was described by Maheshwari et al. (Maheshwari

et al., 2017).
Results

Screening of primer/probe sets and
phylogenetic analysis

To ensure the accurate classification of strains, we tested the

12 known isolates of fungi (V. dahliae, V. longisporum, V.

nonalfalfae, V. alboatrum, V. nigrescens, M. oryzae, B. maydis,

E. turcicum, R. cerealis, M. incognita, F. pseudograminearum,

and Foc) and six known isolates of bacteria (U. virens, A. citrulli,

Xoo, P. syringae, R. solanacearum, and Xcc) and aligned the

respective ITS and 16s rRNA sequences. The results indicated

that the classifications were correct.

To screen the optimum primer/probe set for high detection

sensitivity, we performed qPCR to evaluate the five published

primer/probe sets (Table 1) to detect V. dahliae and V.

longisporum, using high-quality gDNA extracts from known

cultures as templates. The results showed that the Cq values for

the qPCRs varied between these sets for quantifying identical

amounts of templates, and we obtained the lowest Cq values for

both pathogens using the Vdl-1 primer/probe set (Table S1),

which targets a multiple-copy rDNA IGS. According to

subsequent sequencing, the amplification products confirmed

that the Vdl-1 set amplified the 159-bp sequences of the V.

dahliae and V. longisporum IGS sequences. The sequences were

fairly similar and differed by one nucleotide from the NCBI

published sequences (AF104926) in the alignments (Figure S1).

The phylogenetic tree based on the IGS sequences of major

Verticillium fungi showed that they wereseparated into two distinct

clades, with V. dahliae and V. longisporum having the closest

relationship (Figure 1A). As soilborne pathogenic fungi, the

spores of V. dahliae and V. longisporum exist in the soil and
frontiersin.org
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invade host plants through the roots, resulting in the typical

symptoms of Verticillium infection. We detected the IGS

fragment from the two fungi via a self-developed ddPCR

workflow and, in parallel, a standard qPCR method, targeting the

same IGS fragment. We compared the two methods, qPCR and

ddPCR, based on different quantification principles (Figure 1B).
qPCR assay development

The standard curves generated from 10-fold serially diluted

DNA of V. dahliae and V. longisporum, ranging from 2.23 ×10-5 to
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2.23 × 10-1 and 4.61× 10-5 to 4.61 × 10-1 ng/mL, respectively, and
used to validate qPCR using the Vdl-1 primer/probe set. As shown

in Figures 2A, B, the qPCR assays had good linearity with each

dilution level for both V. dahliae and V. longisporum gDNA (R2 =

0.991 and 0.993, respectively). The scopes were -3.37 and -3.40,

equivalent to a PCR efficiency of 97.9% and 96.8% forV. dahliae and

V. longisporum, respectively. These results demonstrated the high-

quality performance of the qPCR assay for detecting the two fungi

based on the Vdl-1 primer/probe set. The results of the specificity

evaluation of the qPCR assay showed that the runs were specific for

V. dahliae andV. longisporum only, with no cross-reactivity with the

other 10 fungal or 6 bacterial strains tested (Table S2).
BA

FIGURE 1

(A) Phylogenetic tree of V. dahliae, V. longisporum, and other Verticillium fungi based on IGS sequences. (B) Schematic diagram of the qPCR
and ddPCR assays used for quantitative detection of V. dahliae and V. longisporum.
BA

FIGURE 2

Standard curves and amplification curves of qPCR assays targeting IGS to detect V. dahliae (A) and V. longisporum (B). Means of three
independent measurements are shown; each error bar represents the standard deviation of the Cq values.
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ddPCR assay development

The ddPCR assay for the quantitative detection of V. dahliae

and V. longisporum using the validated Vdl-1 primer/probe set

were tested at five annealing temperatures (54 to 62°C)

(Figures 3A, S2A), then using various concentrations of

primer/probe set (600/400, 500/250, and 400/100 nM)

(Figures 3B, S2B). Based on the high resolution (well-separated

positive and negative droplets) and low abundance of rain

(droplets fall ing between the positive and negative

populations), we selected an annealing temperature of 56°C

and a primer/probe concentration of 500/250 nM for the

subsequent ddPCR reaction.

We constructed the linear regression curve by plotting the

log10-transformed copy number concentrations measured by

ddPCR against the expected log10-transformed values of the

serially diluted gDNA. The ddPCR assay showed good linearity

for the quantification of V. dahliae and V. longisporum (R2 =

0.998, 0.96 < slope < 1.03 and R2 = 0.996, 0.95 < slope < 1.04,

respectively) between the measured targets and the expected
Frontiers in Cellular and Infection Microbiology 06
concentration values over a range of four orders of magnitude

(Figures 3C, D). The corresponding LoQ was 37 copies/reaction

for V. dahliae and 50 copies/reaction for V. longisporum, which

met the criterion for the LoQ with a RSD lower than 25%. The

results of the specificity evaluation showed that the optimized

ddPCR assay was specific for V. dahliae and V. longisporum

only, with no cross-reactivity with the other 16 similar

pathogens tested (Figure S3).
LoD95%, LoQ, and measurement
precision

To determine the LoD95% of the ddPCR and qPCR assays, we

used serial dilutions of gDNA, from 1.2 to 148 copies/reaction

(V. dahliae) and 1.6 to 200 copies/reaction (V. longisporum), as

templates in each assay. For V. dahliae, the probit analysis

revealed a LoD95% of 7.1 (95% CI: 5.5-14.3) copies/reaction for

the ddPCR and 6.5 (95% CI: 5.2-12.1) copies/reaction for the

qPCR in detecting V. dahliae (Figure 4A). For V. longisporum,
B

C D

A

FIGURE 3

Optimization of annealing temperatures (A) and primer/probe concentrations (B) for ddPCR to quantify V. dahliae and V. longisporum. Linear
regression of ddPCR assays for V. dahliae (C) and V. longisporum (D). Means and standard deviation for each dilution series (n = 3) are shown.
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the resulting LoD95% was 8.5 (95% CI: 6.5-16.3) for the ddPCR

and 6.4 (95% CI: 5.1-10.2) copies/reaction for the qPCR

(Figure 4B). The above analysis showed that, with the same

primer/probe set and templates, the sensitivities of the two

methods for the identification of V. dahliae were similar,

whereas qPCR was slightly more sensitive than ddPCR for

detecting V. longisporum with a 95% probability.

To further compare the LoQ values of ddPCR and qPCR, we

prepared a series of 2-fold DNA dilutions at concentrations close

to the quantification limits. As shown in Table S3, the LoQ of

qPCR was at least 74 and 100 copies/reaction for V. dahliae and

V. longisporum, respectively, which were two times higher than

those of the ddPCR assay. We investigated the measurement

precision by calculating the RSD of the measured concentrations

at each dilution level. The variability of the ddPCR assay was

lower, as reflected in the low RSDs in comparison with those of

the qPCR assay (Figures 4C, D).
Frontiers in Cellular and Infection Microbiology 07
Diagnostic performance of ddPCR and
qPCR using field samples

In the diagnostic comparison of ddPCR versus qPCR, 100

cotton root and 100 soil samples from a cotton field that had

potentially been infected for years, were tested in parallel using

the two methods. As shown in Table 2, the ddPCR had higher

detection sensitivity than the qPCR for the two fungi. All the

qPCR-positive cotton root and soil samples were also identified

by ddPCR. Compared with the 48% and 30% positive rates for

cotton root and soil samples, respectively, by qPCR, ddPCR

improved the respective rates to 65% and 51%.

The samples tested double-positive in the ddPCR and qPCR

were then used for linear regression and Pearson correlation

analysis. The log copy number of IGS determined by ddPCR

correlated well with that of qPCR for both types of collected

samples (cotton root, R2 = 0.881, 0.735 < slope < 0.916; soil, R2 =
B

C D

A

FIGURE 4

Comparison of LoD95% and measurement precision for the qPCR and ddPCR to quantify V. dahliae and V. longisporum. (A, B) Determination of
LoD95% of qPCR and ddPCR by probit analysis. The y-axis shows the fraction of positive results in 10 parallel reactions for each given
concentration indicated on the x-axis. Horizontal dashed lines indicate the dilution level where the estimated probability of detection is 95%
(LoD95%). (C, D) RSD of qPCR and ddPCR at each low-concentration dilution level. The horizontal dashed lines indicate RSD = 25%.
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0.903, 0.727 < slope < 0.939) (Figure 5). For the 17 cotton root

and 21 soil samples that tested negative by qPCR but positive by

ddPCR, the average load was 26 and 38 copies/reaction in cotton

root and soil samples, respectively.

Thus, compared with the sensitivity levels obtained with gDNA

from cultures, the results showed that the positive diagnosis of the

two pathogens using ddPCR was more robust than that using

qPCR. To determine whether the residual matrix of field samples

may cause the reduction in the amplification efficiency of qPCR, we

prepared samples spiked with equal amounts of gDNA from

cultured isolates (V. dahliae: 3.7 × 104 IGS molecules; V.

longisporum: 3.4 × 104 IGS molecules) and different quantities of

extracts from healthy cotton roots or distilled soil. The results

showed that compared with the no-inhibition control (distilled

water instead of extract), these extracts inhibited the quantification

of the spiked DNA by both methods; with increasing extract

amounts, less of the spiked DNA was measured by both

methods. However, the resilience of ddPCR against such

inhibition was higher than that of qPCR for quantifying V.

dahliae and V. longisporum (Figure 6).
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Discussion

Digital PCR can directly and absolutely measure the copy

number concentration of targets in a calibration-free manner

with high sensitivity and precision, and shows “less susceptibility

to PCR inhibitors” (Baker, 2012). To test the ability of digital

PCR to quantitatively detect pathogens in samples, we evaluated

qPCR and ddPCR in parallel to directly compare the analytical

and diagnostic performance of the two methodologies for two

destructive agents, V. dahliae and V. longisporum. Our findings

indicated that the proposed ddPCR method is a more robust

detection tool for pathogen detection, especially for infected field

samples with low titers.

According to the Poisson distribution, where only sampling

noise contributes to replicate variation, the LoD95% of qPCR is

three molecules (Burns and Valdivia, 2008; Kralik and Ricchi,

2017). In this study, the estimated LoD95% of the qPCR assay (6.5

and 6.4 for V. dahliae and V. longisporum, respectively) was

roughly close to the theoretical value, indicating that the qPCR

assay was well-optimized. ddPCR did not appreciably improve

the detection sensitivity of the two fungi when testing gDNA

from pure cultures, and its LoD95% values were even slightly

higher than those of qPCR. However, the positive rates of

ddPCR were substantially higher than those of qPCR, by 17%

and 21% for the tested field cotton root and soil samples,

respectively. Furthermore, the average target concentrations of

the samples that tested negative by qPCR but positive by ddPCR

were quite low, supporting the increased detection sensitivity of

ddPCR for field samples. Although we did not further validate

the positive samples determined by ddPCR using other methods,

the results tended to be true positives, given the results of the
BA

FIGURE 5

Linear regression and Pearson correlation analysis of measured copy number of the IGS target between qPCR and ddPCR for cotton root
(A) and soil (B) samples. All cotton root and soil samples that tested positive by both methods were included in the analysis (cotton root
samples, n = 48; soil samples, n = 30). R2 is the proportion of variability in y that is attributable to x. Black solid line represents the correlation
line; blue area represents the 95% confidence bands.
TABLE 2 Performance of qPCR and ddPCR assays using Vdl-1
primers to detect V. dahliae and V. longisporum in DNA extracted
from cotton root and soil samples.

Sample Analysis Positive/Total

Cotton root qPCR 48/100

ddPCR 65/100

Soil qPCR 30/100

ddPCR 51/100
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specificity assessment of this assay. The results demonstrated

that ddPCR allowed improved distinction of the presence of V.

dahliae or V. longisporum in infected asymptomatic cotton

samples, implying that it is able to detect the pathogens at an

early stage of infection.

We further found that the presence of residual matrix from

the extracts in the qPCR reaction, e.g., phenolic compounds and

polysaccharides in cotton roots (Demeke and Adams, 1992;

Osman and Rowhani, 2006), may substantially inhibit

ampl ificat ion effic iency and subsequent ly lead to

underestimation of the pathogen titer of field samples or to the

false negatives (Maheshwari et al., 2017). Aljawasim et al.

discovered that several qPCR reactions for detecting V. dahliae

were sensitive to PCR inhibitors, whereas others were not. They

considered that for inhibitor-tolerant qPCR assays, the optimized

DNA extraction protocol and the high concentration of tested

gDNA may eliminate or minimize the influence of the PCR

inhibitors in woody samples (Aljawasim and Vincelli, 2015). In

contrast, as an end-point approach, ddPCR is less affected by

variations in PCR efficiency (Hindson et al., 2013; Huggett et al.,

2015); thus, we speculated that ddPCR is probably more resilient

to differences in sample quality.

Additionally, the improved precision of ddPCR over qPCR

in some applications has been reported (Hindson et al., 2013;

Persson et al., 2018); therefore, it has been used to quantify

reference materials for generating calibration curves of qPCR

(Kline et al., 2009; Wang et al., 2021). The calibration curve

required for qPCR is a major source of precision error, because

consistent PCR efficiency is difficult to maintain, especially for

low-level analytes (Alikian et al., 2017; Milosevic et al., 2018),

and PCR efficiency for pure standards may differ from that of

field samples in matrix composition (Corbisier et al., 2015).

Here, the variability of the ddPCR assay quantitation of the two

fungi was lower than those of qPCR at low pathogen densities, as
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reflected in lower standard errors; the LoQ performance of the

ddPCR assay was also better than that of qPCR. The results of

the inhibition analysis further showed that ddPCR was less

affected by the matrix, underestimating quantities compared

with qPCR, likely due to its partitioning of reactions into

picoliter droplets, supporting the notion that PCR inhibitors

potentially magnify quantification errors in qPCR systems

(Hindson et al., 2013; Maheshwari et al., 2017).

Despite these advances, digital PCR has not yet been widely

applied because it can be expensive, laborious, and time-

consuming when not readily available (Huggett et al., 2013).

Thus, the method may not now be suitable for large-scale

screening of suspected samples, but it is a powerful

complementary tool or may even be a better alternative for

very low titer or poor quality samples. The combination of these

two methods provides a more reliable pathogen-identification

strategy to ensure the accuracy of the results.

This study was limited in that we assessed the performance

of qPCR versus ddPCR assays using only one target. To reduce

the potential systematic errors, assays for identifying more gene

targets with different primer/probe sets need to be conducted in

future studies. Although we focused on plant pathogens, our

findings determined the empirical operating characteristics of

qPCR and ddPCR, which should enable a broad variety of

applications where sensitive and highly precise measurement

is required.
Conclusions

In this study to develop and validate a sensitive and accurate

ddPCR assay to detect and quantify V. dahliae and V.

longisporum, we found that ddPCR had higher measurement

precision at low target concentrations, increased detection
BA

FIGURE 6

Effect of presence of DNA extracts from cotton roots and soil on quantification of V. dahliae and V. longisporum by ddPCR and qPCR assays.
Samples were spiked with an equal amount of gDNA from both species and different quantities of (A) cotton root extracts and (B) soil extracts.
Error bars represent standard error between three independent measurements of each run. Asterisks indicate statistically significant differences
between treatments according to Student’s t-test. * and ** represent P ≤ 0.05 and P ≤ 0.01, respectively, compared with the inhibition control.
ns, not significant.
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sensitivity for field samples, and less susceptibility to the effects

of matrix inhibitors compared with qPCR. The ddPCR

methodology that we established provided more accurate

quantification of these destructive pathogens with a higher

level of sensitivity, which will facilitate early intervention and

improved outcomes for plant protection.
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