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Abstract: In the current field of human recognition, most of the research being performed currently
is focused on re-identification of different body images taken by several cameras in an outdoor
environment. On the other hand, there is almost no research being performed on indoor human
recognition. Previous research on indoor recognition has mainly focused on face recognition because
the camera is usually closer to a person in an indoor environment than an outdoor environment.
However, due to the nature of indoor surveillance cameras, which are installed near the ceiling and
capture images from above in a downward direction, people do not look directly at the cameras
in most cases. Thus, it is often difficult to capture front face images, and when this is the case,
facial recognition accuracy is greatly reduced. To overcome this problem, we can consider using the
face and body for human recognition. However, when images are captured by indoor cameras rather
than outdoor cameras, in many cases only part of the target body is included in the camera viewing
angle and only part of the body is captured, which reduces the accuracy of human recognition.
To address all of these problems, this paper proposes a multimodal human recognition method
that uses both the face and body and is based on a deep convolutional neural network (CNN).
Specifically, to solve the problem of not capturing part of the body, the results of recognizing the
face and body through separate CNNs of VGG Face-16 and ResNet-50 are combined based on
the score-level fusion by Weighted Sum rule to improve recognition performance. The results of
experiments conducted using the custom-made Dongguk face and body database (DFB-DB1) and
the open ChokePoint database demonstrate that the method proposed in this study achieves high
recognition accuracy (the equal error rates of 1.52% and 0.58%, respectively) in comparison to face or
body single modality-based recognition and other methods used in previous studies.

Keywords: multimodal human recognition; surveillance environment; CNN; human recognition by
face and body

1. Introduction

Previous biometrics studies have used various modalities, including the face, fingerprints, body,
irises, retinas veins, and voice [1–9]. In a typical surveillance camera environment, it is difficult to use
fingerprints or vein recognition, so face, body, and iris methods have been considered. In the case of
iris recognition, a zoom lens and a near-infrared (NIR) light illuminator of high power are needed to
capture iris images at a distance, so the systems are large and expensive and can be used in a limited
range of contexts. Also, in a surveillance environment, the camera is normally installed above the user
and captures images in a downward direction, so it mainly takes off-angle images that capture the
user’s iris at an angle. In such circumstances, the recognition accuracy is greatly reduced [9].
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Face recognition has often been considered for surveillance environments as it can generally be
conducted in a visible light camera environment. However, in a surveillance environment, most cases
involve a camera capturing images in a downward direction from above and people do not look
directly at the camera. Thus, it is generally difficult to capture front facial images, and in such
cases, facial recognition accuracy is greatly reduced. To address this issue, 105 composite geometrical
descriptors for 3D face analysis based on 3D face data captured by a laser scanner were presented
in a previous study [10]. The authors mapped these new descriptors on 217 facial depth maps and
analysed them based on descriptiveness of facial shape and exploitability for detecting landmark points.
In other research [11], they proposed a method to automatically diagnose and formalize prenatal cleft
lip with key points and recognize the type of defect in 3D ultrasonography. For that, they adopted
differential geometry as a framework to describe facial curvatures and shapes. In previous research [12],
Cowie, et al. introduced the various methods of emotion recognition in human-computer interaction
including applications, framework, input and output-related issues, physiological and domain issues,
training and test materials, and case study, etc. In [13], Tsapatsoulis et al. proposed the method of
face extraction from non-uniform background based on the fusion of a retrainable neural network
and morphological size distribution method. In addition, they also proposed the face recognition in
MPEG-4 compressed domain to fuse the face images of high quality and low computational complexity.

In this research, we consider using face and body data for human recognition in a visible light
camera surveillance environment, which is based on the movements of people’s bodies and the texture,
color, and shape of their bodies. However, when images are captured by a camera installed in an indoor
surveillance environment, in many cases, part of the target body is not included in the camera viewing
angle, and only part of the body is captured, which causes a drop in human recognition accuracy.
Aside from this, a study was conducted on human recognition using body images captured by visible
light and thermal cameras [14], but this method requires high-cost thermal cameras, so it is not suitable
for use in a normal surveillance environment. The next section analyzes previous studies on human
recognition using face and body data in a surveillance camera environment.

2. Related Work

Previous studies on human recognition in a surveillance environment using face and body data
can be broadly divided into single-modality-based methods and multiple-modality-based methods.
The former include face recognition, movement-based body recognition, as well as texture-, color-,
and shape-based body recognition. In a study on face recognition in a surveillance camera environment,
Kamgar-Parsi et al. detected face regions through the boosted classifier of Haar wavelets method and
performed morphing of facial images based on an active shape model (ASM), followed by chi-square
distribution-based classification [15]. An et al. used several cameras to capture face images and
performed face recognition based on a dynamic Bayesian network (DBN) [16]. Grgic et al. installed
five cameras above a door and captured face data at three set locations to perform face recognition
using a principal component analysis (PCA) method [17]. Banerjee et al. performed recognition using
a soft-margin-based learning method for multiple feature-kernel combinations (SML-MKFC) with
domain adaptation (DA) [18]. In this type of surveillance environment, it is often difficult to capture
a front face image, hence, the face recognition accuracy is reduced. To address this problem, there
have been studies [19] on recognition by extracting landmark points on a face and using these to
adjust the face to a front angle (face frontalization). However, due to the nature of surveillance camera
environments (especially indoor environments), in many cases, the face region is subject to optical
and motion blurring due to the target moving at a short distance from the camera. In such cases,
facial landmark point extraction is not precise, so face frontalization cannot be performed. Therefore,
recognition methods have been developed that use the body region’s texture, color, and shape
information obtained from a single image, as well as methods that use body motion from several
continuous images. Methods of the former kind include the following.
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Though not focused on human identification, Antipov et al. compared the performance of
hand-crafted feature-based person re-identification and a histogram of oriented gradients with the
performance of learned features that were based on a mini-convolutional neural network (CNN) and
AlexNet-CNN for the purpose of gender recognition [20]. Layne et al. studied body image-based
recognition using a method of symmetry-driven accumulation of local features (SDALF) with metric
learning attributes (MLA) [21]. Nguyen et al. performed a gender recognition study using histogram
of oriented gradient (HOG), PCA, and support vector machine (SVM) on user body images captured
by visible light and thermal cameras [22]. Also, in [14], AlexNet and PCA-based feature extraction
and distance measurement were used to perform a study on personal identification based on user
body images captured by visible light and thermal cameras. Figueira et al. performed a study on
person re-identification based on a semi-supervised multi-feature learning (MFL) method [23]. In [24],
a method of person re-identification was proposed that uses spatial covariance regions of human body
parts and spatial pyramid matching. Prosser et al. used a Gabor and Schmid filter to perform feature
extraction and then used ensemble ranking SVM to perform person re-identification [25]. Ensemble
ranking SVM was proposed as a method to overcome the scalability limitation of existing SVM-based
ranking problems. Chen et al. used a spatially constrained similarity function on a polynomial feature
map (SCSP) and PCA to perform feature extraction and performed a study on person re-identification
based on spatial pyramid matching [26]. Liao et al. performed a study on person re-identification based
on local maximal occurrence (LOMO) and cross-view quadratic discriminant analysis (XQDA) [27].
In [28], person re-identification was performed using a filter pairing neural network (FPNN) to resolve
the problems of misalignment, photometric and geometric transforms, occlusions, and background
clutter. In both [29,30] a Siamese CNN (S-CNN) structure was used for person re-identification, but the
methods were different in that [29] used 7 convolution blocks, whereas [30] used two convolutional
layers. In [31], a positive mining method was proposed for training a CNN for person re-identification,
and discriminative deep metric learning (DDML) was applied. Yang et al. proposed training multi-level
(e.g., pixel-level, patch-level, and image-level) descriptors using weighted linear coding (WLC) for
person re-identification [32].

In these ways, recognition methods that use texture, color, and shape data from body regions
obtained from a single image can compensate for their face recognition disadvantages, but they still
have the disadvantage that they can misidentify an imposter as being the genuine person if they wear
clothes of a similar color or arrangement. They can also show degraded recognition performance when
part of the target body is not captured in an image. To resolve this problem, recognition methods have
been proposed that use body motion and so forth in several continuous images. In [33], a study was
performed on PCA and silhouette analysis-based gait recognition for human identification. In [34],
gait-based recognition was further investigated, but to resolve the problem of insufficient existing
gait data, synthetic gait energy images (GEI) were obtained, and the synthetic GEI and the features
extracted from PCA and multiple discriminant analysis (MDA) were combined and was applied
to improve recognition performance. However, these studies have the disadvantage that they can
mainly be used with continuous images of a person’s side (images in which the person is moving
perpendicular to the direction from which the camera is shooting), but it is difficult to use them when
the person approaches or moves further away from the camera.

In view of these problems, multimodal human recognition methods that combine face and body
data have been proposed, and these previous methods mainly combine side face recognition and
movement-based body recognition. In [35,36], feature extraction was performed using enhanced
side-face images (ESFI) and the GEI method. Then, PCA and MDA were performed and recognition
was done through a fusion method based on sum, product, and max rules. In [37], side face and
GEI features were converted using PCA and MDA, respectively, and combined at the feature level
to perform recognition. In [38], side face recognition was done through curvature-based matching,
and gait recognition was done through direct GEI matching. Then the two types of recognition data
were combined through a sum rule and a product rule. Kale et al. used posterior distribution and
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template matching methods for gait and side face recognition, and they performed fusion through
sum, min, and product rules [39].

Table 1. Summary of our study and previous works on human recognition.

Category Method Advantage Disadvantage

Single
modality-

based

Face recognition

ASM and image morphing [15] Not affected by changes in
people’s clothes, etc.
In comparison to body
recognition, few cases
occur where part of the
region is not captured or
pose variation happens.

Difficult to capture front
face images.
Face frontalization is
difficult due to motion
and optical blurring in
the captured face
images.

DBN [16]

PCA [17]

SML-MKFC with DA [18]

ResNet [40,41]

Texture-, color-,
and shape-based body

recognition
using single frame

AlexNet-CNN, HOG,
and Mini-CNN[20], VGG [42,43]

Using body information,
which has a larger area
than the face,
and recognition at long
distances is possible.

Can misidentify
an imposter as being the
genuine person if they
wear the same clothes.
Reduced recognition
performance in case that
part of the target body is
not captured.

SDALF + MLA [21]

CNN + PCA [14]

HOG + PCA + SVM [22]

Semi-supervised MFL [23]

Spatial covariance region [24]

SCSP + SPM [26]

FPNN [28]

S-CNN [29,30]

CNN + DDML [31]

Multi-level descriptor by WLC [32]

LOMO + XQDA [27]

Ensemble ranking SVM [25]

Body movement
(gait)-based
recognition

using multiple frames

PCA + silhouette analysis-based
gait recognition [33]

Higher recognition
accuracy than body
recognition based on a
single image.

Difficult to use when
a person approaches
or moves further away
from the camera.
By processing
continuous images,
the processing time
is long.

Synthetic GEI, PCA + MDA [34]

Multiple
modality-

based

Side face recognition +
body movement (gait)-

based recognition
using multiple frames

ESFI + GEI [35,36]

Higher recognition
accuracy than single
modality-based methods
for face recognition or
body movement-based
recognition.

Side face + GEI [37]

Curvature-based matching + direct
GEI [38]

Posterior distribution + template
matching [39]

Image-based VH [44]

View-normalized sequences [45]

KFA + RSM framework [46]

Eigenface calculation +α-GEI [47]

HMM + Gabor-based EBGM [48]

Fisherface + silhouette image-based
LPP [49]

Frontal face and
texture-, color-,

and shape-based body
recognition

using single frame

MLBP + PCA [50,51], HOG [52]
– Higher recognition

accuracy than single
modality-based methods

– By single image
processing, processing
speed is fast.

Lower accuracy than
deep CNN-Based
method

Deep CNN-based multimodal
human recognition using both face

and body (Proposed method)

Requiring an intensive
training process of CNN

In [44], a study on face and gait recognition using image-based visual hull (VH) was performed.
In [45], view-normalized sequences were used to perform gait recognition and face recognition,
and they were combined through a cross-modal fusion rule to improve recognition performance.
Guan et al. performed a study in which face recognition based on kernel Fisher analysis (KFA) was
combined with gait recognition based on a random subspace method (RSM) [46]. Hofmann et al. used
the eigenface calculation and α-GEI methods for a combined recognition of face and gait, respectively,
in the Human ID Gait Challenge [47]. Liu et al. performed a study on the combined recognition
of face and gait based on a hidden Markov model (HMM) and Gabor feature-based elastic bunch
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graph matching (EBGM) methods [48]. Also, Geng et al. performed a study on distance-driven
fusion of face recognition, which was based on Fisherface, and gait recognition, which was based on
silhouette image-based locality preserving projection (LPP) [49]. Most of these methods were applied
to continuous images of a person’s side (images in which the person is moving perpendicularly to
the camera’s shooting direction), and these methods have the disadvantage of being difficult to apply
when the person is approaching or moving further away from the camera. In addition, they must
process several continuous images, so they also have the drawback of a long processing time. To resolve
these problems, this paper presents a deep CNN-based multimodal human recognition method that
uses both face and body data in a single image. In addition, this method can be used to perform
recognition in cases where the person is approaching or moving further away from the camera.
These cases occur frequently in indoor surveillance (especially hallway) environments, but they were
not sufficiently addressed by previous studies. Table 1 shows the advantages and disadvantages of the
methods proposed in previous studies on human recognition in a surveillance camera environment
and present study.

3. Contribution of Our Research

Our research is novel in the following four ways in comparison to previous works:

– Previous methods for face- and body-based multimodal human recognition have mainly been
based on continuous images of the side face and gait captured during lateral movement relative to
the camera. However, this study focuses on cases that often occur in indoor surveillance camera
environments (especially hallways) in which a person is approaching or moving further away
from the camera; the proposed method is the first approach for the multimodal human recognition
that separately recognizes face and body regions in a single image and combines them.

– The person’s whole body image is not used as a single CNN input. Rather, the face region and the
body region are separated, and each is used as a separate CNN input. Thus, more detailed texture,
color, and shape information regarding each region can be used. As a result, the recognition
accuracy can be improved beyond that of methods that use whole body images as a single
CNN input.

– A visual geometry group (VGG) Face-16 CNN is used for the face region, and a residual network
(ResNet)-50 CNN is used for the body region. The body region is larger than the face region,
and more detailed texture, color, and shape data must be extracted from the clothes and body.
Therefore, the ResNet-50 is used because it has more layers and uses detailed residual information.
On the other hand, the face region is smaller than the body region, and recognition normally uses
more mid- or low-frequency information than high-frequency information, so the VGG Face-16 is
used rather than the ResNet-50, which uses detailed residual information.

– Unlike previous methods that only focus on cases in which the entire body is included in the
input image, the targets of the proposed method also include images in which part of the body
region cannot be seen in the input image. To make impartial comparison experiments possible,
the Dongguk face and body database (DFB-DB1), which was custom made using two kinds of
cameras to evaluate performance in a variety of camera environments, and the VGG Face-16 and
ResNet-50 CNN models were made public to other researchers in [53].

4. Proposed Method

4.1. Overall Procedure of Proposed Method

Figure 1 shows an overall flowchart of the proposed method. First, the face region in an image
captured by a surveillance camera is detected by the adaptive boosting (AdaBoost) detector [54]. Then,
a more accurate face region is detected based on the positions of the facial features (both eyes) detected
by the dlib facial feature tracker [55] (step (1) in Figure 1). After this, the body region is defined based
on the position and size of the detected face region (step (2) in Figure 1). In the next step, the face



Sensors 2018, 18, 3040 6 of 34

region’s focus score is measured and the next recognition step is only performed if this value is above
a certain threshold (steps (3) and (4) in Figure 1). If it is not, the next image is acquired from the
camera. After this, the CNN models are run using the face region and body region as separate inputs
(steps (5) and (6) in Figure 1). The extracted CNN features are used to measure their distance from the
already registered features (steps (7) and (8) in Figure 1). Score-level fusion is performed using the
two obtained distances, and a final matching score is obtained. This is then used to perform human
recognition (steps (9) and (10) in Figure 1).
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Figure 1. Overall procedure of proposed method.

4.2. Detection of Face and Body Regions as well as Focus Measurement

As explained in Section 4.1 and shown in Figure 2, the AdaBoost detector is used to detect the face
region in an image captured by a camera [54]. AdaBoost detector uses the cascaded weak classifiers
based on Haar feature, and it has been widely used for face detection. In this research, we used
the AdaBoost detector provided from OpenCV library [56] without additional training with our
experimental images. AdaBoost detector can generate the roughly detected face box which includes
face and the part of background. Therefore, a more accurate face region is detected based on the
positions of facial features (both eyes) detected by the dlib facial feature tracker [55]. In this research,
we used the open source of dlib facial feature tracker provided from [55] without additional training
with our experimental images. Also, as explained in Section 4.1, the body region is defined based on
the size and position of the detected face region and anthropometric data on a normal person’s body,
as shown in Figure 2d. In details, based on the center position (x_face, y_face), width (w_face), and height
(h_face) of the detected face region, the center position (x_face, y_face + 1.8 × h_face), width (1.8 × w_face),
and height (2.2 × h_face) of body box are defined, respectively. The lowest vertical position of body box
is limited by “image height—1”. In addition, the left- and right-most positions of body box are limited
by “0” and “image width—1”, respectively.
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Figure 2. Detection of face and body region. (a) Face region detected by AdaBoost algorithm from
input image, (b) facial landmarks detected in face region by dlib facial feature tracker, (c) redefined
face region based on eye landmarks, (d) defined body region.

After this, the 5 × 5 mask proposed in [57] is used on the face region to calculate the focus
score. The shape of this mask is shown in Figure 3. The 5 × 5 mask was designed to measure the
amount of high frequency component in image [57]. In details, the magnitude value is computed
by the convolution operation with the 5 × 5 convolution kernel in the image based on the moving
step of 1 pixel both in horizontal and vertical directions as shown in Equations (1) and (2). Then,
this magnitude value (FS of Equation (2)) is normalized so as to be presented in the range from 0
to 100 based on min-max scaling, and min and max values were determined from the training data.
This normalized value is used as final focus score, and the higher the score, the better the focus
condition. The next recognition step is only performed if this focus score is above a certain threshold.
If it is not, the next image is acquired from the camera instead of recognition. The optimal threshold of
focus score was experimentally determined as 20 (both in DFB-DB1 and ChokePoint databases) from
the training data so as to obtain the highest accuracy of recognition.

Sensors 2018, 18, x FOR PEER REVIEW  7 of 34 

 

height (2.2 × h_face) of body box are defined, respectively. The lowest vertical position of body box is 
limited by “image height—1”. In addition, the left- and right-most positions of body box are limited 
by “0” and “image width—1”, respectively. 

 
(a) (b) (c) (d) 

Figure 2. Detection of face and body region. (a) Face region detected by AdaBoost algorithm from 
input image, (b) facial landmarks detected in face region by dlib facial feature tracker, (c) redefined 
face region based on eye landmarks, (d) defined body region. 

After this, the 5 × 5 mask proposed in [57] is used on the face region to calculate the focus score. 
The shape of this mask is shown in Figure 3. The 5 × 5 mask was designed to measure the amount of 
high frequency component in image [57]. In details, the magnitude value is computed by the 
convolution operation with the 5 × 5 convolution kernel in the image based on the moving step of 1 
pixel both in horizontal and vertical directions as shown in Equations (1) and (2). Then, this 
magnitude value (FS of Equation (2)) is normalized so as to be presented in the range from 0 to 100 
based on min-max scaling, and min and max values were determined from the training data. This 
normalized value is used as final focus score, and the higher the score, the better the focus condition. 
The next recognition step is only performed if this focus score is above a certain threshold. If it is not, 
the next image is acquired from the camera instead of recognition. The optimal threshold of focus 
score was experimentally determined as 20 (both in DFB-DB1 and ChokePoint databases) from the 
training data so as to obtain the highest accuracy of recognition. 

 
Figure 3. The 5 × 5 mask for focus assessment. 

, = , ∗ , = 	∑ ∑ , 	 − , −   (1) FS = (∑ , )/( 	 )  (2) 

In Equations (1) and (2), , , ,  and ,  are input, output, and 5 × 5 mask images, 
respectively. W and H are the image width and height, respectively. In the DFB-DB1 database, which 
was custom made for this study, images were captured by two types of cameras, namely, the Logitech 
BCC950 [58] and the Logitech C920 [59], to evaluate performance of the proposed method in a variety 
of camera environments. Figure 4 shows the focus scores of images in DFB-DB1. Also, Figure 5 shows 
the focus scores of the ChokePoint dataset [60], which is an open database used in this study. As seen 
by a comparison of Figures 4b and 5b, the blurring due to user movement is more severe in the images 
in Figure 4b. 

Figure 3. The 5 × 5 mask for focus assessment.

O[x, y] = I[x, y]M[x, y] = ∑H−1
q=0 ∑W−1

p=0 I[p, q] M[x− p, y− q] (1)

FS = (∑H−1
y=0 ∑W−1

x=0 O[x, y])/(W × H) (2)

In Equations (1) and (2), I[x, y], O[x, y] and M[x, y] are input, output, and 5 × 5 mask images,
respectively. W and H are the image width and height, respectively. In the DFB-DB1 database,
which was custom made for this study, images were captured by two types of cameras, namely,
the Logitech BCC950 [58] and the Logitech C920 [59], to evaluate performance of the proposed method
in a variety of camera environments. Figure 4 shows the focus scores of images in DFB-DB1. Also,
Figure 5 shows the focus scores of the ChokePoint dataset [60], which is an open database used in
this study. As seen by a comparison of Figures 4b and 5b, the blurring due to user movement is more
severe in the images in Figure 4b.
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4.3. CNN for Face Recognition

In the proposed method, face recognition is performed using the VGG Face-16 CNN model,
which takes the facial regions obtained in Section 4.2 as input. The VGG Face-16 CNN model is used
for the face region, and the ResNet-50 CNN model is used for the body region. We used the VGG
Face-16 CNN model provided from [61] in this research. The body region is larger than the face region,
and more detailed texture, color, and shape data must be extracted from the clothes and body, so the
ResNet-50 is used, as it has more layers and detailed residual information. On the other hand, the face
region is smaller than the body region, and recognition normally uses more mid- or low-frequency
information than high-frequency information, so the VGG Face-16 is used rather than the ResNet-50,
which uses detailed residual information. To fine-tune the pre-trained VGG Face-16 model [3] with the
database used in this study, the detected face regions from Section 4.2 are normalized to a 224 × 224
pixels size. The normalization was performed by bi-linear interpolation. VGG Face-16 has the same
structure as VGG Net-16 with 13 convolutional layers, 5 pooling layers, and 3 fully connected layers,
as shown in Figure 6 and Table 2. VGG Face-16 and VGG Net-16 have no structural differences, but they
were trained differently. That is, VGG Face-16 is a model trained with labeled faces in the wild [62]
and YouTube faces [63], while VGG Net-16 [64] is a model trained in the ImageNet large-scale visual
recognition competition (ILSVRC)-2014 [65]. Normally, the size of a feature map obtained from the
convolution operation in a CNN is calculated from the width or height of the filter, the width or height
of the input image (or feature map) before it enters the convolutional layer, the amount of padding in
the convolutional layer, and the number of strides [66]. After passing through the convolution layer,
the rectified linear unit (ReLU) layer [67] is next. Normally, non-overlapping pooling windows obtain
better results [68], so a filter size of 2 × 2 with a stride of 2 × 2 was used in this study. The final layer is
the fully connected layer (FCL). In the 3rd FCL, there is a softmax layer. Finally, to avoid overfitting in
the training data used during fine-tuning, dropout layers are used in the 1st and 2nd FCLs. In this
study, the dropout layer probability was set at 50%.
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Table 2. Descriptions of VGG Face-16 model.

Layer Type Number
of Filters Size of Feature Map Size of

Filter
Number

of Strides
Amount of

Padding

Image input layer 224 (height) × 224
(width) × 3 (channel)

Group 1

Conv1_1
(1st convolutional layer) 64 224 × 224 × 64 3 × 3 1 × 1 1 × 1

ReLU1_1 224 × 224 × 64

Conv1_2
(2nd convolutional layer) 64 224 × 224 × 64 3 × 3 1 × 1 1 × 1

ReLU1_2 224 × 224 × 64
MaxPool1 1 112 × 112 × 64 2 × 2 2 × 2 0 × 0

Group 2

Conv2_1
(3rd convolutional layer) 128 112 × 112 × 128 3 × 3 1 × 1 1 × 1

ReLU2_1 112 × 112 × 128

Conv2_2
(4th convolutional layer) 128 112 × 112 × 128 3 × 3 1 × 1 1 × 1

ReLU2_2 112 × 112 × 128
MaxPool2 1 56 × 56 × 128 2 × 2 2 × 2 0 × 0

Group 3

Conv3_1
(5th convolutional layer) 256 56 × 56 × 256 3 × 3 1 × 1 1 × 1

ReLU3_1 56 × 56 × 256

Conv3_2
(6th convolutional layer) 256 56 × 56 × 256 3 × 3 1 × 1 1 × 1

ReLU3_2 56 × 56 × 256

Conv3_3
(7th convolutional layer) 256 56 × 56 × 256 3 × 3 1 × 1 1 × 1

ReLU3_3 56 × 56 × 256
MaxPool3 1 28 × 28 × 256 2 × 2 2 × 2 0 × 0

Group 4

Conv4_1
(8th convolutional layer) 512 28 × 28 × 512 3 × 3 1 × 1 1 × 1

ReLU4_1 28 × 28 × 512

Conv4_2
(9th convolutional layer) 512 28 × 28 × 512 3 × 3 1 × 1 1 × 1

ReLU4_2 28 × 28 × 512

Conv4_3
(10th convolutional layer) 512 28 × 28 × 512 3 × 3 1 × 1 1 × 1

ReLU4_3 28 × 28 × 512
MaxPool4 1 14 × 14 × 512 2 × 2 2 × 2 0 × 0

Group 5

Conv5_1
(11th convolutional layer) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1

ReLU5_1 14 × 14 × 512

Conv5_2
(12th convolutional layer) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1

ReLU5_2 14 × 14 × 512

Conv5_3
(13th convolutional layer) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1

ReLU5_3 14 × 14 × 512
MaxPool5 1 7 × 7 × 512 2 × 2 2 × 2 0 × 0

Fc6 (1st fully connected layer) 4096 × 1
ReLU6 4096 × 1

Dropout6 4096 × 1

Fc7 (2nd fully connected layer) 4096 × 1
ReLU7 4096 × 1

Dropout7 4096 × 1

Fc8(3rd fully connected layer) #classes
Softmax layer #classes
Output layer #classes
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4.4. CNN for Human Recognition Using Body

The body region obtained in Section 4.2 is used as input for the ResNet-50 CNN to perform human
recognition using body data. In this research we used the ResNet-50 CNN model provided in [69].
One of the ResNet-50 model’s main features is the shortcut structure for residual learning shown in
Figure 7 [70]. ResNet has many convolutional layers, so the feature map size becomes smaller the
farther back one goes, and the vanishing or exploding gradient problem occurs as the feature map’s
feature values become smaller. Therefore, the shortcut structure shown in Figure 7 is used. Also, ResNet
forms a bottleneck structure. The reason for this is that using 1 × 1, 3 × 3, and 1 × 1 convolutions
rather than two 3 × 3 convolutions can reduce the computation time [70]. Batch normalization is
performed before activation function and after each convolution [70,71]. In this study, the pre-trained
ResNet-50 was fine-tuned with the training data. This ResNet-50 structure is shown in Figure 8 and
Table 3.
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Figure 8. The structure of ResNet-50 [70]. Conv, MaxPool, and AVG pool represent convolutional layer,
max pooling layer, and average pooling layer, respectively.

Table 3. Output size, numbers and sizes of filters, number of strides, and amount of padding in our
deep residual CNN structure (3* indicates that 3 pixels are included as padding in left, right, up,
and down positions of input image of 224 × 224 × 3, whereas 1* indicates that 1 pixel is included as
padding in left, right, up, and down positions of feature map) (2/1** indicates 2 at the 1st iteration and
1 at the 2nd iteration) (For the shortcuts in Conv2_4, 3_4, 4_4, and 5_4, the filter of 1 × 1 is used only
for the 1st iteration whereas identity mapping is used for the other iterations).

Layer Type Size of Feature Map Number
of Filters

Size of
Filters

Number
of Strides

Amount of
Padding

Number of
Iterations

Image input layer 224 (height) × 224
(width) × 3 (channel)

Conv1 112 × 112 × 64 64 7 × 7 2 3* 1

Max pool 56 × 56 × 64 1 3 × 3 2 0 1

Conv2

Conv2_1 56 × 56 × 64 64 1 × 1 1 0

3
Conv2_2 56 × 56 × 64 64 3 × 3 1 1*
Conv2_3 56 × 56 × 256 256 1 × 1 1 0

Conv2_4 (Shortcut) 56 × 56 × 256 256 1 × 1 1 0

Conv3

Conv3_1 28 × 28 × 128 128 1 × 1 2/1** 0

4
Conv3_2

(Bottleneck) 28 × 28 × 128 128 3 × 3 1 1*

Conv3_3 28 × 28 × 512 512 1 × 1 1 0
Conv3_4 (Shortcut) 28 × 28 × 512 512 1 × 1 2 0

Conv4

Conv4_1 14 × 14 × 256 256 1 × 1 2/1** 0

6
Conv4_2

(Bottleneck) 14 × 14 × 256 256 3 × 3 1 1*

Conv4_3 14 × 14 × 1024 1024 1 × 1 1 0
Conv4_4 (Shortcut) 14 × 14 × 1024 1024 1 × 1 2 0

Conv5

Conv5_1 7 × 7 × 512 512 1 × 1 2/1** 0

3
Conv5_2

(Bottleneck) 7 × 7 × 512 512 3 × 3 1 1*

Conv5_3 7 × 7 × 2048 2048 1 × 1 1 0
Conv5_4 (Shortcut) 7 × 7 × 2048 2048 1 × 1 2 0

AVG pool 1 × 1 × 2048 1 7 × 7 1 0 1

FC layer 2 1

Softmax 2 1
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4.5. Training of CNN Model by Stochastic Gradient Descent Method

The stochastic gradient descent (SGD) method was used to train the VGG Face-16 and ResNet-50
used in this paper. SGD is a type of gradient descent method, and it is expressed as [72]:

Wn+1 = Wn − γ∇F(Wn), (3)

where W represents the parameters of the CNN which must be found via training. It consists of the
product of the movement distance γ from the activation function F(x), which takes the value of the
previous parameters as input. Depending on whether the initial starting point is a negative number or
positive number, γ∇F(x) amount of movement is made in the opposite direction. Unlike the gradient
descent (GD) method, which uses all the training data to find the optimal parameters, in the SGD
method training is performed in mini-batch units (Z of Equation (4)) randomly selected from the
overall training data [72]:

Wn+1 = Wn − γ∇F(Zn, Wn). (4)

The codes of SGD method for VGG Face-16 and ResNet-50 are provided from [61,69], respectively.
The detail parameters for SGD method used in our experiments are explained in Section 5.2.

4.6. Calculation of Distance and Score-Level Fusion

In the next step, the 4096 features behind the 2nd fully connected layer in Table 2 are used as
features for face recognition, and the 2048 features behind the AVG pool in Table 3 are used as features
for human recognition using body. After this, we find each of the Euclidean distances from the features
previously extracted from the enrolled images. The two Euclidean distances are normalized through
min–max scaling, and score-level fusion is performed to find the final matching score. Here, the min
and max values for min–max scaling are found in the training data. For score-level fusion, the weighted
sum and weighted product rules are used. For score level fusion, two scores from face and human
recognition using body are normalized via min-max scaling, and optimal weights for score level fusion
were found from the training data. Based on the fused score, recognition is performed. In detail, in case
of verification (1:1 matching), if the fused score is less than the predetermined threshold, the input
image is accepted as genuine matching. If not, it is rejected as imposter matching. Here, the genuine
matching means the case that input and enrolled images are from a same class whereas the imposter
matching represents the case that input and enrolled images are from a different class. The optimal
threshold was experimentally determined with training data so as to obtain the minimum equal error
rate (EER) of recognition. There are two types of error rates such as false acceptance rate (FAR) and
false rejection rate (FRR). These two error rates have the trade-off relationship. That is, the larger the
FAR, the smaller the FRR. The EER is the error rate when FAR is same to FRR. In case of identification
(1:n matching), one enrolled image (among n images) which shows the smallest fused score with the
input is determined as that of same class to the input image.

5. Experimental Results and Analysis

5.1. Experimental Data and Environment

In this study, DFB-DB1 was created for the experiments using images of 22 people obtained by two
types of cameras to assess the performance of the proposed method in a variety of camera environments.
The first camera was a Logitech BCC 950 [58], and the camera specifications include a camera viewing
angle of 78◦, a maximum resolution of full high-definition (HD) 1080 p, and auto-focusing at 30 frames
per second (fps). The second camera was a Logitech C920 [59], and its specifications include a maximum
resolution of full HD 1080p, a viewing angle of 78◦ at 30 fps, and auto focusing. Images were taken
in an indoor environment with indoor lights on, and each camera was installed at a height of 2 m
40 cm. Before collecting DFB-DB1, we gave the sufficient explanations of our experiments to acquire
DFB-DB1 to all the participants. In addition, we obtained the informed and signed consent forms from
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all the participants before collecting DFB-DB1, and all the participants also agreed to show their faces
and bodies (without any pre-processing) in our paper. The database was divided into two categories
according to the camera. In the first database, the images were captured by the Logitech BCC 950 based
on the scenarios of one, two, and three people, including the images of two cases where the target body
was still and when it was moving. The still images were captured in four positions, and the moving
images were divided into two cases (straight-line movement and corner movement) and captured.
We requested all the participants to move naturally without noticing the situation of collecting our
DFB-DB1, and did our best for collecting DFB-DB1 in the real-world scenario. Examples of still images
and movement images are shown in Figure 9. The second database is composed of the images obtained
by the Logitech C920, and the angle of camera was similar to that for capturing the first database.
In the second database, the images were captured based on the scenario of 1 people and the case where
the target body was moving (straight-line movement) by three times, as shown in Figure 10.
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Table 4 contains a description of DFB-DB1. This study executed a two-fold cross validation scheme,
so DFB-DB1 was divided into sub-databases 1 and 2. In the first cross validation, sub-database 1 was
used for training and sub-database 2 was used for testing. In the 2nd fold cross validation, sub-database
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2 was used for training, and sub-database 1 was used for testing. Sub-databases 1 and 2 were made to
contain images of different people. Also, DFB-DB1 and the VGG Face-16 and ResNet-50 models which
were trained in this study were made public for other researchers in [53] so that impartial comparison
experiments could be performed.

The ChokePoint database is a real-world surveillance video database which was designed for
person identification and verification experiments and is provided by National ICT Australia Ltd.
(NICTA) as an open database [60]. It consists of Portals 1 and 2. Portal 1 contains images of 25 people
(19 males and 6 females), and Portal 2 contains images of 29 people (23 males and six females). Portals
1 and 2 were captured during a one-month time span. The images for each location were captured
with three cameras, and at a total of six locations. In this study, the location P2L was selected from
among the six locations as it is similar to the location in the DFB-DB images. As previously mentioned,
the P2L database contains images of a total of 29 people. In this study 28 people were selected for
two-fold cross validation. Fourteen classes were set for each of the sub-databases 1 and 2. Examples
from the ChokePoint database are shown in Figure 11, and descriptions of the ChokePoint database
are provided in Table 4.
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Table 4. Descriptions of DFB-DB1 and ChokePoint dataset.

Face Body

Sub-Dataset 1 Sub-Dataset 1 Sub-Dataset 1 Sub-Dataset 1

DFB-DB1

Number of people 11 11 11 11
Number of images 564 767 564 767

Number of augmented images
(for training) 278,300 324,038 278,300 324,038

ChokePoint
dataset

Number of people 14 14 14 14
Number of images 7565 7296 7565 7296

Number of augmented images
(for training) 378,250 364,800 378,250 364,800

In this study, the training and tests were performed in a desktop environment that included
an Intel Core i7-6700 CPU @ 3.4 GHz (four cores) with 16 GB of RAM, and NVIDIA GeForce GTX 1070
with a graphics memory of 8 GB [73] (CUDA 8.0). The Windows Caffe framework (version 1) [74],
Microsoft Visual Studio 2013 [75], and OpenCV library (ver. 2.4.10) [56] were used to implement
the algorithm.

5.2. Training of CNN Model

To resolve the problem of the CNN not receiving adequate training due to insufficient training
data, training in this study was performed using data that was increased through the augmentation
of the training data using the method described below. As shown in Table 4, data augmentation was
performed only on the training data, and only unaugmented original data was used for the testing data.

In DFB-DB1, the number of images for each class (person) is different, so when augmentation was
performed, classes with over 100 images underwent a process of 3-pixel left/right/top/bottom image
translation and cropping as well as horizontal flipping (mirroring) (refer to Figure 12), while classes
with less than 100 images underwent a process of 5-pixel left/right/top/bottom image translation and
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cropping as well as horizontal flipping. Sub-databases 1 and 2 from Table 4 were combined to obtain
around 600,000 augmented images. In the ChokePoint dataset, unlike DFB-DB1, there were many
images for each class, so image translation and cropping was performed at 2-pixel increments in the
upper-left direction and 2-pixel increments in the lower-right direction to increase the number of images
by a factor of 25. In addition, a horizontal flipping process was performed to increase the number of
images by a factor of 50. Sub-databases 1 and 2 from Table 4 were combined to obtain around 740,000
augmented images. This data augmentation method has been used many times in previous studies [76].
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Using the augmented data, fine-tuning was performed on pre-trained VGG Face-16 and ResNet-50
models using the SGD method. As explained in Section 4.5, unlike the GD method, in the SGD method,
the number of training sets divided by mini-batch size is defined as an iteration, and one epoch is
set when training is performed for all the iterations. In this study, the momentum, weight decay,
and learning rate during training were set at 0.9, 5 × 10−4, and 1 × 10−5, respectively, and the batch
size was 20. Training with DFB-DB1 was performed for 20 epochs, and training with the ChokePoint
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database was performed for 15 epochs. Because the number of images in the ChokePoint database is
larger than that in DFB-DB1 as shown in Table 4, CNN training with the ChokePoint database was
performed by the smaller number of epochs than that in DFB-DB1 considering the limitation of graphic
processing unit (GPU) memory. Figure 13 shows the training loss and accuracy during the 1st and 2nd
validations using DFB-DB1 and the ChokePoint databases. The x axis shows the number of iterations,
while the left-side of the y axis shows the loss value and the right-side of the y axis shows the training
accuracy. As seen in Figure 13, the training loss was close to 0%, and the training accuracy was close to
100% in all cases. This indicates that the VGG Face-16 and ResNet-50 models used in this study were
sufficiently trained. Experimental results showed that it took two or three days for training one model
in each fold.
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5.3. Testing of Proposed Method

5.3.1. Comparisons of Accuracy Achieved by VGG Face-16 and ResNet-50 for Face or Body Recognition

The first experiment measured the accuracy of the VGG Face-16 face recognition and the ResNet-50
body recognition. An equal error rate (EER) was found from the authentic and imposter matching
distribution, which was based on the Euclidean distance between the enrolled and input images
calculated based on the 4096 features of VGG Face-16. Also, an EER was found from the authentic
and imposter matching distribution, which was based on the Euclidean distance between the enrolled
and input images calculated based on the 2048 features of ResNet-50. Authentic matching occurs
when the enrolled and input images are images of the same class, and imposter matching occurs
when they are images of different classes. Also, an error in which an authentic match is incorrectly
rejected as an imposter match is called a false rejection error (FRR). Conversely, an error in which
an imposter match is incorrectly accepted as an authentic match is called a false acceptance error (FAR).
FRR and FAR have a trade-off relationship with each other, and the point at which the FAR and FRR
rates become the same is called the equal error rate (EER). As mentioned earlier, experiments were
performed with two-fold cross validation using the mean error obtained from testing two times.

First, to compare the recognition accuracy of each CNN model in the face and body regions,
the EER of VGG Face-16 and ResNet-50 in testing after training was measured for facial recognition and
body recognition, as shown in Tables 5 and 6, respectively. As seen in the tables, VGG Face-16 made
fewer errors in face recognition, and ResNet-50 made fewer errors in body recognition. This suggests
that ResNet-50, which has more layers and uses detailed residual information, showed better
performance in the body region because the body region is larger than the face region and detailed
texture, color, and shape data must be extracted from the clothes and body. Conversely, VGG Face-16
showed better performance than ResNet-50 in the face region because the face region is smaller than
the body region, and normally mid- or low-frequency information is used in recognition rather than
high-frequency information.

Table 5. Comparisons of EERs by VGG Face-16 and ResNet-50 for face recognition (unit: %).

VGG Face-16 ResNet-50 [40,41]

1st fold 2.03 9.11
2nd fold 2.49 17.7

Average 2.26 13.405
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Table 6. Comparisons of EERs by VGG Net-19 and ResNet-50 for body recognition (unit: %).

VGG Net-19 [42,43] ResNet-50

1st fold 27.52 8.82
2nd fold 16.21 7.88

Average 21.865 8.35

5.3.2. Comparisons of Accuracy Achieved by Single Modality-Based Method and Score-Level Fusions

In the next experiment, the accuracy of single modality-based recognition, which uses face and
human recognition using body individually, was compared with the accuracy of the score-level fusion
used in this study. For score-level fusion, the weighted sum and weighted product methods described
in Section 4.6 were compared. As seen in Tables 7 and 8, the weighted sum method achieved higher
accuracy than the weighted product method in both databases, and it achieved higher accuracy than
single modality-based recognition of the face and body without score-level fusion. That is because
the two dimensional classifier based the two scores of face and human recognition using body is used
for classification in case of score-level fusion whereas one dimensional classifier is used for single
modality-based recognition.

Figure 14 shows the receiver operating characteristic (ROC) curves [77] of the results of Tables 7
and 8. Here, the genuine acceptance rate (GAR) is defined as 100-FRR (%). As previously mentioned,
the experiments in this study were performed with two-fold cross validation, and the average graph
of the ROC curve obtained from testing two times is shown. In Figure 14, it can be seen that the
weighted sum method showed higher accuracy than the weighted product method in both databases,
and it showed higher accuracy than single modality-based recognition of the face and body without
score-level fusion.

Table 7. Comparisons of EERs by face and human recognition using body (unit: %).

Modality
DFB-DB1 ChokePoint Dataset

1st Fold 2nd Fold Average 1st fold 2nd Fold Average

Face 2.03 2.49 2.26 1.49 1.38 1.435

Body 8.82 7.88 8.35 18.44 10.67 14.56

Table 8. Comparisons of EER by score-level fusion (unit: %).

Method
DFB-DB1 ChokePoint Dataset

1st Fold 2nd Fold Average 1st Fold 2nd Fold Average

Weighted Sum 0.9 2.13 1.52 0.37 0.79 0.58

Weighted Product 0.92 2.23 1.58 1.12 0.88 1
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5.3.3. Cases of Correct Recognition, False Acceptance (FA), and False Rejection (FR)

In this section, we present cases of correct recognition, false acceptance, and false rejection as
shown in Figure 15. The image in the red box on the left side of Figure 15 is the enrolled image, and the
image on the right side is the recognition image.
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Figure 15. Cases of false acceptance (FA), false rejection (FR), and correct recognition. (a–c) cases from
Dongguk face and body database (DFB-DB1), (d–f) cases from ChokePoint dataset. (a,d) FA cases. (b,e)
FR cases. (c,f) cases of correct recognition.
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As seen in Figure 15a,d, FA occurred when the face and body shapes were similar even thought
it was an imposter. Also, as shown in Figure 15b,e, FR occurred when the face was blurred, when
a hand and mobile phone were partially included in the face region, when changes in the face pose
occurred, and when there was a big difference in the body shape between the enrolled image and
the recognition image (when legs were only included in the recognition image and changes in the
body’s pose had occurred). However, as Figure 15c demonstrates, even when there was face blurring,
the difference in body shape and size between the enrolled image and the recognition image, correct
recognition results were achieved by the method proposed in this study. As shown in the 2nd to 6th
row images of Figure 15c, the same people even with different clothes were correctly recognized by
our system. That is because the person’s whole body image is not used as a single CNN input. Rather,
the face region and the body region are separated, and each is used as a separate CNN input. Therefore,
the difference of clothes can be compensated by face recognition. In particular, if we disregard the
case shown in Figure 15f, where the recognition image is captured at a long distance at the moment
the person is coming around a corner and the face image’s resolution is very poor and there are large
changes in body shape and pose, the correct recognition results were achieved through score-level
fusion of the 2 deep CNN results that were used in this study.

5.3.4. Comparison of Recognition Accuracy by Proposed Method and Using One CNN Based on Full
Body Image, and That with and without Data Augmentation

In the next experiment, a performance comparison was made between the method proposed in
this study, in which face and body regions are separately processed by two CNNs and score-level
fusion is performed, and a method which performs recognition based on one CNN that uses the face
and body regions in a single input image. For experiments, VGG Face-16 and ResNet-50 models
were fine-tuned with our experimental images. As seen in Table 9, the method proposed in this study
achieved higher recognition accuracy. It was possible to use the method to recognize more detailed
texture, color, and shape data in each region by separating the face and body regions and using them
as input in separate CNNs.

Table 9. Comparisons of EERs by proposed method and using one CNN based on full body image (unit: %).

Using One CNN Based on Full
Body Image (VGG Face-16) [42]

Using One CNN Based on Full
Body Image (ResNet-50) Proposed Method

1st fold 12.49 4.98 0.9
2nd fold 13.59 2.65 2.13
Average 13.04 3.815 1.52

As the next experiment, we compared the accuracy of the models with and without data
augmentations. For fair comparison, same procedure of two-fold cross validation was adopted
for both methods with and without data augmentations. As shown in Table 10, the EER of recognition
with data augmentation is much lower than that without augmentation. The reason why the EER
becomes higher without data augmentation is that the number of data is insufficient for training our
deep CNN.

Table 10. Comparisons of EERs with and without data augmentation (unit: %).

With Augmentation Without Augmentation

Face Body Combined Face Body Combined

1st fold 2.03 8.82 0.9 13.56 50.32 13.53
2nd fold 2.49 7.88 2.13 12.6 17.24 10.3
Average 2.26 8.35 1.52 13.08 33.78 11.92
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As the next experiment, we included the analysis of the influence of focus assessment on the
next steps of proposed method. For that, we performed the additional experiments to measure the
recognition accuracies with and without focus assessment. For fair comparison, same procedure of
two-fold cross validation was adopted for both methods with and without focus assessment. As shown
in Table 11, our method with focus assessment shows much lower errors of recognition compared to
that without focus assessment. Without focus assessment, severely blurred images are attempted to be
recognized, which increases the errors of recognition.

Table 11. Comparisons of EERs with and without focus assessment (unit: %).

With Focus Assessment Without Focus Assessment

Face Body Combined Face Body Combined

1st fold 2.03 8.82 0.9 47.19 32.58 29.67
2nd fold 2.49 7.88 2.13 47.09 28.94 26.42
Average 2.26 8.35 1.52 47.14 30.76 28.05

5.3.5. Comparisons of Accuracies by Proposed and Previous Methods

The next experiment compared the recognition accuracy of the proposed method and that of
previous methods based on HOG [52] and multi-level local binary pattern (MLBP) + PCA [50,51].
When the accuracy of previous methods was assessed, the methods were divided into two types
according to the way of determining enrolled images, and the experiments were performed.

The first type determines enrolled images by assuming that the image with the smallest mean
value for the image pixel difference with different images in the same class is the geometric center of
the feature space. The second type determines enrolled images by assuming that the image with the
smallest mean value for the feature difference with different images in the same class is the geometric
center of the feature space. For fair comparison, same procedure of two-fold cross validation was
adopted for all the experiments. As shown in Table 12 and Figure 16, the other methods all have lower
recognition accuracy than the proposed method.

Table 12. Comparison of EERs by proposed and previous methods (unit: %).

Method
DFB-DB1 ChokePoint Dataset

1st Fold 2nd Fold Average 1st Fold 2nd Fold Average

HOG [52]

Geometric center by
pixel difference 40.13 35.67 37.9 45.98 42.19 44.09

Geometric center by
feature difference 38.09 44.14 41.12 41.84 41.47 41.66

MLBP + PCA [50,51]

Geometric center by
pixel difference 31.72 30.62 31.17 41.92 39.9 40.91

Geometric center by
feature difference 29.38 27.84 28.61 37.75 42.38 40.07

Proposed method 0.9 2.13 1.52 0.37 0.79 0.58
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Figure 16. ROC curves by proposed and previous methods. With (a) Dongguk face and body database
(DFB-DB1) and (b) ChokePoint datasets. In (a,b), multi-level local binary pattern (MLBP) + principal
component analysis (PCA) (1) and MLBP + PCA (2) mean the methods of MLBP + PCA based on
geometric center by feature difference and pixel difference of Table 12, respectively. In addition,
histogram of oriented gradient (HOG) (1) and HOG (2) mean the methods of HOG based on geometric
center by feature difference and pixel difference of Table 12, respectively. GAR, FAR, and EER mean
genuine acceptance rate, false acceptance rate, and equal error rate, respectively.
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The next experiment measured the cumulative match characteristic (CMC) curve to evaluate
identification accuracy. Figure 17 shows the CMC curves. The horizontal axis shows the rank,
and the vertical axis shows the accuracy (GAR) by rank. As shown in Table 4, 11 people’s data
are included in both sub-datasets 1 and 2 for DFB-DB1, and the maximum rank becomes 11 as shown
in Figure 17a. In addition, as shown in Table 4, 14 people’s data are included in both sub-datasets
1 and 2 for ChokePoint datasets, and the maximum rank becomes 14 as shown in Figure 17b.
As an example, the meaning of a 90% GAR at rank 10 is that when the enrolled image with the
smallest matching distance to the input image is selected, the case where the selected image is included
in the 10 candidates based on matching distance rank is considered a genuine acceptance case, and the
accuracy of this is 90%.
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Figure 17. CMC curves by proposed and previous methods. With (a) Dongguk face and body database
(DFB-DB1) and (b) ChokePoint dataset. In (a,b), multi-level local binary pattern (MLBP) + principal
component analysis (PCA) (1) and MLBP + PCA (2) mean the methods of MLBP + PCA based on
geometric center by feature difference and pixel difference of Table 12, respectively. In addition,
histogram of oriented gradient (HOG) (1) and HOG (2) mean the methods of HOG based on geometric
center by feature difference and pixel difference of Table 12, respectively.

As shown in Table 4, there were 11 people in the DFB-DB1 database’s testing sub-database and
14 people in the ChokePoint database’s testing sub-database, so the horizontal axes in Figure 17a,b
show 11 and 14. As seen in Figure 17, the accuracy of the proposed method was higher than that of
previous methods in terms of the CMC curves.

5.3.6. Discussion

Gait recognition with continuous images can show better accuracy than our single-image based
approach combining face and body recognition. However, in most previous researches for gait
recognition with continuous images [78–85], the accurate region and boundary of human body
including the legs should be segmented by correct image binarization in advance. This is because
GEI-based methods have been widely used in gait recognition, and they are based on the accumulated
binarized image of human body in successive images. For that, the body geometric centers of successive
images should be accurately aligned in order to obtain the correct movement information of human gait.
If the segmented region of human body is not accurate, the calculated geometric center is not correct,
either, which causes the extraction of incorrect movement information of human gait and consequent
recognition error increases. In addition, the noise regions connected to the segmented human legs
can causes the decrease of recognition accuracy. However, the accurate segmentation of human body
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including legs is difficult task requiring much processing time in the multiple and continuous images
by visible light camera of surveillance environments due to the various environmental factors such as
the variations of illuminations and shadows, etc. In addition, it is often the case that the leg parts of
human (which are essential information for conventional gait recognition [78–85]) are not visible in
our experimental images as shown in Figures 9–11 and 15.

However, we use the roughly detected region of body in a single image as shown in Figure 2d
for recognition without the accurate segmentation of human body region and the alignment of body
geometric center. It reduces the processing complexity and the performance of our system can be
less affected by the detection accuracy of body regions. Even in the case that legs are not visible in
the captured image, our method can correctly recognize human as shown in the 1st, 4th, 5th, 6th row
images of Figure 15c and the 1st and 6th row images of Figure 15f.

As shown in Table 13, we compared the processing speed by our method with that by gait-based
method [78]. Experimental platform is explained at the end of Section 5.1. As explained, the accurate
segmentation of human body is important. However, experimental result showed that the segmentation
performance based on background subtraction was bad with our experimental database due to the
various factors of illumination variation and shadow, etc. Therefore, we adopted the deep learning-
based segmentation method [86] for body segmentation, which was fine-tuned with our experimental
database. As shown in Table 13, the processing speed per an image by our method is much faster than
that by previous method.

Table 13. Comparison of processing time per an image by proposed and previous method (unit: ms).

Method Body Segmentation & Alignment Matching Based on Radon
Transform and PCA Total

Gait-based method [78] 752 145 897

Method Face & body detection Matching based on two CNNs Total

Proposed method 98 327 425

In future, we are planning a study to improve recognition performance by automatically
recreating the parts of the body region that cannot be seen in the images using a generative
adversarial network (GAN). In addition, we plan to improve recognition performance by using
super-resolution reconstruction to restore long-distance low-resolution images and make them into
high-resolution images.

6. Conclusions

This paper proposed a multimodal human recognition method that uses both the face and body
regions in indoor surveillance camera environments, and is based on deep CNNs (VGG Face-16
CNN and ResNet-50 CNN) by score-level fusion of Weighted Sum rule. Unlike previous methods,
the proposed method recognizes the face and body regions in a single image separately and combines
them to perform recognition in cases where the subject is approaching or moving further away from the
camera, which occur frequently in an indoor surveillance camera environment (particularly hallways).
In addition, whole body images of people are not used as input for a CNN. Instead, the face and body
regions are separated and used as input for separate CNNs. Thus, the system can be used to recognize
more detailed texture, color, and shape data for each region, and consequently, it can achieve better
recognition accuracy than methods that use a whole body image as input for a single CNN. Unlike
previous methods that focus only on cases where the entire body is included in the input images,
the proposed method performs recognition on images where part of the body cannot be seen in the
input images. To make impartial comparison experiments possible, we have publicly released [53] the
VGG Face-16 and ResNet-50 CNN models which were trained in this study, along with the DFB-DB1
database which was custom made using two kinds of cameras to evaluate the performance of the
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proposed method in a variety of camera environments. In performance evaluations based on EER, ROC
curves and CMC curves, it was confirmed that the proposed method (the EERs of 1.52% for DFB-DB1
and 0.58% for the ChokePoint dataset, and the GARs of rank1 of about 99.3% for DFB-DB1 and 99.95%
for the ChokePoint dataset) is superior in comparison to face or body single modality-based recognition
and other methods used in previous studies. However, FA and FR occurred in cases in which there
was a big shape change between the enrolled images and the recognition image (particularly when
part of the body could not be seen), as well as cases in which the image was captured at a long
distance and had very poor resolution and cases in which there were large changes in the person’s
pose between images.
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