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ABSTRACT

Despite recent methodology and reference database
improvements for taxonomic profiling tools, metage-
nomic assembly and genomic binning remain impor-
tant pillars of metagenomic analysis workflows. In
case reference information is lacking, genomic bin-
ning is considered to be a state-of-the-art method
in mixed culture metagenomic data analysis. In this
light, our previously published tool BusyBee Web im-
plements a composition-based binning method effi-
cient enough to function as a rapid online utility. Han-
dling assembled contigs and long nanopore gener-
ated reads alike, the webserver provides a wide range
of supplementary annotations and visualizations.
Half a decade after the initial publication, we revis-
ited existing functionality, added comprehensive vi-
sualizations, and increased the number of data anal-
ysis customization options for further experimen-
tation. The webserver now allows for visualization-
supported differential analysis of samples, which is
computationally expensive and typically only per-
formed in coverage-based binning methods. Further,
users may now optionally check their uploaded sam-
ples for plasmid sequences using PLSDB as a ref-
erence database. Lastly, a new application program-
ming interface with a supporting python package was
implemented, to allow power users fully automated
access to the resource and integration into existing
workflows. The webserver is freely available under:
https://www.ccb.uni-saarland.de/busybee.

GRAPHICAL ABSTRACT

INTRODUCTION

State-of-the-art metagenomics data analysis predominantly
depends on reference databases. Reads are compared
against well-characterized sequences and in case of suffi-
cient sequence similarity, a read may be assigned to a tax-
onomy, an associated operational taxonomic unit count is
incremented, or a genomic function is deduced (1–4). How-
ever, metagenomic studies operating at the boundary of
what is known to humankind, e.g. investigating extreme
maritime or volcanic environments, will inevitably come
to the point where reference data is incomplete or of in-
sufficient quality (5–7). While the overall possibilities for
analysis are limited, a lack of reference information does
not necessarily prevent any analysis. Instead, metagenomic
short-read assembly or long-read metagenomic sequencing
is frequently performed to allow for further hypothesizing,
analysis, and discovery. However, due to high species diver-
sity, sequencing errors, and other conflicts during assem-
bly, metagenomic assemblies frequently yield multiple thou-
sands of contigs of variable lengths and qualities (8,9).
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Since short-read metagenomic read assembly and long-
read metagenome sequencing output a mix of sequences of
all the present species, structured analysis of results remains
difficult. Therefore, longer sequences are usually grouped
using binning methods to separate sequences into taxo-
nomic units. Two features are frequently used to achieve
informed separation into groups. Coverage-based binning
uses coverage profiles of sequences, computed across multi-
ple samples, to cluster into bins. Composition-based bin-
ning utilizes the conservation of sequence features like
tetranucleotide profiles and derives bins from the input se-
quence (10). Many of the state-of-the-art binning methods
such as MaxBin2 are hybrid methods using both kinds of
features (11–13). However, coverage profiles provide limited
information if only one individual sample is analyzed, and
they may even be not applicable depending on the selected
sequencing method. Accordingly, new methods that do not
require coverage profiles are further developed (14,15).

In 2018, we proposed BusyBee Web as a reference-free
composition-based binning tool efficient enough to func-
tion as a webserver (16,17). The underlying pipeline trains
a classifier on a subset of the input data which is then used
to assign sequences into bins. The used features are nor-
malized k-mer profiles of length four or five. The tool op-
tionally provides various functional and taxonomic annota-
tions with Prokka and Kraken respectively allowing for tax-
onomic binning (18,19). Five years after initial publication,
the community used BusyBee Web to analyze >2500 indi-
vidual samples and perform >4500 runs. Here, we present
a major update to the binning resource.

MATERIALS AND METHODS

Developing an update to an existing resource allowed us to
revisit some of the already available functionality and cover
a broad list of minor improvements. Accordingly, the taxo-
nomic annotation was updated to support Kraken 2 with a
newer database and marker genes for bin quality assessment
were extended to include the Archaea genes from the anvi’o
project (20). Further, a sunburst plot was added and several
new expert settings for clustering and embedding methods
were implemented. Namely, we included t-SNE (21), Fit-
SNE (22), UMAP (arXiv:1802.03426), PHATE (23) and
TriMap (arXiv:1910.00204) as embedding and DBSCAN
(24), HDBSCAN (25), k-means and spectral clustering (26)
as new clustering methods. From the list of new features, we
want to highlight three major changes with higher visibility
to newer users.

Plasmids annotations

Due to the random sampling involved in shotgun sequenc-
ing experiments, metagenomic data often includes plas-
mid fragments that may also end up in assemblies, poten-
tially impacting downstream analysis. BusyBee Web now
optionally compares input sequences to the most recent ver-
sion of PLSDB using mash screen (27,28). In case plas-
mid signatures are found, the most relevant information
about the plasmids is displayed. From here, users can take
a deeper look into the findings by continuing their analysis
on PLSDB.

Comparative metagenomics

Group comparison is a frequently requested analysis that is
often neglected in composition-based methods. In BusyBee
Web, we compute a differential density between two user-
defined classes, by first applying a Gaussian 2D kernel to
the embedded sequences for both classes separately. Band-
width and grid size used in the computation can be mod-
ified by the user, within given boundaries. Next, the dif-
ference between both densities is visualized. This usually
results in a picture where various areas are dominated by
different classes. While this method does not directly pro-
vide statistics on coverage differences, it remains indicative
of different phenomena. On the one hand, if long reads are
directly embedded, higher density regions should represent
a higher relative number of sequences with a similar k-mer
spectrum in the sample. On the other hand, if assembled
contigs were provided, interpretation becomes more com-
plex. First, the number of embedded sequences is expected
to increase simply due to technological errors, resulting in
higher density regions for higher sequence counts similar
to the long-read interpretation. Second, increased phyloge-
netic diversity is captured since identical sequences should
ideally be collapsed already during assembly. The differ-
ence in density can be retrieved for each cluster allowing the
user to further analyze potentially interesting patterns and
areas.

Application programming interface

To allow programmatic access to BusyBee Web, we imple-
mented an application programming interface (API). The
API complies with the Open API 3.0.2 standard (29). Users
can start jobs, check their status, and download individ-
ual results over the API. Additionally, a python package is
supported and distributed via conda, which allows for easy
integration into R scripts using reticulate. The package is
available on: https://github.com/CCB-SB/busybee api.

Case studies

In order to benchmark BusyBee Web on a mock commu-
nity in the first case study, we downloaded the ERR3152364
dataset from the sequence read archive and converted the
fastq files into fasta files while also adapting the header
names. Due to the high sequencing depth of the experiment,
the sample had to be pruned to comply with the constraints
imposed by the webserver. Thus, we shuffled the fasta file
randomly and selected the first 200 Mb of data, corre-
sponding exactly to the upload limit and which accounts
for <2% of the initial file. The resulting file contained a to-
tal of 50 679 reads. After data generation, we started analy-
sis with default parameters changing only the embedding to
UMAP. For comparison, various embeddings with different
dimension reduction methods were computed (Supplemen-
tary Figure S1).

The second case study discussing differences between
sequencing technologies was conducted with newly gen-
erated data. Both datasets were derived from the same
1mL of bile sample of a healthy human individual and
DNA was extracted with the same QiAamp DNA Mi-
crobiome Kit allowing for comparison between technolo-
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gies. Next-generation sequencing DNA libraries were pre-
pared using the MGIEasy Universal DNA Library Prep
set following the recommendations of the manufacturer.
The DNBSEQ-G400 was used as short-read sequencing
platform. Oxford nanopore sequencing was prepared with
the SQK-LSK109 Ligation Sequencing kit before sequenc-
ing on an FLO-MIN106D flow cell in a MinION Mk1B.
Basecalling was performed with Guppy v5.0.7. For both
datasets, human-read contamination was removed by first
running kneaddata v0.7.4, followed by sra-human-scrubber
v1.0.2021 05 05 (1,30). After removal of human reads, the
ONT fastq was converted to fasta and read names were
shortened to generic header names. For the short-read
sequencing data, reads were assembled to scaffolds with
metaSPAdes v3.15.2 and scaffolds were retained (8). Before
analysis with BusyBee Web, both datasets, short- and long-
read, were combined and a mapping to the original fasta
entries was generated. Next, data was passed to BusyBee
Web with default settings, but selecting UMAP as embed-
ding algorithm.

RESULTS

With the increasing popularity of whole shotgun
metagenome and long-read sequencing competing with
amplicon sequencing, dedicated analysis of plasmids from
metagenomics data is becoming increasingly tempting to
the metagenomics community (31). However, shared se-
quences between chromosomes and plasmids, variable sizes,
and a wide range of other factors render plasmid assembly
from short reads an algorithmic challenging task often
entailing high misassembly rates (31,32). Similarly, the
prediction of both plasmid reads, and plasmid sequences
remains an intensively debated field of research, also affect-
ing long-read sequencing technology (33–38). Attributed
to these difficulties, plasmid sequences frequently appear
in binning inputs where they may be difficult to interpret.
With the newly added plasmid annotation, BusyBee Web
explicitly notifies the user about the presence of already
known putative plasmid signatures. Further, the newly
adopted differential density-based visualization allows
for visual interpretation of similarity between aggregated
samples. Since cohort and interventional studies comparing
healthy against diseased patients, elderly against young, or
different treatment conditions are increasingly performed
in biomedical research, the field also faces an upsurge of
comparative metagenomic studies. However, many of the
conclusions drawn from cohort studies are either based on
differential taxonomic counts or the functional aspect of
sequences. In both cases, the comparison relies on reference
information. One method to alleviate this constraint is to
assess differential coverage profiles of binned sequences.
However, similar to coverage-based binning, coverage
profiles are required for this approach, which may not be
available. Moreover, minor differences in binning outcomes
may largely impact conclusions weakening the stability
of this approach. The embedding followed by subsequent
kernel application that we implemented alleviates these
drawbacks and the volatility of results is bound to the
characteristics of the selected dimensionality reduction
method. Lastly, with the added application programming

interface (API) BusyBee Web can easily be integrated
into new and existing data analysis pipelines. In combina-
tion with workflow managing tools such as Nextflow or
Snakemake, the API increases experiment throughput and
reproducibility of results (39,40).

In order to highlight the improved functionality of Busy-
Bee Web, we analyzed two datasets of varying ground truth
information. While at the core BusyBee uses a reference-
free algorithm for binning, here we make use of reference-
based taxonomic annotations that were added after bin-
ning. Combining these annotations with the knowledge of
well-characterized microbial environments allows us to bet-
ter gauge binning quality.

Mock community benchmark

To assess the binning quality of BusyBee Web on a well-
characterized example, we used a dataset by Nicholls et al.
as ground truth (41). This nanopore sequencing data repre-
sents a mock community composed of exactly ten known
species. The output of BusyBee Web consists of 27 bins
(Figure 1A and B). However, 14 of these bins each con-
tained <1% of sequences and may be discarded from fur-
ther analysis. Of the remaining 13 bins, five bins, namely 1,
5, 8, 22 and 24, were mostly composed of unclassified se-
quences. We postulate that these bins are mostly made up
of Cryptococcus neoformans and Saccharomyces cerevisiae
which are not included in the selected Kraken 2 database.
The taxonomic composition of bin 9, which is the small-
est remaining bin composing only 515 sequences, is highly
fractioned indicating a low binning quality. While not ex-
empt from cross-contamination, all the remaining bins (2,
11, 13, 16, 17, 21 and 27) can clearly be attributed to the
distinct species from the mock community, indicating that
despite only using a fraction of the input, BusyBee Web is
able to successfully recover the contained major species.

Sequencing technology comparison

To highlight the new analysis functionality added in this up-
date, we compared the suitability of long reads with short-
read assembled scaffolds. With the 19,262 input sequences
passing the default length filter a total of 19 bins were pre-
dicted of which five (5, 7, 8, 15 and 19) contained <1%
of sequences. A total of 340 sequence similarities to po-
tentially relevant plasmids were identified where the major-
ity was reported in Enterococcus faecium. Looking at the
new differential density plot from Figure 1C we observe
six clusters (1, 2, 4, 6, 16 and 17) that are specific to the
short-read sequencing experiment. The taxonomic profile
of cluster 1 has a high relative number of unclassified se-
quences, pointing towards potentially unreliable assemblies
(Figure 1D). Nevertheless, we note that within this bin a few
long reads were found at a relative proportion of ∼15.5%.
Four of the remaining five clusters (2, 4, 16 and 17) have
low contaminations. These four clusters presumably consist
mostly of Lachnospiraceae, Enterobacteriaceae, Actinomyc-
etaceae and Micrococcaceae respectively. Potentially, due to
biological random sampling or decreased sequencing depth,
these genomic signatures mostly escaped the nanopore se-
quencing.
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Figure 1. (A) Embedding of the mock community dataset, using UMAP with default settings. (B) Taxonomic profile at genus level of the different bins
computed on a mock community composed of ten different species. (C) Differential density embedding of a bile sample sequenced with Oxford Nanopore
MinION (Long Read) and DNBSEQ-400 (Short Read) respectively. (D) Taxonomic annotation of bins computed on the comparison dataset.

CONCLUSION

With the new update, we substantially extended the capa-
bilities of BusyBee Web as a versatile composition-based
binning tool. On the one hand, with the newly added clus-
tering methods, embedding algorithms, and API, we in-
creased the data analysis possibilities for expert users. On
the other hand, we hope to widen our user base by provid-

ing new visualizations and annotations. While we always
strive for maximal flexibility, the ease of use of BusyBee
Web as an installation-free webservice comes at a cost. For
example, the data upload is limited to 200Mb per sample
which can quickly be reached if multiple samples are being
analyzed. Moreover, some of the presented clustering and
embedding options will not be able to handle the theoret-
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ical maximal number of contigs that fit into a 200Mb file,
due to time and memory constraints. Therefore, BusyBee
Web provides an option for compressing information be-
fore embedding computation, alleviating some of these lim-
itations. Nonetheless, visualization of the embedding in the
local browser for many data points may become slow or ir-
responsive on less powerful hardware. Here, we recommend
to prefer API usage instead. Moreover, with sufficient cov-
erage information available, state-of-the-art coverage-based
and hybrid metagenomic binning tools are expected to out-
perform composition-based tools on short-read sequencing
data in larger projects.

Potential future development efforts may further focus on
the identification of mobile genetic elements. However, with
large disagreements already observed across plasmid classi-
fication tools, potential counter-strategies, e.g. automated
removal of putative sequences from user input, are likely
unstable and thus currently not advisable. Further, by ex-
tending the BusyBee Web server to allow for a selection of
different embedding and clustering methods, it will be easier
in the future to integrate newer algorithms into the general-
ized framework.

DATA AVAILABILITY

BusyBee Web is freely available at: https://www.ccb.uni-
saarland.de/busybee.

ACCESSION NUMBERS

Respecting the German federal privacy law, we uploaded
the short- and long-read data after human read removal to
the Sequence Read Archive. Preprocessed data can be found
in NCBI SRA using the accession numbers SRX14022915
and SRX14435297.

The mock community dataset was made available by
Nicholls et al. in the Sequence Read Archive under the ac-
cession: ERR3152364.
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