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ABSTRACT: Hemoglobin is one of the most important blood elements, and its optical . Lt o o '
properties will determine all other optical properties of human blood. Since the refractive
index (RI) of hemoglobin plays a vital role as a non-invasive indicator of some illnesses,
accurate calculation of it would be of great importance. Moreover, measurement of the *
RI of hemoglobin in the laboratory is time-consuming and expensive; thus, developing a . rctmetd ., St s
smart approach to estimate this parameter is necessary. In this research, four viable ‘
strategies were used to make a quantitative correlation between the RI of hemoglobin
and its influencing parameters including the concentration, wavelength, and temperature.
First, alternating conditional expectations (ACE), a statistical approach, was employed to
generate a correlation to predict the RI of hemoglobin. Then, three different optimized
intelligent techniques—optimized neural network (ONN), optimized fuzzy inference
system (OFIS), and optimized support vector regression (OSVR)—were used to model
the RI. A bat-inspired (BA) algorithm was embedded in the formulation of intelligent
models to obtain the optimal values of weights and biases of an artificial neural network, membership functions of the fuzzy inference
system, and free parameters of support vector regression. The coefficient of determination, root-mean-square error, average absolute
relative error, and symmetric mean absolute percentage error for each of the ACE, ONN, OFIS, and OSVR were found as the
measure of each model’s accuracy. Results showed that ACE and optimized models (ONN, OFIS, and OSVR) have promising
results in the estimation of hemoglobin’s RI. Collectively, ACE outperformed ONN, OFIS, and OSVR, while sensitivity analysis
indicated that the concentration, wavelength, and, lastly, temperature would have the highest impact on the RIL
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1. INTRODUCTION

Hemoglobin is a vital protein in human blood cells that is
responsible for carrying oxygen between the lungs and the rest of
the tissues in the human body. This process will allow aerobic
respiration to provide energy to the cells for their metabolism. "
There are two distinct forms of hemoglobin, that is, hemoglobin
exist in oxygenated (O) and deoxygenated (DO) states based on
their capability to reversibly bind up to four oxygen molecules.'
Besides, hemoglobin is a biological marker to clinically diagnose
different medical conditions mainly because of the close
relationship between the pathophysiology of various diseases
and the red blood cells.*® Considering the shape and size of
hemoglobin, its optical properties would significantly affect the
optical attributes of the entire blood.” Thus, optical properties of
hemoglobin can provide us with valuable information which is
extremely useful in medical diagnosis* and the patient’s overall
health conditions. At the same time, its role in therapeutic
applications, particularly laser medicine, is highly valuable.
Moreover, the RI of hemoglobin, which can be found through
optical methods in the laboratory using a refractometer, can
reveal the true nature of the blood cell disorder.® ' However,
experimental measurement of this parameter in the laboratory is
highly expensive, labor-intensive, and time consuming. This has
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promoted the development of empirical models based on
statistical approaches instead to obtain the RI more rapidly,"’
while many of such models have demonstrated a poor
performance.

Based on what was said above, machine learning (ML), which
has been proven to be an efficient method to replace common
statistical approaches and a new modeling tool in solving
complicated regression and classification problems, could be
used to estimate the RI of hemoglobin as well. In this realm, in
the classification task, a number of studies were conducted to
successfully classify the blood cells."”™"” Tomari et al.(2014)
used an artificial neural network (ANN) to classify red blood
cells as normal/abnormal.'” Kultu et al. (2020) proposed a
convolutional neural network (CNN) to identify and locate
white blood cell types in blood images, which led to an increase
in the performance of existing blood test devices.'* Togagar et al.
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(2020) adopted CNN models to improve the classification
success of white blood cell types.'* To address the issue of
multiple cell overlap in white blood cell image classification, Patil
et al. (2021) combined the deep learning approach (merging of
the CNN and recurrent neural network model) with canonical
correlation analysis.'> Girdhar et al. (2022) also employed the
CNN model to classify white blood cell.'® Davamani et al.
(2022) developed fuzzy c-means clustering for blood cell
classification.'”” In addition, others have developed Al-based
models to segment blood vessels."*™>> Wang et al. (2015)
integrated CNN and random forest (RF) for retinal blood vessel
segmentation.19 Soomro et al. (2019) utilized deep CNN for
segmenting retinal blood vessels.”’ In their paper, in order to
generate contrast images for training data sets, morphological
mappings along with the principal component analysis-based
pre-processing steps were used. Zhang et al. (2020) used a U-
net-based deep learning approach to track and segment brain
blood vessels in digital subtraction angiography images.”'
Tchinda et al. (2021) proposed a potent strategy based on
classical edge detection filters and ANNs for the segmentation of
blood vessels in retinal photographs.”* In their paper, edge
detection filters were first applied to extract the feature vector.
Then, the resulting features were used to train an ANN in order
to recognize each pixel as belonging to blood vessels or not.
Gegundez-Arias et al. (2021) developed a new deep learning
method for blood vessel segmentation in retinal ima§es based on
convolutional kernels and a modified U-net model.”> Deng and
Ye (2022) performed retinal blood vessel segmentation based
on an improved deformable convolutional M-shaped network
and a pulse-coupled neural network.”* Zhang et al. (2022)
presented a novel automatic method based on bridge-net by
joint learning context-involved and non-context features for the
segmentation of retinal blood vessels.”” In the regression task,
researchers have attempted to develop intelligence-based
approaches to reliably predict blood pressure.”*™>' Xu et al.
(2017) presented a capable methodology based on ANN for
continuous blood pressure estimation based on multiple
parameters from electrocardiogram and photoplethysmo-
gram.”® Senturk et al. (2020) constructed a predictive model
based on dynamic recurrent neural networks to estimate non-
invasive continuous cuffless blood pressure.”” Esmaelpoor et al.
(2020) proposed a two-step strategy for blood pressure
estimation using photoplethysmogram signals.”® In the first
stage, they employed CNN to extract morphological features
from each photoplethysmogram segment and then to estimate
systolic and diastolic blood pressure separately. In the second
stage, they used long short-term memory (LSTM) to capture
temporal dependencies. Baker et al. (2021) applied a hybrid
neural network for continuous and non-invasive estimation of
blood pressure from raw electrocardiogram and photoplethys-
mogram waveforms.”” Qiu et al. (2021) proposed a hybrid
neural network architecture, which contained a CNN-
Sequential-Adapt layer, a ResNet2S_BP layer with squeeze
and excitation blocks and fully connected layers, for blood
pressure estimation.”” Cheng et al. (2021) employed fully CNN
for prediction of arterial blood pressure waveforms from
photoplethysmogram signals.”" Others attempted to carefully
evaluate the applicability of ML in the estimation of blood
glucose levels.”* ™ Ben Ali et al. (2018) used ANN for
continuous blood glucose level prediction of type 1 diabetes.”
D’Antoni et al. (2020) constructed an auto-regressive time-
delayed jump neural network for blood glucose level
prediction.” Alfian et al. (2020) applied ANN, support vector

regression, K-nearest neighbor, decision tree, RF, adaptive
boosting, and extreme gradient boosting models for blood
glucose prediction of type 1 diabetes.”* They compared results
of predictive models and concluded that ANN outperforms
other intelligence-based models. Dudukcu et al. (2021)
predicted blood glucose by virtue of deep neural networks.
LSTM, WaveNet, and gated recurrent units, and decision-level
combinations of these architectures were deep learning methods
which were used to predict blood glucose.*® Zhang et al. (2021)
adopted deep learning and regression approaches to forecast
blood glucose levels for type 1 diabetes.’® Four data-driven
models including different neural network architectures, a
reservoir computing model, and a linear regression approach
were employed in their study. Considering the RI estimation of
hemoglobin, AI methods have shown some promising results
compared to common statistical approaches.‘w’38 Allin all, these
studies confirm the applicability of ML and AI methods in the
analysis of blood from various perspectives, while the estimation
of RI, despite its importance, has been rarely done via intelligent
techniques.

In this study, four techniques are presented to estimate the RI
of hemoglobin. To do so, alternating conditional expectation
(ACE) was first employed to carry out a quantitative estimation
of the RI of hemoglobin. This method correlates inputs to
outputs through optimally transferring dependent and inde-
pendent variables into high-dimensional space. Next, three
optimized models, viz., the optimized neural network (ONN),
optimized fuzzy inference system (OFIS), and optimized
support vector regression (OSVR) were used to model the RI.
In neural network equations, a bat-inspired algorithm (BA) was
embedded to achieve global minima (optimal value of weight
and bias), where the neural network can operate at its maximum
capacity. In the fuzzy inference system, BA was employed to
optimize membership functions of a fuzzy inference system
established in the structure of the Sugeno fuzzy inference system
type. Moreover, BA was involved in the support vector
regression equations to improve its precision by means of
determining the optimal values of free parameters. Finally,
sensitivity analysis (SA) was performed to obtain information
related to the contribution of each input in every model. This SA
will enable us to understand how each parameter would affect
the outputs of every model.

2. MODEL DESCRIPTION

2.1. Alternating Conditional Expectations. Recently,
Breiman and Freidman formulated a nonparametric approach
known as ACE for solving complex regression problems.”
When the functional form between dependent variables and
independent ones is implicit, this method is far superior to its
rivals in identifying principal nonlinear relationships of input/
output space.””™** This exceptional feature motivated scientists
to use ACE in order to find solutions to complicated problems
which were impossible to be solved by the virtue of conventional
regression methods.”” A full description of ACE can be found in
the original paper of Breiman and Freidman,” but in general a
linear regression model for p independent variables X, X,,......,

X, and a response variable Y can be mathematically shown as
follows.™

p
Y=258,+ ) 86X +e
i=1 (1)
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Figure 1. Schematic diagram of the BA optimally determining the weights and the bias of the neural network.

In the above equation, regression coefficients (5, i = 0—p) and
the error term (&) are determined during the regression analysis.
Compared to the linear regression method, ACE transforms
dependent and independent variables into a high-dimensional
space z;rgld solves the following regression equation in those
spaces.

p
3¥)=a+ Z&E(Xi) + €
i=1 (2)

where 9(Y) and §I(X1),....,§P(XP) are arbitrary measurable
mean-zero functions of the Y, Xj, X,,..., X, respectively. For
achieving the best model via ACE, optimal transformation (OT)
&*(Xy),i=1,...,p and 9*(Y) which changes the dimension of the
data input/output space must be extracted. In this desired space,
there is a maximum correlation between transformed dependent
variables and the sum of the transformed predicted variables.
With the above objective in consideration, the following
equation must be minimized.*

(9, Eyoniny fp) = E([S(Y) - Zip:l g(Xi)DZ/ESZ(Y)
(3)

In order to minimize the above equation, Breiman and
Freidman took advantage of a series of single-function
minimizations and proposed the following equations for the
response variable and predictor, respectively:*”

P
) Ex)

9(Y)=E Y|/ Eijé(X,-) Y
i=1 i=1 (4)
p
£1(X) = E[8(Y) — Y E(X)IX,
i=1 (5)

By iteratively changing the values of the eqs 4 and 5, optimal
transformation &;*(X,), i = 1,...,p, and 9*(Y), where the value of
€ in eq 3 has the minimum values, will be extracted. In the
desired space, the response value is related to the predictor
variables with the following equation.>

p
8*(Y) = Z gi*(Xi) + ¢
i=1 (6)

Here, e* is an undesirable error that ACE is unable to
capture.?’9

2.2. Optimized Neural Network. A neural network is an
algorithm that is based on biological neural networks of the
human brain, and it has been proven useful for modeling
intricate regression tasks.”* Exactly analogous to the human
brain, neural networks are incredibly intelligent to effectively
train from a number of observed data in the absence of an
initially defined mathematical relationship between dependent
and independent variables. Many scientists and engineers have
recently been applying this mathematical technique to find out
the complicated relationships of the input/output space.*~*
Considering its capability, it is a prospective candidate to find
solutions for nonlinear problems.””™> Three layers are defined
in the structure of a neural network, including input, hidden, and
output layers. The input layer is devoted to receiving the input
data, while output layers are used to generate the final result. The
hidden layer is employed to obtain the dependence of output
data on the input data. For the training task, this approach
calculates the value of output from the input data through the
entire network and then determines the difference between
estimated values and the corresponding observed values.
Subsequently, this difference is propagated backward through
the network as an error, thereby adjusting weights and biases.
The training phase is considered fulfilled when the error reaches
a minimum, which yields the best predictive model. Although
the neural network is a promising and applicable technique to
model nonlinear problems, it may pose some challenges in
distinguishing the global minima from the local minima and can
produce misleading results.”* ™" To effectively solve this issue,
scientists have improved the performance of neural networks
through hybridization of optimization algorithms and this
intelligent model.>#7%° Considering this solution, in this
research, the structure of neural networks incorporates BA to
find out optimal values of their weights and biases where the
problem is preferably trapped in the global minima. A schematic
diagram of the BA optimally determining the weights and the
bias of a neural network is illustrated in Figure 1. In this study,
ONN was generated via MATLAB programming.

2.3. Optimized Fuzzy Inference System. A fuzzy
inference system is a methodology established from Zadeh’s
fuzzy set theory, which has been proved notably practical in
modeling nonlinear systems.’" This approach enables scientists
with mathematical computation to handle uncertainty in
accordance with “degrees of truth” in lieu of “true or false,”
which is generally carried out in the logic of the calculation. In
this approach, each membership function represents a fuzzy set.
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A fuzzifier, an inference engine (or a fuzzy rule base), and the
defuzzifier are three principal constituents of fuzzy inference
systems. The fuzzifier employs a membership function to map a
set of data inputs to intervals of 0 and 1. The purpose of the
inference engine as a second part of the fuzzy inference system is
to apply fuzzy rules to the converted output data of the fuzzifier.
Outputs of the inference engine are integrated into one fuzzy
output distribution and eventually transferred into a crisp output
by virtue of the output membership function in the defuzzifier
process.’” In the current work, the Gaussian membership
function is used as an input, and a linear polynomial function is
employed as an output membership function. The two most
capable types of fuzzy inference systems are Mamdani and
Sugeno, where Sugeno is utilized to perform the modeling task
in this study. The Sugeno model is composed of “if—then” rules
in the following general form®

R, Lis M,ll and I is Mf and... I_is M, then Z,
=f,(I) @)

where n refers to the number of the rules; I is the input of the
fuzzy inference system; M, ™ is the Gaussian input membership
function of mth input data and nth rule, and Z, = f, (I) is a
function in the series. As mentioned above, the output
membership function f, (I) is a linear polynomial in the input
variables. The output level, Z, is weighted by the firing strength
for each rule, and finally, the overall output is estimated via a
weighted average operator. One of the most important tasks in
modeling a regression problem is to find the optimum values of
membership functions since these values play a critical role in
the accuracy of the generated model.*** Therefore, to increase
the efficiency of the fuzzy inference system in mapping the
functional dependency between RI and its input variables, both
BA and the fuzzy inference system were integrated in this study
to reach the best values for the membership function. The main
idea of implementing such a combination is presented in
Gholami et al.*® In the current paper, OFIS was built in the
MATLAB environment.

2.4. Optimized Support Vector Regression. Support
vector regression, which was proposed by Vapnik, is a type of
intelligent model based on statistical theory to drive equations
for relating input variables and outputs.”” The estimation
approach in this function is a refinement of a support vector
machine to solve knotty regression tasks. Recently, this method
has attracted much attention because it showed significant
ability in solving diverse regression problems with excellent
accuracy.®”* In comparison to neural networks, this technique
is superior in generalization domains which originated from how
it minimizes the risk. In this regard, support vector regression
applies the structural risk minimization principle to reduce the
upper bound on expected risk, while neural networks use the
empirical risk minimization principle to decrease the error on
the training data.” In order to transfer nonlinear learning
problems into linear ones, support vector regression utilizes
kernel function in its formulation. Based on the literature, four
dominant kernel functions that are generally used for this
transformation are linear, polynomial, radial basis function, and
sigmoid. However, it has been found that the radial basis
function is a better kernel to be used in regression problems.
Since the influence of penalty parameters of support vector
regression on the performance of a constructed model is greatly
high, it is considered as one of the most challenging issues while
training the model.”'™** Thus, finding the values of these

parameters plays a key role in successfully applying this method
for solving knotty problems. In this study, BA was combined
with support vector regression to improve its efficiency by
calculating the optimum value of free parameters while OSVR
was constructed in the MATLAB environment.

2.5. Bat-Inspired Algorithm. Yang developed the BA as the
most modern meta-heuristic algorithm with the ability to
perform a §lobal search to manage different sets of optimization
problems.”* The purpose of this method is to find the best
solution to the optimization problem by simulation of bats’
behavior in finding food and prey. Bats use their hearing ability
to estimate the location of their surrounding matters, which is
the foundation of establishing the BA method.** Many scientists
conducted research to compare the simplicity, speed, and ability
of BA with other optimization tasks.”*’® Results show that BA
performs better than other approaches. This is due to the
method’s excellent potential to substantially decrease the error
encountered with the estimation.”® In this paper, BA was used as
an optimization algorithm to enhance the efficiency of the
intelligent models by finding the optimal values of those
parameters.

3. DATA INPUT/OUTPUT SPACE

To build and evaluate the predictive models in this paper,
experimental data of hemoglobin’s RI of humans are obtained
from Yahya and Saghir."" They explain that since it is difficult to
keep real human blood samples intractable (a condition when
the samples have homogeneous hemoglobin concentration and
optical stability), other samples resembling the blood from
freeze-dried human hemoglobin powder dissolved in phosphate
buffered saline (PBS) were utilized as well. To get blood
solutions, a specific mass of lyophilized blood was dissolved in
PBS which acted as a solvent. PBS keeps the pH of the blood
solutions at 7.4, which is very important since the Rl is affected
by changes in the pH. A precise Peltier thermostat and a
multiwavelength Anton Paar WR refractometer were used to
measure the temperature variations and the RI of human blood
samples of different wavelengths (436.1—657.2 nm), respec-
tively. Snell’s law is the basic principle of the device, and it
specifies the critical angle of the total internal reflection of the
investigated sample. A sensor array was employed to detect the
projected beam, so the RI of blood samples can be calculated. In
fact, three selected features of concentration, wavelength, and
temperature were considered as input data to construct the
correlation."" It is important to mention that 80% (384 sample
points) of the data points were selected to train the model and
the remaining 20% (96 sample points) as the test data set to
examine the performance of the constructed model. In addition
to this data set, two other data sets from Zhernovaya et al.*> were
utilized to check the validation of the developed models. Each
data set has 126 data points. In Zhernovaya et al,*> Sigma-
Aldrich’s human hemoglobin (lyophilized powder) was used to
obtain experimental results. Similar to Yahya and Saghir,'' PBS
is employed to dissolve human hemoglobin to keep it at a pH of
7.4 and to avoid changes in the RI from pH variations. To
measure Rl, the digital multiwavelength refractometer DSR-A
was employed where the RI was obtained by the measurements
of the angle of total internal reflection.'’ Measurement was
conducted for solutions of DO and O hemoglobin, which were
obtained from adding sodium dithionite and sodium bicar-
bonate, respectively, to all samples. Statistical analysis data for
input and output parameters, including minimum, maximum,
and mean value, mode, standard deviation, skewness, kurtosis,
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Figure 2. Optimal transformation of (a) concentration, (b) temperature, (c) wavelength, and (d) RI. Via curve fitting, equations that relate the value of
optimal transformation of each parameter with its value were mathematically obtained.

and coefficient of variation of collected data, is tabulated in
Table S1 of Supporting Information.

4. RESULTS AND DISCUSSION

In this study, the coefficient of determination (R*), mean square
error (MSE), average absolute relative error (AARE), and

Table 1. Polynomial Coefficients for Determining Optimal
Transformation of Each Input Variable

L B, B, B,
concentration —1.4511274748 0.0197881143 0
wavelength 7.1323992743 —0.0208643386 0.0000142602
temperature 4.0046826041 —0.0130999526 0

symmetric mean absolute percentage error (SMAPE) were used
to make decisions about the accuracy of the developed models.
Their expressions are given in eqs 8—11 as follows:

Coefficient of determination (R?)**

2
R2 -1 Z (lered iobs)
- T )2
Z (Xl pred Xobs) (8)
MSE™*
MSE = _Z (Xl obs ipred)2
i=1 (9)

AARE>*

33773
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P
o
T
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Figure 3. Relationship between the estimated RI and the sum of the
transformed input variables. This linear function leads to the calculation
of hemoglobin’s RI from optimal transformation of independent
variables.

1 pred

_l 10bs
= z "

= i obs

(10)
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Table 2. Polynomial Coefficients of the Archived ACE Model
for Estimation of RI

parameter value
a 0.000153666146350
p —0.000101861894337
) —0.000162023650231
i 0.000000110738826
U 1.421225072812270

100 c Xi obs Xi pred

n i=1 Xiobs +Xipred (11)

SMAPE =

where Y;  is the measured value of sample i, Y; .4 is the
predicted value of sample i, Yy, is the average of the measured
value, and n is the number of samples. When the values of AARE,
SMAPE, and MSE are close to 0, as well as the value of R? is close
to 1, a model with superb performance is achieved. It is worth
mentioning that in the training stage of the constructed
optimized models (ONN, OFIS, and OSVR), a fourfold cross-
validation technique was employed to train intelligence-based
models and generate predictive models which produce stable
results.

4.1. ACE Results. The ACE method was used to generate a
model to quantitatively estimate the RI of hemoglobin. To
achieve this, ACE optimally transfers input parameters and
target values to a high-dimensional space. Figure 2 illustrates the
optimal transformations for input and output variables of
training data points (384 data points). In this high-dimensional
space, transformed dependent variables and the sum of

transformed predicted variables have a maximum correlation.
Based on Figure 2, we can understand how the optimal
transformation of each variable is related to its value.

To construct ACE models, equations relating each
independent parameter to its transformation must be carefully
extracted. In this study, this task was performed through a curve-
fitting toolbox in the MATLAB environment. In this study,
developed equations which elicit identical transformed values of
each parameter are simple polynomial expressions. These
mathematical equations for independent parameters (concen-
tration (C), wavelength (W), and temperature (T)) are given as
follows

Tr(L) = ) BL

i=0 (12)

where L is the value of non-transformed input of a model and Tr
is the optimal transformation of the L parameter. Coefficients
that were determined through a curve-fitting tool and were
extracted for calculating optimal transformations of each
independent variable are tabulated in Table 1.

In fact, eq 12 maps inputs to a desired high-dimensional space
where transformed dependent variables and the sum of the
transformed predicted variables have a maximum correlation.
The following equation provides the summation value of input’s
optimal transformations.

S(Tr) = Tr(C) + Tr(W) + Tr(T) (13)

In which, Tr ©, Tr (W), Tr (T), and S (Tr) are optimal
transformation of concentration, optimal transformation of

ACE model
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Figure 4. Cross-plot of estimated vs measured values for (a) ACE, (b) ONN, (c) OFIS, and (d) OSVR. This figure was plotted for training, testing, and
two validation data sets. Based on this figure, it can be concluded that constructed models have acceptable fitness with experimental data.
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Figure 5. ACE-predicted Rl in each sample number for (a) testing data, (b) validation (O), and (c) validation (DO). It is observed that estimated RI

provides a good match with the measured values.

Table 3. Statistical Evaluation of Constructed Models

model allocation

ACE training

testing
validation (O)
validation (DO)
ONN training

testing
validation (O)
validation (DO)
OFIS training

testing
validation (O)
validation (DO)
OSVR training
testing
validation (O)

validation (DO)

R2

0.9982336306
0.9982064604
0.9717864827
0.9743329323
0.9952394041
0.9941302810
0.9499491259
0.9410967048
0.9941736595
0.9888749901
0.9677079225
0.9686669983
0.9944979014
0.9946500649
0.9493983049
0.9354325863

MSE AARE SMAPE
0.0000001065 0.0001908349 0.0000954193
0.0000001291 0.0002052358 0.0001026208
0.0000016910 0.0007301520 0.0003652859
0.0000015765 0.0007440273 0.0003722085
0.0000002871 0.0003215436 0.0001607715
0.0000004224 0.0003684964 0.0001842561
0.0000029999 0.0009546467 0.0004777142
0.0000036180 0.0009860192 0.0004934819
0.0000003514 0.0003561574 0.0001780796
0.0000008006 0.0004202847 0.0002102310
0.0000019355 0.0007854747 0.0003929896
0.0000019245 0.0008053153 0.0004029079
0.0000003318 0.0003317496 0.0001658630
0.0000003850 0.0003705688 0.0001852698
0.0000030329 0.0010064166 0.0005035914
0.0000039659 0.0010239630 0.0005124898

Table 4. BA Regulation Parameters for Optimized Models

parameter

number of variables for optimization

population size

maximum iteration

Ay
To
i
Smax

value
ONN OFL OSVR
26 200 3
100 400 10
500 500 500
0.5 0.5 0.5
0.5 0.5 0.5
0 0 0
2 2 2

depicts calculated RI vs the sum of input’s optimal trans-

formations.

In this step, the equation which relates the value of RI and the
summation value of the input’s optimal transformations must be
extracted. This task was done via the curve-fitting toolbox in the
MATLAB environment. As shown in this graph, RI has a linear
dependency on the sum of input’s optimal transformations. The
following equation, which relates RI to the sum of the input’s
optimal transformations, was derived through curve fitting

RI = 0.00776533652401938S(Tr) + 1.34598979050442

wavelength, optimal transformation of temperature, and sum of
the input’s optimal transformations, respectively. Figure 3

(14)

Through this relationship, the equation that relates the value
of RI to the summation of optimal transformations was
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Figure 7. Statistical measurement for finding the best value for the number of neurons in the hidden layer. It is evident that S would be the best number
since it makes the neural network have the maximum correlation of determination as well as minimum MSE.

determined. Substituting eqs 12 and 13 in eq 14, the correlation
that relates RI to input parameters can be developed as follows

eq 15, and the values of RI for these data points were obtained.
Figure 4a demonstrates the cross-plot between actual RI and the

Rl = aC + T + 6W + AW? + u

RI values, which were estimated by the ACE approach for
training, testing, and validation data points. As can be seen in this

(18)

The coefficients of the above equation are given in Table 2.

This equation represents how input parameters can be used
for the prediction of hemoglobin’s RI. In this stage, test data (84
data points) and validation data (126 data points of DO
hemoglobin and 126 data points of O hemoglobin) were fed into

33776

figure, ACE results have a perfect fit with observed data.

For a better comparison, in addition to Figure 4a, the
correspondence of predicted RI with actual Rl is assessed in each
sample number (Figure S). It is completely evident that
calculated RI has an exact match with the experimental data.
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Table 5. ONN Optimum Parameters Determined via BA

layer weights
node input 1 input 2 input 3 biases
hidden layer node 1 2.3022 —0.1883 —0.3005 —2.1802
node 2 —1.973S —0.5759 —1.0198 0.4422
node 3 0.3176 -0.7212 0.0201 —0.9432
node 4 —0.4376 0.0769 0.0575 —0.1849
node § 1.4397 2.0913 —0.0002 2.1387
output layer weights
node node 1 node 2 node 3 node 4 node $ bias
node 1 0.0474 —0.0112 0.3732 —1.4738 —0.0642 0.0637
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Figure 8. ONN-predicted Rl in each sample number for (a) testing data, (b) validation (O), and (c) validation (DO), which confirms the validity of

this method.

The results of this correlation were carefully assessed based on
the statistical criteria defined in the previous part, and their
results are listed in Table 3.

The output of statistical evaluation in all allocation of data
(training, testing, validation (O), and validation (DO))
confirms that ACE has a very good performance in modeling
hemoglobin’s RI and therefore should be considered for
quantitative estimation of RIL

4.2. ONN Results. In this part, a neural network combined
with BA was used to build a model to determine the value of
hemoglobin’s RI. Training data points (384 data points) were
used in the training stage to obtain the parameters of ONN. BA
successfully keeps neural networks away from being trapped in
local minima instead of global minima. Hence, ONN was
developed based on the oversight to train the models. BA
regulation parameters for ONN are given in Table 4.

In the constructed model, a hyperbolic tangent sigmoid was
considered as a mapping function in hidden and output layers.
Figure 6a depicts the process of BA running for optimizing the
proposed neural network, leading to optimal calculation of
weights and biases of the neural network.

33777

One of the main issues in constructing a neural network
model to implement in a regression task is to find out the
optimum number of neurons in hidden layers. This number has
a significant effect on the accuracy and complexity of developed
models. Therefore, it is pretty crucial to precisely determine this
number. Further analysis, which is depicted in Figure 7, was used
for finding this optimum number, and based on this figure, it can
be clearly deduced that S is the best value for the number of
neurons that must be included in the hidden layer.

The optimum values of weights and biases of ONN are given
in Table 5.

After constructing the model, test data and validation data
were employed to assess the validity of the models. In Figure 4b,
a comparison between the outputs of ONN and real values is
presented in a cross-plot. Considering this figure, ONN has
acceptable goodness-of-fit in predicting the RIL. In Figure 8, the
capability of ONN is displayed in each of the sample points.
According to this figure, the ONN method is effective since
observed and calculated data are very close. Moreover, statistical
measurements of ONN outputs are listed in Table 3.
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Figure 9. Statistical evaluation for extracting the cluster radius. Based on this figure, it can be found that 0.4 is the best value for the cluster radius to
achieve the best models.
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Figure 10. OFIS-predicted RI in each sample number for (a) testing data, (b) validation (O), and (c) validation (DO). For all portions of the data,

outputs of OFIS highly match with measured values.

Table 6. Optimum Parameters of OSVR Determined by BA

parameter value
gamma 7.72 X 107
C 1.8937
epsilon 0.0015

33778

4.3. OFIS Results. At first, training data points were adapted
to learn the model and find its parameters. As mentioned before,
improper regulation of membership functions reduces the
efficiency of fuzzy inference systems. To avoid this problem, BA
is integrated with a fuzzy inference system in order to reach the
optimal values of its membership function. BA regulation
parameters of OFIS are provided in Table 4. Results of running
BA to disclose these suitable values are presented in Figure 6b.
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Figure 11. OSVR-predicted RI in each sample number for (a) testing data, (b) validation (O), and (c) validation (DO). It can be concluded that

OSVR has a satisfactory capability in predicting the RI.

Table 7. Sensitivity Analysis of Constructed Models for
Different Input Variables

input ACE ONN OFIS OSVR
concentration 66.51993 66.23167 66.34054 65.53819
wavelength 26.13098 26.62641 26.97092 26.90064
temperature 7.34910 7.14193 6.68853 7.56117

Moreover, statistical analysis for determining the best value of
cluster radius is shown in Figure 9. This figure displays that 0.4 is
the optimum value of the cluster radius.

After deciding the optimal value of the OFIS model, test data
(96 data points) and validation data (252 data points) were
imported in the constructed model, and the value of RI in these
data points was calculated. After the RI is predicted and
compared with real values (Figure 4c), it can be concluded that
OFIS is a well-performing technique that can provide
satisfactory results. Besides, in each sample point, the predicted
and real values were compared (Figure 10). This figure
illustrates capability of OFIS in correlating RI with its
conditioning parameters.

Table 3 presents the statistical indexes of this model.
According to this modeling scheme, OFIS is totally proper for
the driving equation that proves the functional dependency
between RI and its influencing parameters.

4.4. OSVR Results. To use OSVR in our modeling of R,
first, training data including 384 data points were employed to
train the model. As mentioned in Section 2.4, there is a
possibility that penalty parameters in support vector regression
were adjusted inappropriately. To manage to successfully
overcome this major deficiency in this study, support vector
regression was merged with BA and the accuracy of the model
was improved through extracting the optimum values of free
parameters. BA regulation parameters for OSVR are summar-
ized in Table 4. The BA performance is depicted in Figure 6c,
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and the optimal parameters of the support vector regression
model are listed in Table 6.

After finding the optimal values of OSVR models, test data
and validation data sets were included in constructing the model,
and the values of RI were found. Figure 4d demonstrates the
estimated RI values from OSVR vs the measured values of RI. In
Figure 11, the comparison between predicted values and the
observed values vs the sample numbers is represented. Based on
these figures, it can be concluded that predicted RI values have
satisfactory agreement with the observed values of RI.

Moreover, according to the statistical results presented in
Table 3, it can be clearly concluded that this method is effective
and viable for modeling RI.

4.5. Sensitivity Analysis. SA enables us to decide which
input parameter would have the highest impact on the final
outcome, which is the prediction of RI. For this purpose, an
extremely simple structure was proposed based on Gandomi et
al.’s*® workflow. The following formulas are used to calculate the
dependency of output on independent variables®®

N, = fmax (x;) - fmin (xz) (16)

S N
1 n
Zj=1 N (17)
Here, f,.(x;) and f,;.(x;) are the max and the min of the
estimated values over the ith input domain, respectively, while
mean values of other variables are replaced. Table 7 shows the
results of SA for the proposed models. It explains that the highest
influence on the RI of hemoglobin is from concentration (C).
4.6. Comparative Study. Table 3 presents the accuracy and
general performance of the constructed models (ONN, OFIS,
OSVR, and ACE) at a glance. This table evaluates the four
models based on the assessed statistical criteria in section 4.1. As
it can be seen in the table, results of ACE have smaller values of

X 100
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AARE, SMAPE, and MSE and higher R?in comparison with the
optimized models, which proves its superiority in estimation of
RI. In addition, a visual comparison of performances of designed
models is depicted in Figure 4. According to this figure, we
understand that ACE’s capability in estimation of RI is better
compared to other Al models.

5. CONCLUSIONS

Obtaining a model to accurately determine the RI of
hemoglobin is absolutely vital because this parameter plays a
prominent role in medical diagnosis. To make quantitative
formulations between the RI of hemoglobin and its influencing
parameters, a statistical technique named ACE and three
optimized models including ONN, OFIS, and OSVR were
employed in this research. Results of the predictive models were
appraised based on the statistical criteria. Moreover, SA was
applied to measure the importance of each parameter in the
estimation of RI. According to the simulation results of this
study, the following conclusions can be achieved from this
paper:

1 The efficiency of ACE in relating the RI of hemoglobin to
input parameters was enhanced successfully. Moreover,
all three optimized models’ (ONN, OFIS, and OSVR)
estimations of RI of hemoglobin were highly accurate
when we compared predictions with observed values.

2 Capability of the BA in optimizing the weight and bias of a
neural network could highly improve the model
prediction performance. This was attained since the BA
finds the optimum value of user-defined parameters of
support vector regression with good accuracy.

3 The embedding of BA in the formulation of a fuzzy
inference system led to optimal computation of member-
ship functions with satisfactory precision to ultimately
generate RI values with the least discrepancy with
measured RI values.

4 Considering the evaluation of the models based on
statistical criteria, the accuracy of ACE was found to be
higher than those of ONN, OFIS, and OSVR. Finally, SA
indicated that the important input parameters in the
prediction of RI are concentration, wavelength, and
temperature.

S According to promising results of ACE, implementation
of this methodology can conveniently eliminate the
prohibitive cost of experimental measurement of
hemoglobin’s RI.3

B ASSOCIATED CONTENT

@ Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.2c00746.

Statistical evaluation of parameters that are employed for
developing the models (PDF)

B AUTHOR INFORMATION

Corresponding Author
Mehdi Ostadhassan — Department of Geology, Ferdowsi
University of Mashhad, Mashhad 9177948974, Iran; Institute
of Geosciences, Marine and Land Geomechanics and
Geotectonics, Christian-Albrechts-Universitit, Kiel 24118,
Germany; Key Laboratory of Continental Shale Hydrocarbon
Accumulation and Efficient Development, Ministry of

Education, Northeast Petroleum University, Daqing 163318,
China; © orcid.org/0000-0003-1285-5439;
Email: mehdi.ostadhassan@ifg.kiel.de,

mehdi.ostadhassan@nepu.edu.cn

Authors

Aida Alizamir — Department of Pathology, School of Medicine,
Hamadan University of Medical Science, Hamadan
6517838738, Iran

Amin Gholami — Reservoir Division, Iranian Offshore Oil
Company, Tehran 1966653943, Iran

Nader Bahrami — Financial Transaction Department, Carsome
Company, Petaling Jaya, Selangor 47800, Malaysia

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c00746

Author Contributions

All authors contributed to the study conception, design, and
revisions. Conceptualization and coding: A.A. Data and
methods: A.G. and N.B. Writing—original draft preparation:
AA, A.G, and N.B. Reviewing: M.O.

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

The authors would like to express their sincere gratitude to
respected reviewers who took their time to review this
manuscript meticulously and provided us with constructive
comments in two rounds. Moreover, we would like to thank
respected editor for his editorial feedback and for giving us the
opportunity to revise the manuscript and submit new versions
for publication.

B REFERENCES

(1) Faber, D. J.; Aalders, M. C. G; Mik, E. G.; Hooper, B. A; van
Gemert, M. J. C; van Leeuwen, T. G. Oxygen saturation-dependent
absorption and scattering of blood. Phys. Rev. Lett. 2004, 93, 028102.

(2) Berkow, L. Factors affecting hemoglobin measurement. J. Clin.
Monit. Comput. 2013, 27, 499—508.

(3) Park, Y.; Popescu, M.; Lykotrafitis, G.; Choi, G.; Feld, W.; Suresh,
M. S.; Suresh, S. Refractive index maps and membrane dynamics of
human red blood cells parasitized by Plasmodium falciparum. Proc.
Natl. Acad. Sci. U.S.A. 2008, 105, 13730—13735.

(4) Serebrennikova, Y. M,; Huffman, D. E.; Garcia-Rubio, L. H.
Characterization of red blood cells with multiwavelength transmission
spectroscopy. BioMed Res. Int. 2015, 2015, 382641.

(5) Rinehart, M. T.; Park, H. S.; Walzer, K. A.; Chi, J. T. A,; Wax, A.
Hemoglobin consumption by P. falciparum in individual erythrocytes
imaged via quantitative phase spectroscopy. Sci. Rep. 2016, 6, 1-9.

(6) Wang, Z. Tissue refractive index as marker of disease. J. Biomed.
Opt. 2011, 16, 116017.

(7) Jedrzejewska-Szczerska, M. Measurement of complex refractive
index of human blood by low-coherence interferometry. Eur. Phys. ].
Spec. Top. 2013, 222, 2367—2372.

(8) Jacques, S. L. Optical properties of biological tissues: A review.
Phys. Med. Biol. 2013, 58, R37—61.

(9) Friebel, M.; Roggan, M.; Miiller, A.; Meinke, L; Roggan, A,;
Gmbh, M. B. Determination of optical properties of human blood in the
spectral range 250 to 1100 nm using Monte Carlo simulations with
hematocrit-dependent effective scattering phase functions. J. Biomed.
Opt. 2006, 11, 034021.

(10) Sardar, D. K.; Levy, L. B. Optical Properties of Whole Blood.
Laser Med. Sci. 1998, 13, 106—111.

(11) Yahya, M.; Saghir, M. Z. Empirical modelling to predict the
refractive index of human blood. Phys. Med. Biol. 2016, 61, 1405—1415.

https://doi.org/10.1021/acsomega.2c00746
ACS Omega 2022, 7, 33769—-33782


https://pubs.acs.org/doi/10.1021/acsomega.2c00746?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00746/suppl_file/ao2c00746_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mehdi+Ostadhassan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1285-5439
mailto:mehdi.ostadhassan@ifg.kiel.de
mailto:mehdi.ostadhassan@nepu.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aida+Alizamir"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Amin+Gholami"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nader+Bahrami"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00746?ref=pdf
https://doi.org/10.1103/PhysRevLett.93.028102
https://doi.org/10.1103/PhysRevLett.93.028102
https://doi.org/10.1007/s10877-013-9456-3
https://doi.org/10.1073/pnas.0806100105
https://doi.org/10.1073/pnas.0806100105
https://doi.org/10.1155/2015/382641
https://doi.org/10.1155/2015/382641
https://doi.org/10.1038/srep24461
https://doi.org/10.1038/srep24461
https://doi.org/10.1117/1.3656732
https://doi.org/10.1140/epjst/e2013-02018-7
https://doi.org/10.1140/epjst/e2013-02018-7
https://doi.org/10.1088/0031-9155/58/11/R37
https://doi.org/10.1117/1.2203659
https://doi.org/10.1117/1.2203659
https://doi.org/10.1117/1.2203659
https://doi.org/10.1007/s101030050062
https://doi.org/10.1088/0031-9155/61/4/1405
https://doi.org/10.1088/0031-9155/61/4/1405
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c00746?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

(12) Tomari, R.; Zakaria, W. N. W.; Jamil, M. M. A.; Nor, F. M.; Fuad,
N. F. N. Computer aided system for red blood cell classification in
blood smear image. Procedia Comput. Sci. 2014, 42, 206—213.

(13) Kutlu, H; Avci, E.; Ozyurt, F. White blood cells detection and
classification based on regional convolutional neural networks. Med.
Hypotheses 2020, 135, 109472.

(14) Togagar, M.; Ergen, B.; Cémert, Z. Classification of white blood
cells using deep features obtained from Convolutional Neural Network
models based on the combination of feature selection methods. Appl.
Soft Comput. 2020, 97, 106810.

(15) Patil, A. M,; Patil, M. D.; Birajdar, G. K. White blood cells image
classification using deep learning with canonical correlation analysis.
IRBM 2021, 42, 378—389.

(16) Girdhar, A.; Kapur, H.; Kumar, V. Classification of White blood
cell using Convolution Neural Network. Biomed. Signal Process Control
2022, 71, 103156.

(17) Anita Davamani, K. A.; Rene Robin, C. R.; Doreen Robin, D. D.;
Jani Anbarasi, L. J. Adaptive blood cell segmentation and hybrid
Learning-based blood cell classification: A Meta-heuristic-based model.
Biomed. Signal Process Control 2022, 75, 103570.

(18) Zecchin, C.; Facchinetti, A,; Sparacino, G.; Cobelli, C. Jump
neural network for online short-time prediction of blood glucose from
continuous monitoring sensors and meal information. Comput. Methods
Progr. Biomed. 2014, 113, 144—152.

(19) Wang, S; Yin, Y.; Cao, G.; Wei, B,; Zheng, Y,; Yang, G.
Hierarchical retinal blood vessel segmentation based on feature and
ensemble learning. Neurocomputing 2015, 149, 708—717.

(20) Soomro, T. A.; Afifi, A. J.; Gao, J.; Hellwich, O.; Zheng, L.; Paul,
M. Strided fully convolutional neural network for boosting the
sensitivity of retinal blood vessels segmentation. Expert Syst. Appl.
2019, 134, 36—S52.

(21) Zhang, M.; Zhang, C.; Wy, X; Cao, X; Young, G. S.; Chen, H.;
Xu, X. A neural network approach to segment brain blood vessels in
digital subtraction angiography. Comput. Methods Progr. Biomed. 2020,
185, 105159.

(22) Tchinda, B. S.; Tchiotsop, D.; Noubom, M.; Louis-Dorr, V.;
Wolf, D. Retinal blood vessels segmentation using classical edge
detection filters and the neural network. Inform. Med. Unlocked 2021,
23,100521.

(23) Gegundez-Arias, M. E.; Marin-Santos, D.; Perez-Borrero, 1;
Vasallo-Vazquez, M. J. A new deep learning method for blood vessel
segmentation in retinal images based on convolutional kernels and
modified U-Net model. Comput. Methods Progr. Biomed. 2021, 208,
106081.

(24) Deng, X; Ye, J. A retinal blood vessel segmentation based on
improved D-MNet and pulse-coupled neural network. Biomed. Signal
Process Control 2022, 73, 103467.

(25) Zhang, Y.; He, M.; Chen, Z.; Hu, K; Li, X.; Gao, X. Bridge-Net:
Context-involved U-net with patch-based loss weight mapping for
retinal blood vessel segmentation. Expert Syst. Appl. 2022, 195, 116526.

(26) Xu, Z; Liu, J.; Chen, X.; Wang, Y.; Zhao, Z. Continuous blood
pressure estimation based on multiple parameters from eletrocardio-
gram and photoplethysmogram by Back-propagation neural network.
Comput. Ind. 2017, 89, 50—59.

(27) Senturk, U.; Polat, K;; Yucedag, I. A non-invasive continuous
cuffless blood pressure estimation using dynamic Recurrent Neural
Networks. Appl. Acoust. 2020, 170, 107534.

(28) Esmaelpoor, J.; Moradi, M. H,; Kadkhodamohammadi, A. A
multistage deep neural network model for blood pressure estimation
using photoplethysmogram signals. Comput. Biol. Med. 2020, 120,
103719.

(29) Baker, S.; Xiang, W.; Atkinson, I. A hybrid neural network for
continuous and non-invasive estimation of blood pressure from raw
electrocardiogram and photoplethysmogram waveforms. Comput.
Methods Progr. Biomed. 2021, 207, 106191.

(30) Qiu, Y.; Liu, D.; Yang, G; Qi, D; Ly, Y.; He, Q; Qian, J.; Li, X;;
Cao, Y.; Shuai, J. Cuffless blood pressure estimation based on
composite neural network and graphics information. Biomed. Signal
Process Control 2021, 70, 103001.

(31) Cheng, J.; Xu, Y.; Song, R;; Liu, Y.; Li, C.; Chen, X. Prediction of
arterial blood pressure waveforms from photoplethysmogram signals
via fully convolutional neural networks. Comput. Biol. Med. 2021, 138,
104877.

(32) Alj, J. B.; Hamdi, T.; Fnaiech, N.; Di Costanzo, V.; Fnaiech, F.;
Ginoux, J. M. Continuous blood glucose level prediction of type 1
diabetes based on artificial neural network. Biocybern. Biomed. Eng.
2018, 38, 828—840.

(33) D’Antoni, F.; Merone, M.; Piemonte, V.; lannello, G.; Soda, P.
Auto-Regressive Time Delayed jump neural network for blood glucose
levels forecasting. Knowl. Base Syst. 2020, 203, 106134.

(34) Alfian, G.; Syafrudin, M.; Anshari, M.; Benes, F.; Atmaji, F. T. D.;
Fahrurrozi, I.; Hidayatullah, J.; Rhee, J. Blood glucose prediction model
for type 1 diabetes based on artificial neural network with time-domain
features. Biocybern. Biomed. Eng. 2020, 40, 1586—1599.

(35) Dudukeu, H. V.; Taskiran, M,; Yildirim, T. Blood glucose
prediction with deep neural networks using weighted decision level
fusion. Biocybern. Biomed. Eng. 2021, 41, 1208—1223.

(36) Zhang, M.; Flores, K. B; Tran, H. T. Deep learning and
regression approaches to forecasting blood glucose levels for type 1
diabetes. Biomed. Signal Process Control 2021, 69, 102923.

(37) Alade, I. O.; Bagudu, A.; Oyehan, T. A,; Rahman, M. A.; Saleh, T.
A.; Olatunji, S. Estimating the refractive index of oxygenated and
deoxygenated hemoglobin using genetic algorithm - support vector
regression model. Comput. Methods Progr. Biomed. 2018, 163, 135—
142.

(38) Oyehan, T. A; Alade, I. O.; Bagudu, A.; Sulaiman, K. O,;
Olatunji, S. O.; Saleh, T. A. Predicting of the refractive index of
haemoglobin using the Hybrid GA-SVR approach. Comput. Biol. Med.
2018, 98, 85—92.

(39) Breiman, L.; Friedman, J. H. Estimating optimal transformations
for multiple regression and correlation. J. Am. Stat. Assoc. 1985, 80,
580—598.

(40) Gholami, A; Moradi, S.; Asoodeh, M.; Bagheripour, P.;
Vaezzadeh-Asadi, M. Asphaltene precipitation modeling through
ACE reaping of scaling equations. Sci. China Chem. 2014, 57, 1774—
1780.

(41) Gholami, A.; Asoodeh, M.; Bagheripour, P. How committee
machine with SVR and ACE estimates bubble point pressure of crudes.
Fluid Phase Equilib. 2014, 382, 139—149.

(42) Gholami, A. Oil Formation Volume Factor Determination
Through a Fused Intelligence. Acta Geophys. 2016, 64, 2510—2529.

(43) Gholami, A.; Mohammadzadeh, O.; Kord, S.; Moradi, S.; Dabir,
B. Improving the estimation accuracy of titration-based asphaltene
precipitation through power-law committee machine (PLCM) model
with alternating conditional expectation (ACE) and support vector
regression (SVR) elements. J. Pet. Explor. Prod. Technol. 2016, 6, 265—
277.

(44) Golden, R. M. Mathematical Methods for Neural Network Analysis
and Design; MIT Press: Cambridge, MA, USA, 1996.

(45) Yadav, A; Chatterjee, S.; Equeenuddin, S. M. Suspended
sediment yield estimation using genetic algorithm-based artificial
intelligence models: case study of Mahanadi River, India. Hydrol. Sci. J.
2018, 63, 1162—1182.

(46) Noori, R; Deng, Z.; Kiaghadi, A.; Kachoosangi, F. T. How
reliable are ANN, ANFIS, and SVM techniques for predicting
longitudinal dispersion coefficient in natural rivers? J. Hydraul. Eng.
2016, 142, 04015039.

(47) Khan, M. Y. A; Tian, F.; Hasan, F.; Chakrapani, G. J. Artificial
neural network simulation for prediction of suspended sediment
concentration in the River Ramganga, Ganges Basin, India. Int. J.
Sediment Res. 2019, 34, 95—107.

(48) Afan, H. A; El-shafie, A.; Mohtar, W. H. M. W.; Yaseen, Z. M.
Past, present and prospect of an Artificial Intelligence (AI) based model
for sediment transport prediction. J. Hydrol. 2016, 541, 902—913.

(49) Haddadchi, A,; Movahedi, N.; Vahidi, E;; Omid, M. H;
Dehghani, A. A. Evaluation of suspended load transport rate using
transport formulas and artificial neural network models (Case study:

Chelchay Catchment). J. Hydrodyn. 2013, 25, 459—470.

https://doi.org/10.1021/acsomega.2c00746
ACS Omega 2022, 7, 33769—-33782


https://doi.org/10.1016/j.procs.2014.11.053
https://doi.org/10.1016/j.procs.2014.11.053
https://doi.org/10.1016/j.mehy.2019.109472
https://doi.org/10.1016/j.mehy.2019.109472
https://doi.org/10.1016/j.asoc.2020.106810
https://doi.org/10.1016/j.asoc.2020.106810
https://doi.org/10.1016/j.asoc.2020.106810
https://doi.org/10.1016/j.irbm.2020.08.005
https://doi.org/10.1016/j.irbm.2020.08.005
https://doi.org/10.1016/j.bspc.2021.103156
https://doi.org/10.1016/j.bspc.2021.103156
https://doi.org/10.1016/j.bspc.2022.103570
https://doi.org/10.1016/j.bspc.2022.103570
https://doi.org/10.1016/j.cmpb.2013.09.016
https://doi.org/10.1016/j.cmpb.2013.09.016
https://doi.org/10.1016/j.cmpb.2013.09.016
https://doi.org/10.1016/j.neucom.2014.07.059
https://doi.org/10.1016/j.neucom.2014.07.059
https://doi.org/10.1016/j.eswa.2019.05.029
https://doi.org/10.1016/j.eswa.2019.05.029
https://doi.org/10.1016/j.cmpb.2019.105159
https://doi.org/10.1016/j.cmpb.2019.105159
https://doi.org/10.1016/j.imu.2021.100521
https://doi.org/10.1016/j.imu.2021.100521
https://doi.org/10.1016/j.cmpb.2021.106081
https://doi.org/10.1016/j.cmpb.2021.106081
https://doi.org/10.1016/j.cmpb.2021.106081
https://doi.org/10.1016/j.bspc.2021.103467
https://doi.org/10.1016/j.bspc.2021.103467
https://doi.org/10.1016/j.eswa.2022.116526
https://doi.org/10.1016/j.eswa.2022.116526
https://doi.org/10.1016/j.eswa.2022.116526
https://doi.org/10.1016/j.compind.2017.04.003
https://doi.org/10.1016/j.compind.2017.04.003
https://doi.org/10.1016/j.compind.2017.04.003
https://doi.org/10.1016/j.apacoust.2020.107534
https://doi.org/10.1016/j.apacoust.2020.107534
https://doi.org/10.1016/j.apacoust.2020.107534
https://doi.org/10.1016/j.compbiomed.2020.103719
https://doi.org/10.1016/j.compbiomed.2020.103719
https://doi.org/10.1016/j.compbiomed.2020.103719
https://doi.org/10.1016/j.cmpb.2021.106191
https://doi.org/10.1016/j.cmpb.2021.106191
https://doi.org/10.1016/j.cmpb.2021.106191
https://doi.org/10.1016/j.bspc.2021.103001
https://doi.org/10.1016/j.bspc.2021.103001
https://doi.org/10.1016/j.compbiomed.2021.104877
https://doi.org/10.1016/j.compbiomed.2021.104877
https://doi.org/10.1016/j.compbiomed.2021.104877
https://doi.org/10.1016/j.bbe.2018.06.005
https://doi.org/10.1016/j.bbe.2018.06.005
https://doi.org/10.1016/j.knosys.2020.106134
https://doi.org/10.1016/j.knosys.2020.106134
https://doi.org/10.1016/j.bbe.2020.10.004
https://doi.org/10.1016/j.bbe.2020.10.004
https://doi.org/10.1016/j.bbe.2020.10.004
https://doi.org/10.1016/j.bbe.2021.08.007
https://doi.org/10.1016/j.bbe.2021.08.007
https://doi.org/10.1016/j.bbe.2021.08.007
https://doi.org/10.1016/j.bspc.2021.102923
https://doi.org/10.1016/j.bspc.2021.102923
https://doi.org/10.1016/j.bspc.2021.102923
https://doi.org/10.1016/j.cmpb.2018.05.029
https://doi.org/10.1016/j.cmpb.2018.05.029
https://doi.org/10.1016/j.cmpb.2018.05.029
https://doi.org/10.1016/j.compbiomed.2018.04.024
https://doi.org/10.1016/j.compbiomed.2018.04.024
https://doi.org/10.1080/01621459.1985.10478157
https://doi.org/10.1080/01621459.1985.10478157
https://doi.org/10.1007/s11426-014-5253-1
https://doi.org/10.1007/s11426-014-5253-1
https://doi.org/10.1016/j.fluid.2014.08.033
https://doi.org/10.1016/j.fluid.2014.08.033
https://doi.org/10.1515/acgeo-2016-0099
https://doi.org/10.1515/acgeo-2016-0099
https://doi.org/10.1007/s13202-015-0189-3
https://doi.org/10.1007/s13202-015-0189-3
https://doi.org/10.1007/s13202-015-0189-3
https://doi.org/10.1007/s13202-015-0189-3
https://doi.org/10.1080/02626667.2018.1483581
https://doi.org/10.1080/02626667.2018.1483581
https://doi.org/10.1080/02626667.2018.1483581
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001062
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001062
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001062
https://doi.org/10.1016/j.ijsrc.2018.09.001
https://doi.org/10.1016/j.ijsrc.2018.09.001
https://doi.org/10.1016/j.ijsrc.2018.09.001
https://doi.org/10.1016/j.jhydrol.2016.07.048
https://doi.org/10.1016/j.jhydrol.2016.07.048
https://doi.org/10.1016/S1001-6058(11)60385-6
https://doi.org/10.1016/S1001-6058(11)60385-6
https://doi.org/10.1016/S1001-6058(11)60385-6
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c00746?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Omega

http://pubs.acs.org/journal/acsodf

(50) Asoodeh, M.; Gholami, A.; Bagheripour, P. Oil-CO2MMP
Determination in Competition of Neural Network, Support Vector
Regression, and Committee Machine. J. Dispersion Sci. Technol. 2014,
35, 564—571.

(51) Gholami, A.; Ansari, H. R.;; Ahmadi, S. Combining of intelligent
models through committee machine for estimation of wax deposition. J.
Chin. Chem. Soc. 2018, 65, 925-931.

(52) Kakaei Lafdani, E. K.; Moghaddam Nia, A. M.; Ahmadi, A. Daily
suspended sediment load prediction using artificial neural networks and
support vector machines. J. Hydrol. 2013, 478, 50—62.

(53) Gholami, A.; Afshar, M.; Bagheripour, P.; Asoodeh, M,;
Vaezzadeh-Asadi, M. Smart correlation of compositional data to
saturation pressure. J. Nat. Gas Sci. Eng. 2018, 22, 661—669.

(54) Zargar, G.; Bagheripour, P.; Asoodeh, M,; Gholami, A. Oil-
CO2minimum miscible pressure (MMP) determination using a
stimulated smart approach. Can. J. Chem. Eng. 2018, 93, 1730—1735.

(55) Gholami, M.; Bodaghi, A. A robust approach through combining
optimized neural network and optimized support vector regression for
modeling deformation modulus of rock masses. Model. Earth Syst.
Environ. 2017, 3, 1-9.

(56) Gholami, A.; Seyedali, S. M.; Ansari, H. R. Estimation of shear
wave velocity from post-stack seismic data through committee machine
with cuckoo search optimized intelligence models. J. Pet. Sci. Eng. 2020,
189, 106939.

(57) Afshar, M.; Gholami, A.; Asoodeh, M. Genetic optimization of
neural network and fuzzy logic for oil bubble point pressure modeling.
Korean ]. Chem. Eng. 2014, 31, 496—502.

(58) Asoodeh, M.; Gholami, A.; Bagheripour, P. Asphaltene
precipitation of titration data modeling through committee machine
with stochastically optimized fuzzy logic and optimized neural network.
Fluid Phase Equilib. 2014, 364, 67—74.

(59) Gholami, A.; Asoodeh, M.; Bagheripour, P. Smart determination
of difference index for asphaltene stability evaluation. J. Dispersion Sci.
Technol. 2014, 35, 572—576.

(60) Asoodeh, M.; Bagheripour, P.; Gholami, A. NMR parameters
determination through ACE committee machine with genetic
implanted fuzzy logic and genetic implanted neural network. Acta
Geophys. 2015, 63, 735—760.

(61) Zadeh, L. A. Fuzzy sets. Inf. Control 1965, 8, 338—353.

(62) Gholami, A.; Asoodeh, M.; Bagheripour, P. Fuzzy assessment of
asphaltene stability in crude oils. J. Dispersion Sci. Technol. 2014, 35,
556—563.

(63) Ahmadi, S.; Amiribakhtiar, M. S.; Gholami, A.; Bahrami, N.
Upgrading fuzzy logic by GA-PS to determine asphaltene stability in
crude oil. Egypt. J. Pet. 2017, 26, 505—S510.

(64) Zargar, G.; Gholami, A.; Asoodeh, M.; Bagheripour, P. PSO-
fuzzy eliminates deficiency of neuro-fuzzy in assessment of asphaltene
stability. Indian J. Chem. Technol. 2016, 22, 135—140.

(65) Vapnik, V. The Nature of Statistical Learning Theory; Springer:
New York, 1995.

(66) Bagheripour, P.; Gholami, A.; Asoodeh, M. Support vector
regression between PVT data and bubble point pressure. J. Pet. Explor.
Prod. Technol. 2015, S, 227—-231.

(67) Raghavendra N, S.; Deka, P. C. Support vector machine
applications in the field of hydrology: A review. Appl. Soft Comput.
2014, 19, 372—386.

(68) Na'imi, S. R.; Gholami, A.; Asoodeh, M. Prediction of crude oil
asphaltene precipitation using support vector regression. J. Dispersion
Sci. Technol. 2014, 35, 518—523.

(69) Bagheripour, P.; Gholami, A.; Asoodeh, M.; Vaezzadeh-Asadi, M.
Support vector regression based determination of shear wave velocity. J.
Pet. Sci. Eng. 20185, 125, 95—99.

(70) Bodaghi, A,; Ansari, H. R;; Gholami, M. Optimized support
vector regression for drillingrate of penetration estimation. Open Geosci.
2015, 7, 870—879.

(71) Fei, S. W;; Wang, M. J.; Miao, Y. B,; Ty, J.; Liu, C. L. Particle
swarm optimization-based support vector machine for forecasting
dissolved gases content in power transformer oil. Energy Convers.
Manage. 2009, 50, 1604—1609.

33782

(72) Fei, S. W,; Liu, C. L.; Miao, Y. B. Support vector machine with
genetic algorithm for forecasting of key-gas ratios in oil-immersed
transformer. Expert Syst. Appl. 2009, 36, 6326—6331.

(73) Gholami, M.; Bodaghi, A. Fusing of optimized intelligence
models by virtue of committee machine for estimation of the residual
shear strength of clay. Model. Earth Syst. Environ. 2016, 2, 43—52.

(74) Ansari, H. R; Gholami, A. An improved support vector
regression model for estimation of saturation pressure of crude oils.
Fluid Phase Equilib. 2015, 402, 124—132.

(75) Ansari, H. R.; Gholami, A. Robust method based on optimized
support vector regression for modeling of asphaltene precipitation. J.
Pet. Sci. Eng. 20185, 135, 201-20S.

(76) Bozorg-Haddad, O.; Soleimani, S.; Lodiciga, H. A. Modeling
Water-Quality Parameters Using Genetic Algorithm—Least Squares
Support Vector Regression and Genetic Programming. J. Environ. Eng.
2017, 143, 04017021.

(77) Fattahi, H,; Gholami, A.; Amiribakhtiar, M. S.; Moradi, S.
Estimation of asphaltene precipitation from titration data: a hybrid
support vector regression with harmony search. Neural Comput. Appl.
2015, 26, 789—798.

(78) Gholami, A.; Ansari, H. R. Estimation of porosity from seismic
attributes using a committee model with bat-inspired optimization
algorithm. J. Pet. Sci. Eng. 2017, 152, 238—249.

(79) Gholami, A.; Ansari, H. R.; Hosseini, S. Prediction of crude oil
refractive index through optimized support vector regression: a
competition between optimization techniques. J. Pet. Explor. Prod.
Technol. 2017, 7, 195—204.

(80) Liao, R.; Zheng, H.; Grzybowski, S.; Yang, L. Particle swarm
optimization-least squares support vector regression based forecasting
model on dissolved gases in oil-filled power transformers. Electr. Power
Syst. Res. 2011, 81, 2074—2080.

(81) Meysam Mousavi, S. M.; Tavakkoli-Moghaddam, R.; Vahdani,
B.; Hashemi, H.; Sanjari, M. J. A new support vector model-based
imperialist competitive algorithm for time estimation in new product
development projects. Comput. Integr. Manuf. 2013, 29, 157—168.

(82) Rahgoshay, M.; Feiznia, S.; Arian, M,; Hashemi, S. A. A.
Modeling daily suspended sediment load using improved support
vector machine model and genetic algorithm. Environ. Sci. Pollut. Res.
2018, 25, 35693—35706.

(83) Roushangar, K.; Koosheh, A. Evaluation of GA-SVR method for
modeling bed load transport in gravel-bed rivers. J. Hydrol. 2015, 527,
1142—-1152.

(84) Yang, X. S. Bat algorithm and cuckoo search: a tutorial. 2013. In
Artificial intelligence, evolutionary computing and metaheuristics; Springer:
Berlin, Heidelberg, pp 421—434. DOI: 10.1007/978-3-642-29694-
9 17.

(85) Zhernovaya, O.; Sydoruk, O.; Tuchin, V.; Douplik, A. The
refractive index of human hemoglobin in the visible range. Phys. Med.
Biol. 2011, 56, 4013—4021.

(86) Gandomi, A. H; Yun, G. J; Alavi, A. H. An evolutionary
approach for modeling of shear strength of RC deep beams. Mater.
Struct. 2013, 46, 2109—2119.

https://doi.org/10.1021/acsomega.2c00746
ACS Omega 2022, 7, 33769—-33782


https://doi.org/10.1080/01932691.2013.803255
https://doi.org/10.1080/01932691.2013.803255
https://doi.org/10.1080/01932691.2013.803255
https://doi.org/10.1002/jccs.201700329
https://doi.org/10.1002/jccs.201700329
https://doi.org/10.1016/j.jhydrol.2012.11.048
https://doi.org/10.1016/j.jhydrol.2012.11.048
https://doi.org/10.1016/j.jhydrol.2012.11.048
https://doi.org/10.1016/j.jngse.2015.01.017
https://doi.org/10.1016/j.jngse.2015.01.017
https://doi.org/10.1002/cjce.22265
https://doi.org/10.1002/cjce.22265
https://doi.org/10.1002/cjce.22265
https://doi.org/10.1007/s40808-017-0303-2
https://doi.org/10.1007/s40808-017-0303-2
https://doi.org/10.1007/s40808-017-0303-2
https://doi.org/10.1016/j.petrol.2020.106939
https://doi.org/10.1016/j.petrol.2020.106939
https://doi.org/10.1016/j.petrol.2020.106939
https://doi.org/10.1007/s11814-013-0248-8
https://doi.org/10.1007/s11814-013-0248-8
https://doi.org/10.1016/j.fluid.2013.12.016
https://doi.org/10.1016/j.fluid.2013.12.016
https://doi.org/10.1016/j.fluid.2013.12.016
https://doi.org/10.1080/01932691.2013.805654
https://doi.org/10.1080/01932691.2013.805654
https://doi.org/10.1515/acgeo-2015-0003
https://doi.org/10.1515/acgeo-2015-0003
https://doi.org/10.1515/acgeo-2015-0003
https://doi.org/10.1016/s0019-9958(65)90241-x
https://doi.org/10.1080/01932691.2013.800457
https://doi.org/10.1080/01932691.2013.800457
https://doi.org/10.1016/j.ejpe.2016.07.001
https://doi.org/10.1016/j.ejpe.2016.07.001
https://doi.org/10.1007/s13202-014-0128-8
https://doi.org/10.1007/s13202-014-0128-8
https://doi.org/10.1016/j.asoc.2014.02.002
https://doi.org/10.1016/j.asoc.2014.02.002
https://doi.org/10.1080/01932691.2013.798585
https://doi.org/10.1080/01932691.2013.798585
https://doi.org/10.1016/j.petrol.2014.11.025
https://doi.org/10.1515/geo-2015-0054
https://doi.org/10.1515/geo-2015-0054
https://doi.org/10.1016/j.enconman.2009.02.004
https://doi.org/10.1016/j.enconman.2009.02.004
https://doi.org/10.1016/j.enconman.2009.02.004
https://doi.org/10.1016/j.eswa.2008.08.012
https://doi.org/10.1016/j.eswa.2008.08.012
https://doi.org/10.1016/j.eswa.2008.08.012
https://doi.org/10.1007/s40808-016-0098-6
https://doi.org/10.1007/s40808-016-0098-6
https://doi.org/10.1007/s40808-016-0098-6
https://doi.org/10.1016/j.fluid.2015.05.037
https://doi.org/10.1016/j.fluid.2015.05.037
https://doi.org/10.1016/j.petrol.2015.09.002
https://doi.org/10.1016/j.petrol.2015.09.002
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001217
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001217
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001217
https://doi.org/10.1007/s00521-014-1766-y
https://doi.org/10.1007/s00521-014-1766-y
https://doi.org/10.1016/j.petrol.2017.03.013
https://doi.org/10.1016/j.petrol.2017.03.013
https://doi.org/10.1016/j.petrol.2017.03.013
https://doi.org/10.1007/s13202-016-0229-7
https://doi.org/10.1007/s13202-016-0229-7
https://doi.org/10.1007/s13202-016-0229-7
https://doi.org/10.1016/j.epsr.2011.07.020
https://doi.org/10.1016/j.epsr.2011.07.020
https://doi.org/10.1016/j.epsr.2011.07.020
https://doi.org/10.1016/j.rcim.2012.04.006
https://doi.org/10.1016/j.rcim.2012.04.006
https://doi.org/10.1016/j.rcim.2012.04.006
https://doi.org/10.1007/s11356-018-3533-6
https://doi.org/10.1007/s11356-018-3533-6
https://doi.org/10.1016/j.jhydrol.2015.06.006
https://doi.org/10.1016/j.jhydrol.2015.06.006
https://doi.org/10.1007/978-3-642-29694-9_17
https://doi.org/10.1007/978-3-642-29694-9_17?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-3-642-29694-9_17?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/0031-9155/56/13/017
https://doi.org/10.1088/0031-9155/56/13/017
https://doi.org/10.1617/s11527-013-0039-z
https://doi.org/10.1617/s11527-013-0039-z
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c00746?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

