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Regional and seasonal partitioning of water and
temperature controls on global land carbon uptake
variability
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Fred́eŕic Chevallier 3, Vincent W. Humphrey 7, Chris Huntingford 8, Michael O’Sullivan 9,

Sonia I. Seneviratne 10, Stephen Sitch 11 & Shilong Piao 1,12✉

Global fluctuations in annual land carbon uptake (NEEIAV) depend on water and temperature

variability, yet debate remains about local and seasonal controls of the global dependences.

Here, we quantify regional and seasonal contributions to the correlations of globally-averaged

NEEIAV against terrestrial water storage (TWS) and temperature, and respective uncertain-

ties, using three approaches: atmospheric inversions, process-based vegetation models, and

data-driven models. The three approaches agree that the tropics contribute over 63% of the

global correlations, but differ on the dominant driver of the global NEEIAV, because they

disagree on seasonal temperature effects in the Northern Hemisphere (NH, >25°N). In the

NH, inversions and process-based models show inter-seasonal compensation of temperature

effects, inducing a global TWS dominance supported by observations. Data-driven models

show weaker seasonal compensation, thereby estimating a global temperature dominance.

We provide a roadmap to fully understand drivers of global NEEIAV and discuss their

implications for future carbon–climate feedbacks.
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The global land carbon sink offsets about 30% of anthro-
pogenic CO2 emissions every year, slowing global
warming1,2. However, this sink exhibits substantial inter-

annual variability (IAV), which causes the CO2 growth rate (CGR)
to fluctuate3,4. Understanding the IAV of the net land carbon sink,
hereafter the IAV of net ecosystem exchange (NEEIAV), is critical
for estimating the future evolution of atmospheric CO2 with the
emergence of carbon–climate feedbacks5–7. Such an understanding
is especially useful if climate-driven fluctuations of land carbon
sink become more frequent or more intense under climate change,
which may impact the capability of the land to offset CO2 emis-
sions. The dominant drivers of the global NEEIAV appear to be
inconsistent across studies8–10. Some studies have shown that the
global NEEIAV represented by the IAV of the CGR, is strongly
related to the variations of the mean annual temperature11,12.
Other studies underlined the dominance of terrestrial water storage
(TWS) and thus water availability for vegetation, even when the
temperature (T) was accounted for as a co-predictor9,13.

This apparent controversy among research findings arises from
different assessments of ecosystem responses to water availability
or T in different regions and seasons, which combine in complex
ways to produce the emergence of global drivers of NEEIAV10,14–16.
Hence depending on the datasets used, their aggregation can lead
to differing conclusions about the dominant drivers for the global
NEEIAV. How the distinct contributions of each region sum to the
global signal has not been investigated in detail. Most studies have
focused on the response of tropical net ecosystem exchange (NEE)
to T and water availability4,12,17–19. Researchers have placed far
less attention on the contribution of northern ecosystems to the
global response, despite evidence identifying large NEEIAV over
North America and Europe in response to interannual variability
of both T and water availability20–23. Furthermore, a full under-
standing of seasonally varying influences of water availability and
T on NEEIAV for tropical and northern ecosystems is still
lacking15,21,24. Water availability has been suggested to be posi-
tively correlated with carbon sink anomalies in most seasons over
North America, while seasonally opposite (i.e., compensating)
influences of T on NEE may weaken the overall impact of T on
annual NEE20. Seasonal compensation effects of T on NEE were
reported during recent extreme events in northern regions20,25,26.
For example, higher net carbon uptake induced by the warmer T in
spring was found to be canceled out by less carbon uptake in the
following warmer summer, given a legacy drying of soils from
spring to summer25,27. It remains unclear to what extent such a
seasonal compensation effect of T on NEE influences the overall
global response of NEEIAV to annual T anomalies.

Here we assessed how the impacts of TWS and T on the
NEEIAV vary in different regions and seasons, and how these
impacts aggregate in space and time to influence the global
annual relationship of NEE with TWS and T. To do so, we used
three spatially and monthly explicit estimates of NEE. These
datasets are (1) three atmospheric inversions (CAMS, Jena Car-
boScope, and a new Jena CarboScope inversion called NEE-T-
TWS)28–31, (2) dynamic global vegetation models (DGVMs) of
the TRENDY project version 7 (refs. 1,32), and (3) three machine
learning models upscaling NEE from in situ eddy-covariance
measurements (FLUXCOM)10,33. All of these datasets cover the
period from 1979 to 2016. Although the NEE from atmospheric
inversions includes emissions from disturbances such as fires,
which are not included in FLUXCOM models33 and some
TRENDY models1, fire emissions are known to have a relatively
small impact on the global NEEIAV4. We focused on determining
the contribution from tropical and northern ecosystems to the
dependence of global NEEIAV on TWS and T. For tropical eco-
systems, we examined the contributions of NEEIAV during the dry
and the wet seasons. For northern ecosystems, we considered four

seasons separately (boreal spring, summer, autumn, and winter).
Throughout this paper, we used the sign convention that a
positive value of NEE is for a net carbon release from land to the
atmosphere.

Results
Annual global NEEIAV correlations with TWS and T (rTWS and
rT). We first calculated the correlation between the annual global
NEEIAV and the IAV of TWS (rTWS) or T (rT), from CGR
observations (see Methods) and three different NEE datasets listed
above, using reconstructed TWS based on the Gravity Recovery
and Climate Experiment (GRACE) satellite observations34 and T
from a gridded record of meteorological measurements35. We
found that at the annual timescale, the global NEEIAV was more
strongly correlated with TWS than with T when using data from
CGR observations, atmospheric inversions, and DGVMs from
TRENDY project (Fig. 1a). This result agrees with the findings of
Humphrey et al.13, which were based on CGR time series as a
proxy of the global NEEIAV. The strong correlation of NEE with
TWS may, however, contain some response to T because of the
strong covariation between TWS and T. These covariations may
occur especially over shorter timescales because drought and
heatwaves usually co-occur as compound events36. Furthermore,
atmospheric feedbacks induced by soil moisture deficits produce
increases in T and atmospheric dryness that affect the global
NEEIAV9. To filter out the impact of T on the relationship between
NEE and TWS and vice versa, we calculated the partial correlations
between the global NEEIAV and the individual IAVs of T and TWS,
after controlling for the effect of the other variable. These results
also show that the global NEEIAV, as estimated by CGR
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Fig. 1 Relationships between the interannual variability (IAV) of global
net ecosystem exchange (NEE) and terrestrial water storage (TWS) or
temperature (T). The correlation (a) and partial correlation (b) between
the IAV of global NEE and the IAVs of global mean TWS (rTWS) or T (rT)
are estimated. The IAV of CO2 growth rate (CGR) is a proxy of the IAV of
global NEE. The NEE is also estimated by atmospheric inversions, dynamic
global vegetation models (DGVMs) from the TRENDY project in simulation
S2 (NEE output; see Methods) and in simulation S3 (NBP output with the
opposite sign; see Methods), and FLUXCOM models. Cyan (red) circles
indicate the correlations between global NEE and TWS (T). Error bars for
atmospheric inversions and FLUXCOM models indicate the range of
models, while the error bars for DGVMs from the TRENDY project are the
1-σ inter-model spread. The NEE derived from FLUXCOM models and
DGVMs from the TRENDY project in S2 (NEE output) do not include
disturbances (e.g., fire emissions), but the NEE in atmospheric inversions
and DGVMs from the TRENDY project in S3 (NBP output with the opposite
sign) include disturbances. A larger NEE indicates less net carbon uptake.
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observations, atmospheric inversions, and DGVMs, is more
strongly linked to TWS than T (Fig. 1b).

By contrast, both simple correlation and partial correlation
results show that the global rT value is larger than the absolute
value of global rTWS when using the NEE values of FLUXCOM
models (Fig. 1). The more substantial control of temperature on
FLUXCOM-estimated global NEEIAV, which is opposite to results
from atmospheric inversions and DGVMs, links to a higher
NEEIAV correlation with T rather than a lower correlation with
TWS. Indeed, the value of global rTWS obtained from FLUXCOM
models (rTWS=−0.67) lies in the range of the rTWS values from
other datasets in Fig. 1a. In addition, the difference between the
simple and partial correlation values with T is generally much
larger than with TWS, except for FLUXCOM models (Fig. 1a
versus b). This finding suggests a noticeable contribution of TWS
to the correlation between global NEEIAV and T. This contribu-
tion of TWS is also supported by previous results from CGR
observations and coupled land–atmosphere models9,13.

Seasonal compensation effects in northern ecosystems. To
further investigate the relative dominance of TWS and T in the
overall global NEEIAV, we disaggregated the annual global
NEEIAV correlations with TWS and T (rTWS and rT) into con-
tributions from different regions and seasons (named CTWS and
CT). Our disaggregation method exploits the additive properties
of covariances (see Methods). Briefly, the sum of all local and
seasonal CTWS and CT values explains the absolute value of the
global rTWS and rT, respectively. Positive values of CTWS or CT

mean that removing NEE from a given region/season reduces the
absolute value of the global rTWS or rT. As shown in Fig. 2a, all
three approaches used to diagnose regional NEE agree on a larger
CTWS than CT in the tropics and the southern extra-tropics.
Therefore, the higher global rT value than the absolute value of
rTWS diagnosed from FLUXCOM models must be the con-
sequence of a distinct modulation of CTWS and CT in the

Northern Hemisphere (NH, >25°N). This leads us to examine
more in-depth the contribution of NEEIAV in the NH to the
global rTWS and rT. We found that FLUXCOM models did esti-
mate a larger CT for the NH (CT= 0.23 ± 0.01) than atmospheric
inversions (CT= 0.12 ± 0.04) and DGVMs from TRENDY pro-
ject in their simulation S2 (CT= 0.03 ± 0.11) (Fig. 2b). In addi-
tion, the CT of northern ecosystems in FLUXCOM models is also
much higher than CTWS, while in atmospheric inversions and
DGVMs, the CT of northern ecosystems is almost equal to CTWS

(Fig. 2a). This finding clearly illustrates that the dominance of T
(rather than TWS) in the global NEEIAV estimated by FLUXCOM
models takes its origins in the NH.

To get more insights into this NH phenomenon, we then
assessed how the large annual CT of northern ecosystems
suggested by FLUXCOM models emerges from different seasons
(boreal spring, summer, autumn, and winter). As shown in Fig. 3,
all three approaches agree that CT in summer is the largest
contributor to the annual CT in the NH, as it is much higher than
CT in autumn and winter. This implies a relatively weak role of
ecosystem respiration during the non-growing season in the
annual NEEIAV. The high CT of the NH in summer is however
partially compensated by CT in spring from all three datasets
(Fig. 3). Compared to atmospheric inversions and DGVMs from
the TRENDY project in simulation S2, FLUXCOM models
instead estimate a much weaker spring-summer compensation of
seasonal CT in northern ecosystems. Specifically, the FLUXCOM-
estimated CT value in summer is larger than in atmospheric
inversions and DGVMs, while in spring, it is much weaker with a
near-zero value (Fig. 3c). This explains the emerging large annual
CT in northern extra-tropical regions (Fig. 2), and thus indirectly
the T-dominance in the global NEEIAV in FLUXCOM models by
adding to the tropical influence (Fig. 1).

We have identified that the strength of the spring-summer
compensation of CT in northern ecosystems is largely related to
the dominant driver of the global NEEIAV. Therefore, we next
investigated more systematically the magnitude of CT in spring
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project in simulation S2 (NEE output) and by FLUXCOM models, respectively. For atmospheric inversions and FLUXCOM models, the error bars indicate
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and summer across the NH. To do so, we examined the
sensitivities of NEE to T in boreal spring and summer. Results
show that in summer, all three approaches agree on a smaller net
carbon uptake with warmer T anomalies at northern mid-
latitudes (Fig. 4a–c; brown or blue areas), but they are not
consistent at northern high latitudes (Fig. 4a–c). On the one
hand, atmospheric inversions and DGVMs from TRENDY
project in simulation S2 tend to suggest a negative T sensitivity
(warmer summer, lower NEE, and more uptake) in the boreal and
arctic ecosystems of North Asia (Fig. 4a, b; pink or green areas),
which is the opposite of their results over the mid-latitudes. This
estimation of negative T sensitivity by DGVMs could be
influenced by their lack of permafrost carbon dynamics and
nutrient limitation in their simulations1,37,38. Atmospheric
inversions may be also limited by relatively sparse atmospheric
CO2 measurement stations in northern Eurasia (Supplementary
Note 1). Nevertheless, a negative summer T sensitivity of NEE in
high-latitude ecosystems is not implausible.

On the other hand, FLUXCOMmodels indicate that summer T
effects on NEE at high latitudes have the same sign as those in the
mid-latitude regions (warmer summer, higher NEE, and less
uptake; Fig. 4c; brown areas), which could explain the higher
overall summer CT of northern ecosystems than that estimated by
atmospheric inversions and DGVMs from the TRENDY project
(Figs. 3c and 4c). To what extent this is because FLUXCOM
models are trained by dense flux tower data in temperate regions
and extrapolate temperate NEE responses to the high-latitude
regions needs to be further studied. A recent study based on
eddy-covariance measurements found that higher summer
temperature could enhance the net carbon uptake in the Arctic39,
more consistent with atmospheric inversions and DGVMs rather
than FLUXCOM models. Given the diversity of boreal and arctic
systems40–42, we note that the response of NEE to summer T in
the high-latitude regions still remains uncertain.

Compared with summer, the sensitivity of spring NEE to
spring T anomalies estimated by FLUXCOM models is different
from estimates by the other two approaches almost throughout
the NH. In general, atmospheric inversions and DGVMs from the
TRENDY project show a negative sensitivity of NEE to spring T
(warmer spring, lower NEE, and more uptake) (Fig. 4a, b; green
or blue areas), while the T sensitivity from FLUXCOM models is
positive (warmer spring, higher NEE, and less uptake) (Fig. 4c;
brown areas). Such a widespread positive sensitivity of NEE to
spring T estimated by FLUXCOM models is surprising because a
warmer spring (i.e., higher T) is commonly observed to enhance

the net carbon sink at most long-term eddy-covariance sites in
northern ecosystems16,43. This FLUXCOM-estimated positive
sensitivity may be due to the temporal extrapolation of the T
sensitivity from some short-term sites, where the impact of T on
NEE in recent years could be different from the long-term
average of the impact of T44,45. There may also be an effect
whereby the training of FLUXCOM models by both space and
time gradients of NEE, may cause subtropical sites to overly affect
the prediction of the T sensitivity at temperate and boreal sites46.
The positive sensitivity of NEE to spring T estimated by
FLUXCOM models results in the spring CT being positive in
some regions of NH, which weakens the overall compensation
effects of spring CT on summer CT (Fig. 3c). Hence FLUXCOM
models estimate the global NEEIAV to be more correlated with T
instead of TWS (Fig. 1).

The results from atmospheric inversions and DGVMs from the
TRENDY project demonstrate that the seasonal (spring vs.
summer) compensation of the effects of T anomalies on NEEIAV
in northern ecosystems weakens the control of global T on global
NEEIAV. This seasonal compensation also weakens the influence
of annual T on NEEIAV in the NH, thereby explaining the
previous findings that the control of global T on global NEEIAV is
weaker than that of tropical T4,13. The seasonal compensation in
NH systems occurs mainly between the boreal spring and
summer, as indicated by atmospheric inversions and DGVMs
from the TRENDY project (Fig. 3). A warmer spring can
stimulate carbon uptake in the NH16,47,48, causing the contribu-
tion of the NH in spring to the global rT to be negative. In
contrast, warmer summers with potentially higher air tempera-
ture than the optimum of vegetation productivity or reduced soil
moisture can suppress the net carbon uptake in northern
ecosystems49–52. The reduced net carbon uptake (higher NEE)
in warmer summers results in a positive contribution of NEEIAV
in northern ecosystems to the global rT. In addition, atmospheric
inversions and DGVMs from the TRENDY project indicate that
the seasonal compensation of the effects of T on NEEIAV is not
limited to local extreme events such as severe droughts20,25,27, but
is also a widespread feature arising during normal years in the
NH. This compensation of T effects within the NH explains why
at the global scale, TWS is the strongest driver of annual
variations in NEE, except in FLUXCOM models (Fig. 1). The
possible underestimation of NH seasonal compensation effects in
FLUXCOM models leads to a dominant role of T rather than
TWS in the global NEEIAV from this approach, which is in
contrast to the results obtained using the observed CGR13 (Fig. 1).
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Fig. 3 CTWS and CT in the northern extra-tropics during four seasons. CTWS and CT indicate contributions to the global correlations of interannual
variability of net ecosystem exchange (NEEIAV) against terrestrial water storage (rTWS) and temperature (rT), respectively. NEEIAV is estimated by
atmospheric inversions (a), DGVMs from the TRENDY project in simulation S2 (NEE output) (b), and FLUXCOM models (c). The four seasons are boreal
spring (MAM, March–May), summer (JJA, June–August), autumn (SON, September–November), and winter (DJF, December and January–February).
Positive values of CTWS or CT mean that removing the seasonal NEEIAV would reduce the absolute value of the global correlation rTWS or rT. The larger
rectangles indicate the higher absolute values of the CTWS or CT. For atmospheric inversions and FLUXCOM models, the black edges of the rectangles
indicate that the signs of the CTWS or CT are the same among all models. For DGVMs from the TRENDY project, black edges of the rectangles indicate that
the signs of CTWS or CT derived from more than 10 out of 14 models are consistent with those from the model ensemble mean.
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Contribution of tropical NEE during the dry and wet seasons.
Although the contribution of NEE in northern ecosystems to the
global rT plays a critical role in determining the dominant driver
of the global NEEIAV, the magnitude of both the global rTWS and
rT is mainly contributed by the tropical ecosystems (71–90% and
63–90%, respectively; Fig. 2b). Interannual variability of NEE in
tropical ecosystems is much larger than that in the extra-tropics,
and thus contributes more to the global NEEIAV2–4. Given that
the impacts of climate variations on carbon dynamics in the
tropics depend on hydrothermal conditions8, to gain more
understanding of annual tropical CTWS and CT, we separated
these two contributions into dry and wet seasons (see Methods).
Results from all three approaches show that, overall, tropical
CTWS has similar value between the dry and the wet seasons, and
similarly, tropical CT has similar value between the dry and the
wet seasons (Supplementary Fig. 1). Moreover, in each tropical
continent, albeit with uncertainties, CTWS and CT during the dry
season are also similar to those during the wet season, respectively
(Supplementary Fig. 2). Further, the spatial distributions of the
absolute values of tropical CTWS and CT during the dry and wet
seasons are strongly related to the magnitude of NEEIAV (Fig. 5
and Supplementary Fig. 3). Regions with large absolute values of
CTWS and CT shown in Fig. 5 also have large NEEIAV in the same

season. There is a concurrence of large CTWS and strong inter-
annual variations of NEE in savannas of southern Africa during
the dry season (Fig. 5a–c and Supplementary Fig. 3). This region
seems to be a hotspot of NEEIAV, and the large CTWS and NEEIAV
during the dry season reflect a tight relationship between NEE
and TWS at interannual timescales (Supplementary Fig. 4). More
water availability during the dry season can induce a larger
enhancement of vegetation productivity over ecosystem respira-
tion, thus facilitating more net carbon uptake in this region24.

We investigated whether the general length of the dry season in
tropical regions could partly explain the spatial and seasonal
variations of NEEIAV (Supplementary Figs. 3 and 5) and thus
those of CTWS and CT. Specifically, we found that regions with
large absolute values of CTWS and CT in the dry season have
longer dry seasons and similarly for the wet season (Fig. 5 and
Supplementary Fig. 5). This finding indicates that future changes
in the length of the dry season in tropical regions could affect the
spatiotemporal patterns of CTWS and CT (ref. 53). In addition, we
found negative values of CTWS or CT in some locations, e.g., for
tropical Asia (Fig. 5), which result from the covariations between
NEEIAV in those regions and the IAVs of global TWS or global T
(see Methods). Two mutually exclusive mechanisms could
explain the negative values of CTWS or CT (see Methods). One
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Fig. 4 Sensitivity of net ecosystem exchange (NEE) to temperature (T) and terrestrial water storage (TWS) in boreal spring and summer. NEE is
estimated by atmospheric inversions (a, d), DGVMs from the TRENDY project in simulation S2 (NEE output) (b, e), and FLUXCOM models (c, f). A
positive sensitivity to TWS means drier conditions are correlated with more net carbon uptake, while a positive sensitivity to T means warmer conditions
are correlated with less net carbon uptake.
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is that years with more water availability or lower temperature do
not enhance carbon sink in those regions. A second possibility is
that local water availability or temperature variations are in the
opposite direction of the global fluctuations (see Methods). The
negative local CTWS and CT values imply a spatial compensation
with positive values elsewhere in the tropics (Supplementary
Note 2), modulating the CTWS and CT in the whole tropics.

Discussion
We have shown that the relative magnitude of CTWS and CT in
the NH is critical to determine the dominant driver of the global
NEEIAV (Fig. 2a). However, there are considerable uncertainties
in the estimate of CTWS and CT in subregions of NH (Supple-
mentary Note 1). Specifically, we found little consensus between
the three approaches in estimating CTWS and CT for many sub-
regions in the NH (Fig. 6). Such regional discrepancies in annual
CTWS and CT could partly result from seasonal compensation
differences. For example, atmospheric inversions estimate larger
CTWS values than the other two approaches in Asian regions (i.e.,
North Asia, northern East Asia, Central Asia, South Asia, and
subtropical China; Fig. 6), inducing a larger CTWS in the NH
(Fig. 2b). The large annual CTWS in Asian regions, as estimated

by atmospheric inversions, links to the positive values of spring
CTWS in these regions, which add to CTWS in other seasons
(Supplementary Fig. 6). By contrast, DGVMs from TRENDY
project in simulation S2 and FLUXCOM models suggest the
negative values of spring CTWS in Asian regions, weakening the
annual CTWS (Supplementary Fig. 6). DGVMs from TRENDY
project and FLUXCOM models suggest that increased water
availability in spring can enhance the net land carbon uptake in
East Asia and the arctic region of Asia (Fig. 4e, f; green and blue
areas), by promoting the photosynthesis of vegetation10,54. Yet
this is not supported by NEE values derived from atmospheric
inversions (Fig. 4d; brown and pink areas).

In the tropics, discrepancies among the three approaches can
be seen when analyzing continental contributions to the global
rTWS and rT (Fig. 6 and Supplementary Fig. 2). Results from the
three approaches show that both tropical Africa and tropical
America generally contribute more to the global rTWS and rT than
tropical Asia (including northern Australia, as shown in Fig. 6a).
But large uncertainties remain in quantifying the continental
contributions of tropical Africa and tropical America (Fig. 6 and
Supplementary Fig. 2). Palmer et al.17, using inversions based on
remotely-sensed column CO2 mole fraction retrievals, found
some evidence of a substantial role of tropical Africa in the
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Fig. 5 Spatial distribution of the CTWS and CT in the tropics during the dry and wet seasons. CTWS and CT indicate contributions to the global
correlations of interannual variability of net ecosystem exchange (NEEIAV) against terrestrial water storage and temperature, respectively. NEEIAV is
estimated by atmospheric inversions (a, d), DGVMs from the TRENDY project in simulation S2 (NEE output) (b, e), and FLUXCOMmodels (c, f). Note that
pixels where there is only a dry or only a wet season within a year are excluded. Triangles indicate that using simulated soil moisture by DGVMs or water
availability index (WAI) for FLUXCOM models as terrestrial water storage instead of using observation-based terrestrial water storage would change the
sign of CTWS.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31175-w

6 NATURE COMMUNICATIONS |         (2022) 13:3469 | https://doi.org/10.1038/s41467-022-31175-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


variability of the overall tropical NEE. However, that study was
limited to a period of four years only. The longer NEE time series
of atmospheric inversions based on in situ surface network used
here show the large contributions of tropical Africa hold for the
past four decades. In tropical Africa, fire is not likely to be the
cause of net carbon flux anomalies in the recent few years17,55,
implying that the control of NEEIAV is the balance between
photosynthesis and respiration. Besides the large contributions of
tropical Africa, DGVMs and FLUXCOM models also estimate
large CTWS and CT of tropical America (Fig. 6). This is probably
because of the high NEEIAV in tropical America estimated by
DGVMs and FLUXCOM models4,10, reflecting the high sensi-
tivity/vulnerability of tropical forests to climate anomalies56. The
uncertainty in the contributions of three tropical continents may
be largely from the spatial compensation effects (Supplementary
Note 2).

To provide more accurate assessments of the spatial compen-
sation for CTWS, or for CT, a key priority is reducing the
uncertainties of the three approaches in estimating tropical
NEEIAV. Atmospheric inversions assimilating surface measure-
ments of atmospheric CO2 have potentially low capacity to
separate the IAV signal between tropical continents, given the
sparsity of stations recording atmospheric CO2 in the tropics57.
The NEE estimate by the three atmospheric inversions is thus
likely influenced by the prior settings in tropical regions. This can
be partly remedied by assimilating total CO2 dry air mole fraction

retrievals from satellites, as these have better coverage of the
tropics30,58. For the FLUXCOM models, besides limitations from
relatively few training samples in the tropics, the estimation of
NEE is affected by both specific machine learning methods and in
particular, the calculation of the water availability index (WAI)
used as a predictor of NEE33,46. The soil water storage capacity in
the bucket model used to simulate WAI in FLUXCOM is con-
stant and relatively small46. By contrast, DGVMs calculate their
own soil moisture, aiming to better capture the actual water
availability and water stress on NEE. Uncertainties in simulating
the NEE variability in DGVMs are thus mainly derived from the
model structure, including soil hydrology and limitations of soil
moisture and atmospheric dryness on plant photosynthesis and
soil respiration32,59,60.

Atmospheric inversions and DGVMs from the TRENDY
project indicate a dominant role of TWS on the global NEEIAV.
However, TWS anomalies in some tropical regions relate to water
storage in lakes, floodplains, and wetlands, which should have less
effect on the carbon uptake than soil moisture61. This suggests a
stronger relationship of NEEIAV with simulated soil moisture in
DGVMs or with WAI in FLUXCOM models than with obser-
vation-based TWS in tropical regions (Supplementary Figs. 7 and
8). This finding is also because these two model-based approaches
are more consistent with their own derived soil moisture than
with the independently observed TWS. Nevertheless, results from
DGVMs and FLUXCOM models when considering their own

Fig. 6 CTWS and CT in tropical continents and northern extra-tropical subregions. CTWS and CT indicate contributions to the global correlations of
interannual variability of net ecosystem exchange against terrestrial water storage and temperature, respectively. As shown in panel a, the tropics is
divided into three continents (Trop.Am tropical America, Trop.Af tropical Africa, Trop.As tropical Asia, with the latter including northern Australia).
Northern Hemisphere (NH, >25°N) is divided into ten subregions. BAm Boreal America, NEu North Europe, NAs North Asia, TEu Temperate Europe, WAm
Western North America, EAm Eastern North America, Med Mediterranean, CAs Central Asia, SAs South Asia and subtropical China, and NEAs Northern
East Asia. For atmospheric inversions and FLUXCOM models, the black edges of the rectangles in panel b indicate that the signs of the CTWS or CT are the
same among all models. For DGVMs from the TRENDY project, the black edges of the rectangles in panel b indicate that the signs of CTWS or CT derived
from more than 10 out of 14 models are consistent with those from the model ensemble mean.
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simulated soil moisture, also support that the dry season length
controls the absolute values of CTWS in the tropics (Fig. 5 and
Supplementary Fig. 9), although showing different spatial com-
pensation patterns compared to results where CTWS is calculated
from observation-based TWS (Fig. 5; Supplementary Fig. 9; and
Supplementary Note 2). In addition, even though the correlation
between IAV of TWS reconstructed from GRACE satellite
observations and IAV of the simulated soil moisture or water
availability by the models is relatively weak in boreal and Arctic
regions of the NH (Supplementary Fig. 10), it has little influence
on the assessment of the dominant driver of NEEIAV in the NH
(Supplementary Fig. 7).

Our study revealed how the interannual NEE variations in
different regions and seasons contribute to the overall apparent
controls of TWS and T on the global NEE. At the global scale,
both atmospheric inversions and DGVMs suggest that TWS
exerts a stronger control on the NEE than T. This finding of a
stronger TWS-dependence is supported by the tight relationship
between interannual variations of the data-led global NEE esti-
mated by atmospheric inversions and observed CGR variations4.
The weaker T control primarily results from the seasonal com-
pensation that the negative impacts of T on spring NEE offset the
positive impacts on summer NEE over the northern ecosystems.
However, a weaker spring-summer compensation of T effects in
FLUXCOM models instead makes them produce a stronger T
control than TWS on the global NEE. We note that the weak
seasonal compensation is not supported by local flux tower
measurements, which show a larger net carbon uptake by land in
a warmer spring across northern ecosystems16,43. Nevertheless,
weaker seasonal compensation effects over northern ecosystems
may emerge in the future, due to the reduced chilling or growing
light limitations in spring44 and to the accelerating carbon
release from permafrost thawing or from more frequent
summer heatwaves38,62. A weaker seasonal compensation effect
in northern ecosystems could strengthen the T control in the
global land carbon uptake variability. Hence monitoring how the
seasonal compensation effects are changing in the Northern
Hemisphere, supported by improved process modeling, will help
better inform society about the emergence of any altered future
carbon–climate feedbacks.

Atmospheric inversions, DGVMs from the TRENDY project,
and FLUXCOM models all agree on the importance of the tro-
pical contributions to the global NEE-TWS and NEE-T rela-
tionships. Here we show that this pan-tropical influence results
from almost equal contributions from the dry and wet seasons.
Our study highlights the role of dry season length in determining
the spatial and seasonal pattern of the tropical contribution. To
eventually quantify the contribution of tropical NEE during dif-
ferent seasons and at a finer spatial scale, a more accurate
assessment of the spatial compensation of the contributions is
needed. At present, the accuracy of tropical NEE estimates from
atmospheric inversions and FLUXCOM models at fine resolution
is limited by sparse atmospheric CO2 observations and eddy-
covariance measurements in the tropics, respectively33,57.
Assimilating satellite measurements of total CO2 dry air mole
fraction into inversion algorithms has the potential to improve
NEE estimates of atmospheric inversions at small spatial
scales30,58. For DGVMs, the poor calibration or even lack of
representation of key carbon cycle processes, such as nutrient
limitations and access of roots to groundwater, could potentially
induce biases in estimating NEE variations37,63. Given these dif-
ferent sources of uncertainty in simulating NEE among the three
approaches, we emphasize the importance of comparing inde-
pendent data sources and methods in determining regional car-
bon cycle attributes, as done in this study. In summary, we have
shown that global annual variations in NEE may be more linked

to fluctuations in terrestrial water storage than temperature,
although this depends on a selected strand of evidence. Hence, we
determined where data streams and model projections differ in
estimating seasonal and regional NEE, and offsets in their var-
iations. Our research provides guidance for future measurement
campaigns and model development, which will lower further
uncertainty on the dominant drivers of large-scale variations
in NEE.

Methods
Atmospheric CO2 inversions. We used gridded net carbon fluxes for the period of
1979–2016 from two long-term atmospheric inversion models: CAMS version 17r1
(ref. 28) and Jena CarboScope version s76oc_v2020 (ref. 29). The two inversions
both assimilated surface measurements of atmospheric CO2. The spatial resolutions
of net carbon flux from CAMS and Jena CarboScope are 1.9°latitude × 3.75°long-
itude and 4°latitude × 5°longitude, respectively. We used the remapped monthly
output with a spatial resolution of 1° × 1°. We also used another Jena CarboScope
inversion called NEE-T-TWS (version sEXTocNEETTWS_79r18_v2020) for the
period of 1979–2016. In the NEE-T-TWS inversion, a multilinear regression term
related to T and TWS with inversely adjusted coefficients replaces the interannual
NEE variations16,31. For some comparison, we used the CAMS inversion assim-
ilating total column CO2 dry air mole fraction retrievals from the Japanese
Greenhouse gases Observing SATellite (GOSAT) for the time period of 2010–2016
(ref. 30). For comparison with the inversion based on GOSAT retrievals, CAMS
assimilating surface measurements is also limited to 2010–2016 (named Surf). We
defined the net carbon flux as NEE and a positive value of NEE as a net carbon
release from land.

Dynamic global vegetation models. We used monthly net carbon fluxes esti-
mated by 14 dynamic global vegetation models (DGVMs) from TRENDYv7
project1,32. The 14 models are CABLE-POP64, CLASS-CTEM65, CLM5.066,
DLEM67, ISAM68, JSBACH69, LPJ70, LPX-Bern71, OCN72, ORCHIDEE-CNP73,
ORCHIDEE-Trunk74, SDGVM75, SURFEX76, and VISIT77, which have a monthly
output covering the period of 1979–2016 (ref. 1). Nine of the 14 models include a
fire module. The effects of carbon–nitrogen interactions are considered in nine
models while few models include the phosphorus-cycle module such as
ORCHIDEE-CNP. There is no model in TRENDYv7 specifically considering the
tropical wetland hydrology. For permafrost, no TRENDYv7 DGVMs have expli-
citly considered it in the simulations. In addition, each model includes deforesta-
tion activities and afforestation activities or forest regrowth after cropland
abandonment, as well as more generally land cover change. For a complete sum-
mary of the models, we refer to Le Quéré et al.1. Three simulations (S1, S2, and S3)
were designed in the TRENDY protocol. DGVMs in S3 are forced by varying CO2,
climate change, and land cover change while those in S2 are forced by varying CO2

and climate change. Differences of carbon fluxes between S2 and S3 are thus from
the effects of land use change. We used the NEE outputs in simulation S2 of the
TRENDY protocol and compared the results with the net biome productivity
(NBP) output in simulation S3. All variables are remapped to a spatial resolution of
0.5° × 0.5°. We mainly used the IAV of modeled NEE in a comparison with that of
the NEE from atmospheric inversions and FLUXCOM models.

FLUXCOM global carbon flux dataset. We used data-driven NEE retrievals from
the FLUXCOM model ensemble from an upscaling flux tower dataset using
satellite and meteorological/climate forcing (RS+METEO)10,33,46. The meteor-
ological forcing dataset used is CRU-NCEP v8 (ref. 78). FLUXCOM models use
several products from the Moderate Resolution Imaging Spectroradiometer
(MODIS), including MOD11A2 land surface temperature, the MOD13A2 vege-
tation index, MOD15A2 leaf area index and fraction of absorbed photosynthetic
active radiation, and bidirectional reflectance distribution function-corrected sur-
face reflectance of MCD43A2 and MCD43A4 (ref. 46), which can be obtained from
http://daac.ornl.gov/MODIS/. The water availability index (WAI), which is calcu-
lated by a bucket model33,46, is also used in driving the machine learning algo-
rithms. The bucket model considers a simple water budget without changes in
snow cover, permafrost, and runoff13,46. FLUXCOM estimates gridded NEE based
on satellite and meteorological/climate forcing data, using three machine learning
methods (random forests, artificial neural networks, and multivariate adaptive
regression splines) to upscale the NEE from measurements at eddy-covariance
sites46. The machine learning is based on both the spatial and temporal gradients of
observed NEE. More accurate predictions of NEE from FLUXCOM models can be
obtained in regions with more eddy-covariance sites, such as temperate and boreal
forests46. More observations in the tropical and arctic ecosystems are needed. We
used the monthly NEE output of FLUXCOM models with a spatial resolution of
1° × 1° and covering the period of 1979–2016.

Climate and terrestrial water storage data. We mainly used terrestrial water
storage (TWS) as a proxy for water availability. The TWS dataset used in this study
is reconstructed using a statistical model based on GRACE observations of TWS
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(GSFC dataset), and the relationship between climate drivers (MSWEP precipita-
tion dataset and ERA5 air temperature dataset) and TWS34. Monthly reconstructed
TWS covers the period of 1979–2016 with a spatial resolution of 1° × 1°. The main
analyses in this study (Figs. 1–6) are based on this reconstructed TWS time series.
For some comparisons, we also used the simulated soil moisture by DGVMs and
the water availability index in FLUXCOMmodels derived from a soil water balance
model forced by precipitation and evapotranspiration10,46. The correlation between
TWS and simulated soil moisture or water availability index was estimated (Sup-
plementary Fig. 10). Monthly gridded air temperature, precipitation, and potential
evapotranspiration (PET) data for 1979–2016 are obtained from the Climatic
Research Unit (CRU TS4.02), with a spatial resolution of 0.5° × 0.5° (ref. 35).

Dry and wet seasons. The dry season in each grid cell is defined as the period
when monthly PET is larger than precipitation in this pixel. The period in which
monthly PET is lower than precipitation is defined as the wet season. Our analysis
of the impacts of TWS and T on the tropical NEEIAV during the dry and wet
seasons excluded the pixels where there is only dry or only wet season within a year
(Supplementary Fig. 5).

CO2 growth rate (CGR). We used atmospheric CO2 mole fraction data from the
Greenhouse Gas Marine Boundary Layer Reference of the National Oceanic and
Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL)79.
This dataset is constructed using measurements of weekly air samples from the
Cooperative Air Sampling Network. We calculated the difference of CO2 mole
fraction in January of this year and the following year to obtain the annual CGR.

Correlation between global annual NEE and TWS or T (rTWS or rT). To obtain
the IAV of TWS, T, and NEE, we removed the long-term trend using linear
regression from the monthly time series and summed the values of each year into
the yearly anomalies. Then the Pearson’s correlation coefficient between yearly
NEE and yearly TWS (rTWS) or T (rT) was calculated. We excluded the years 1982,
1991, and 1992 from the time series of NEE, T, and TWS for each pixel because
volcanic eruptions affected the radiation and the relationship between carbon
uptake and water availability.

Contributions of regional and seasonal NEE to the global rTWS and rT. We first
analyzed the contribution of monthly NEE in each grid cell to the global rTWS and
rT. We considered extensive quantities for NEE so we can split the global annual
NEE anomaly (XG, unit: PgC yr−1) into n grid cells and 12 months covering the
entire land surface and whole years with ∑n

i¼1 ∑
12
m¼1 xi;m ¼ XG, where the xi,m is

the NEE anomaly (unit: PgC month−1) in grid cell i and month m. The correlation
coefficient between XG and global mean T anomaly (TG) can be decomposed as:

corr XG;TG

� � ¼ cov XG ;TGð Þ
σXG �σT G

¼ ∑
n

i¼1
∑
12

m¼1

cov xi;m ;TGð Þ
σXG �σT G

¼ ∑
n

i¼1
∑
12

m¼1

corr xi;m ;TGð Þσxi;m �σT G

σXG �σT G
¼ ∑

n

i¼1
∑
12

m¼1
corr xi;m;TG

� �
�σx i;mσXG

ð1Þ

where cov(XG, TG) is the covariance between XG and TG. The σXG
and σTG

are the
standard deviation of XG and TG, respectively. The global rT is thus the sum of the
correlations between xi,m and TG weighted by the ratio between the standard
deviation of xi,m and the standard deviation of XG (Eq. (1)). The contribution of
xi,m to the global rT can be expressed as:

CT
i;m ¼ corr xi;m;TG

� �
�
σxi;m
σXG

ð2Þ

which relates to the global correlation as:

corr XG;TG

� � ¼ ∑
n

i¼1
∑
12

m¼1
CT
i;m ð3Þ

The method of calculating the contribution of xi,m to the global rTWS is similar
but with a negative sign because the global rTWS is negative.

CTWS
i;m ¼ �corr xi;m;TWSG

� �
�
σxi;m
σXG

ð4Þ

where TWSG is the global mean TWS anomaly. The magnitudes of CTWS
i;m and CT

i;m

are mainly affected by the ratio between the standard deviation of xi,m and the
standard deviation of XG, especially in the tropics. The magnitudes of the
correlation between local NEEIAV and local TWS or T have a weak influence on the
spatiotemporal patterns of CTWS or CT in tropical ecosystems (Fig. 5,

Supplementary Figs. 4 and 11). The sign of CTWS
i;m or CT

i;m is influenced by the
correlation between the IAV of local NEE and global TWS or global T, which is
probably linked to the control of local TWS or local T in the local NEEIAV, as well
as the relationship between the IAVs of climate drivers at local and global scales.

The contribution of annual or seasonal NEE to the global rTWS or rT can be
calculated by the direct sum of monthly CTWS or CT. For tropical ecosystems, we
examined CTWS and CT during the dry and wet seasons. For northern ecosystems, we
considered four seasons: boreal spring (March–May), summer (June–August),

autumn (September–November), and winter (December, January, and February). The
contribution of regional or latitudinal NEE to the global rTWS or rT is calculated by the
direct sum of CTWS or CT in each grid cell of the region or the latitudinal band.

Sensitivity of NEEIAV to TWS and T for different seasons. To investigate the
sensitivity of NEEIAV to TWS and T in different seasons, we first separated the
monthly time series of NEE, TWS, and T into 12 groups, corresponding to the
12 months of a year. Each group included the values for the same month for all
years. Then the linear trend of the time series in each group was removed to obtain
anomalies of NEE, TWS, and T. Groups of months belonging to the same season
were summed to become one group representing the season. The new group thus
includes the values of the same season for all years. The sensitivity of NEEIAV to
TWS (aTWS) and T (aT) for a given season (s) and grid cell (i) was estimated by
linear multiple regression:

NEEi;s ¼ aTWS
i;s � TWSi;s þ aTi;s � Ti;s þ ε ð5Þ

where NEEi,s, TWSi,s, and Ti,s are vectors of NEE, TWS, and T in a given season (s)
and grid cell (i) during 1979–2016, respectively and ɛ is a residual term. aTWS

i;s and
aTi;s indicate the sensitivities of NEEIAV to TWS and T for a given season (s) and
grid cell (i), respectively.

Data availability
The net land carbon fluxes of CAMS atmospheric inversions are available at https://ads.
atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-greenhouse-gas-inversion. The
Jena CarboScope inversions results are available from the Jena CarboScope website
http://www.BGC-Jena.mpg.de/CarboScope/. The simulations from TRENDY DGVMs
are available at https://sites.exeter.ac.uk/trendy. The FLUXCOM ensemble of carbon
fluxes is available at www.bgc-jena.mpg.de/geodb/projects/Data.php. Monthly gridded
air temperature, precipitation, and potential evapotranspiration data from the Climatic
Research Unit can be accessed at https://crudata.uea.ac.uk/cru/data/hrg/. The
reconstructed TWS dataset based on GRACE observations is accessible at https://doi.org/
10.6084/m9.figshare.7670849. The CO2 mole fraction data from the Greenhouse Gas
Marine Boundary Layer Reference of the NOAA ESRL is available at https://gml.noaa.
gov/ccgg/mbl/data.php.

Code availability
All computer codes for the analysis of the data are available from the corresponding
author on reasonable request.
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