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When Harry Met Sally, or When Machine Learning Met Chronic
Obstructive Pulmonary Disease

Our understanding of chronic obstructive pulmonary disease
(COPD) is changing rapidly (1). Traditionally considered a self-
inflicted disease caused by tobacco smoking and characterized by
an accelerated rate of lung function decline with age (2), we now
know that it is not always self-inflicted, as a substantial proportion
of patients with COPD have never smoked (3), and both abnormal
lung development and aging determine different lung-function
trajectories that can lead to COPD in adulthood (Figure 1) (4–6).
Accordingly, the concept of disease progression, traditionally
linked to the decline in lung function over time, needs revision (1).
For instance, not all patients exhibit rapid lung function decline (7,
8), different disease components can progress independent of each
other (e.g., lung function and exacerbation rate), and multimorbid
conditions can contribute to disease progression independent of
lung function (1). In this issue of the Journal, Young and colleagues
(pp. 294–302) applied modern machine learning (ML) methods to
model disease progression in COPD (9). ML is a subset of artificial
intelligence in which a computer system performs specific analysis
using algorithms and statistical models without preestablished explicit
instructions, relying only on observed patterns and inferences.

Young and colleagues (9) used an ML tool named Subtype and
Stage Inference (SuStain), capable of “reconstructing long-term
temporal progression of disease from cross-sectional data” (10).
Using four computed tomography (CT) imaging features (two
tissue measurements [emphysema and functional small airways
disease] and two airway measurements [airway wall area and
thickness]) determined in patients and control individuals
participating in the COPDGene study (11), the authors asked
SuStain to determine the subtypes of COPD (defined as “a group of
subjects who share a particular trajectory of CT measurement
evolution”), stages (defined as “the position on a subtype trajectory
of an individual subject at a specific time, representing the
degree of abnormality in imaging measurements”), and disease
progression (defined as “change in stage with time, which occurs
when an CT measurements becomes more abnormal relative to a
control population”) (9). Findings were validated cross-sectionally
in the ECLIPSE (Evaluation of COPD Longitudinally to Identify
Predictive Surrogate End-Points) cohort (12) and longitudinally in
the same COPDGene cohort, using 5 years follow-up data (9).
Finally, Young and colleagues also investigated whether SuStain
observations in patients with COPD could be identified in a
subgroup of smokers with normal spirometry.

Main results showed (9) that, cross-sectionally, SuStain
identified two subtypes of patients in COPDGene. The most
prevalent one (70%) was characterized by emphysema and
peripheral airway disease being detectable “earlier” than central
airway abnormalities (so authors named it Tissue→Airway),
whereas the reverse occurred in the other subtype
(Airway→Tissue). The clinical characteristics of these two subtypes
were broadly similar, and in both, SuStain stages were related to
airflow limitation severity (9). These observations were mostly
reproduced in ECLIPSE (9), and these two subtypes remained
consistent in 87% of COPDGene patients after 5 years of follow-up.
Individual patients tended to progress in stage within each subtype,
particularly GOLD 1–2 patients. Baseline SuStain stage correlated
(weakly) with lung function decline during follow-up in both
subtypes (9), and SuStain identified a subpopulation of control
smokers (29%) with similar imaging abnormalities (subtypes) as
those determined in patients with COPD (Tissue→Airway, 63%;
Airway→Tissue, 37%), despite normal spirometric values. As in
patients with COPD, these subtypes remained constant at 5-year
follow-up, and SuStain stage was associated with lung function
both at baseline and during follow-up (9).

This article is important, novel, intriguing, and a bit difficult to
follow because of the large amount of complex data it includes. As
with any good article, though, it raises many questions.

First, that COPD progression (a concept tightly related to a
time axis) can be modeled from cross-sectional data (where
the time axis is absent) is difficult to grasp. Admittedly,
however, authors validate their cross-sectional results in
COPDGene in an independent cohort (ECLIPSE) and, more
important, explored changes over time using COPDGene
follow-up data (9).

Second, that X occurs earlier than Y (time axis again) means
that Y may occur later. Whether or not this happened here is
unclear, but judging from the fact that 87% of patients remained
classified in the same subtype after 5-year follow-up, it seems
unlikely. If so, does SuStain really model disease progression or
simply identify two different and time-stable phenotypes? Actually,
these two subtypes look remarkably similar to those described by
Burrows and colleagues many years ago (type A [Tissue] and type
B [Airway]) (13). Is ML rediscovering the wheel?

Third, the results of the study by Young and colleagues (9) have
to be contrasted and reconciled with those of two other recent
studies that also used ML methods (admittedly different from
SuStain) in the same COPDGene cohort but provided different
results: one identified four (not two) trajectories (14) and the other
questioned the concept of disease subtypes in favor of a continuum
of COPD manifestations or “disease axes” (15). To what extent are
different ML methods complementary, concordant, or help us to
better understand COPD progression? In fact, real-life (not
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modeled) data from the Tasmanian cohort (which includes serial
spirometric data from patients aged 7 to 53 yr) recently reported
the existence of 6 (not 4, not 2) different lung function trajectories
(16). It is likely that the much longer period of follow-up in the
Tasmanian cohort (46 vs. 5 yr) brings a more precise description of
reality in which, we speculate, an infinite number of disease
trajectories may exist (Figure 1).

Fourth, if the clinical characteristics of the two subtypes
identified by Young and colleagues were similar, and both remained
basically stable over time (9), what is their clinical relevance? In this
context, it should be noted that other important components of
disease progression, such as changes in exacerbation frequency or
mortality, were not included in their analysis.

Fifth, what can we learn about the pathogenesis (endotypes) of
these two subtypes in particular, and COPD in general? Why,
according to SuStain, does the disease start in the parenchyma in the
majority of patients (70%), but in the large airways (which are
irrelevant in terms of airflow limitation) in a relative minority
(30%)? This seems at variance with results obtained using micro-CT
ex vivo in lung tissue samples of patients with COPD that indicate
that peripheral airways are reduced in number before emphysema
develops (17), although we acknowledge that SuStain cannot
disentangle (and hence includes in the same subtype) parenchymal
and peripheral airway changes (9).

Sixth, the observation that individual stage progression
was more rapid in GOLD 1–2 than GOLD 3–4 patients (9) is
in keeping with previous observations and may be consistent
with patients belonging to different lung function trajectories
(Figure 1) (1).

Finally, observations in smokers with normal spirometry
suggest that SuStain can detect early COPD (9). This is
an important observation that needs replication in other
studies. n
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Figure 1. Potential lung function trajectories through life. Reprinted by permission from Reference 1.
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High Pressure versus High Flow: What Should We Target in Acute
Respiratory Failure?

In this issue of the Journal, Grieco and colleagues (pp. 303–312)
compare high-flow nasal cannula (HFNC) oxygenation versus
noninvasive ventilation (NIV) delivering high levels of pressure
using a helmet (1). In this physiological study, 15 patients with
acute respiratory failure (PaO2

/FIO2
, 200 mm Hg) were treated in a

randomized crossover fashion by HFNC with a flow of 50 L/min or
by NIV using a helmet with a high pressure-support level (10–15
cm H2O) and a positive end-expiratory pressure (PEEP) of at least
10 cm H2O, with each phase lasting 60 minutes. Compared with
HFNC, NIV with a helmet markedly improved oxygenation and
significantly reduced dyspnea, respiratory rate, and patient effort,
whereas comfort and PCO2 did not differ between the two
techniques.

The management of acute hypoxemic respiratory failure in the
ICU is challenging. In the most recent clinical practice guidelines,
the use of NIV with a face mask was discussed, but the experts
were unable to offer a recommendation (2). Patients with acute
respiratory failure who have failed NIV are now known to have a
vigorous respiratory drive, and such patients have a particularly
poor prognosis (3, 4). Therefore, management to protect the
already injured lung from the patient’s vigorous spontaneous
efforts (i.e., self-inflicted lung injury) is needed in this particular
setting (5). Furthermore, synchronization between the patient’s
intense respiratory drive to breath and the pressure support
delivered by NIV may result in high VTs that may worsen lung

injury (5–8). Thus, controlling spontaneous efforts and VTs could
be of key importance in the management of acute hypoxemic
respiratory failure.

HFNC is an alternative to standard oxygen that enables
improved oxygenation and comfort and decreases the respiratory
rate and work of breathing without increasing VTs (9). In a large
randomized clinical trial, HFNC significantly decreased mortality
in patients with acute respiratory failure when compared with
standard oxygen, as well as when compared with HFNC with the
addition of intermittent sessions of NIV using a face mask,
suggesting deleterious effects of NIV (10). A post hoc analysis of
this study showed that large VTs (.9 ml/kg of predicted body
weight) 1 hour after initiation of NIV were independently
associated with intubation and mortality (11). This could highlight
the importance of controlling patients’ efforts and VTs to prevent
the progression of acute respiratory failure.

As compared with the face mask, the helmet is an interface that
appears to bemore comfortable for patients (avoiding facial pressure
points), enabling the delivery of more prolonged NIV sessions with
higher levels of pressure (12). A randomized controlled trial that
included patients with acute respiratory distress syndrome found a
spectacular decrease in intubation and mortality rates with NIV
performed using a helmet as compared with a face mask (13). In this
trial, NIV with a helmet (vs. a face mask) enabled the delivery of
higher PEEP levels, likely resulting in less spontaneous effort (as
suggested by lower respiratory rates), lower intubation rates, and
better survival. Although these results are encouraging, this study
had major weaknesses, including a small sample of patients (n=83),
a single-center design, and particularly high intubation rates in the
group treated with a face mask (13). However, these results suggest
that NIV with a helmet could be a useful technique to manage
patients’ efforts through an effective delivery of higher pressures.
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