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Antibody production in response to thymus-dependent antigens results from a complex 
series of cellular interactions in which antibody-forming cell precursors (bone marrow 
derived or B lymphocytes) proliferate and differentiate to synthesize specific antibody. 
The regulation of this response involves cellular and humoral interactions in which 
thymus-derived lymphocytes (T cells) act as "helpers" as well as "suppressors" in several 
different systems (1-8). The nature of the regulatory stimuli provided by T cells has not 
been established. There is evidence that T cells produce mediators that regulate B-cell 
responses (reviewed in reference 9). It has been suggested that immunoglobulin-like 
molecules or products related to the major histocompatibility locus are the likely candi- 
dates for T-cell regulatory factors (9-10). Immunoglobulin and products of the major 
histocompatability locus have been shown to have both facilitatory (11-22) and suppres- 
sive (23-27) as well as antigen-specific (11-17, 24-27) and nonspecific (15-24) activities on 
B-cell responses in various systems. 

In the  preceding paper  (28) we describe an in vitro cul ture  sys tem based on 
tha t  originally proposed by Kont ian in  and Fe ldmann  and Erb  and Fe ldmann  
(29-32) using purified thymocytes  and per i toneal  exudate  macrophages  cul tured 
under  conditions selected to genera te  T-helper  cells. The present  s tudy is an 
examina t ion  of supe rna tan t  factors derived from in vitro genera ted  T-helper  cell 
cultures.  The superna tes  from such cul tures  are active in enhanc ing  B-cell anti- 
hapten  responses when assayed in vi tro on hapten-pr imed spleen cell cultures.  
The da ta  indicate tha t  the active moiety is a nondialyzable,  t rypsin-sensi t ive 
product(s) which is removed by preabsorpt ion with al loant isera  bu t  not anti-  
immunoglobul in  sera. Superna tes  display both antigen-specific and nonspecific 
propert ies  which can be dis t inguished by supe rna tan t  dosage, an t igen  require-  
ments ,  and the  need for splenic adheren t  accessory cell involvement .  

M a t e r i a l s  a n d  M e t h o d s  
The mice strains, antigens, cell preparations, and culture conditions for the in vitro reduction 

and assay of T-helper cells were described m the previous paper (28). Anti-Thy-l.2 sera and 
complement treatment and macrophage depletion of spleen cell preparations were performed as 
previously described (28). 

* The research descrlbed in this report involved animals malntamed in ammal care facilities 
fully accredlted by the Amerlcan Association for Accreditation of Laboratory Animal Care. Use of 
trade names m for identification only and does not constitute endorsement by the Public Health 
Service or by the U. S. Department of Health, Educatlon, and Welfare. 
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Harvest of Supernates. Thymocyte-macrophage cultures primed with carrier protein under 
conditions optimal for the generation of T-helper cells (28) were harvested after 4 days. The cells 
were separated by centrlfugatlon at 300 g for 7 min and assayed for helper cell activity The 
supernate was centrifuged at 900 g for 10 mm and 10,000 g for 20 mln, passed through a 0.22 ~m 
filter (Milhpore Corp,  Bedford, Mass.), and stored at -20°C until used. 

Assay ofSupernatant Actw~ty. Supernates were assayed for their capacity to enhance the anti- 
dmltrophenyl (DNP) ~ plaque-forming response (to DNP-protem conjugates) of cultured spleen 
cells from mice primed with 25 ~g DNP-Ficoll 3-4 mo previously. Supernatant culture fluid m 
doses indicated, culture medium, 1 5 × 107 spleen cells, and antigen (1 ~g DNP-keyhole limpet 
hemocyanin [KLH] or 5 ~g DNP-fowl gamma globulin [F~,G]) were added in that order and 
cultured in 1.0 ml vol in Marbrook-Dmner chambers. After 4 days, the cultures were harvested, 
and the specific anti-DNP-PFC response was assayed with the hapten inhibition hemolytic plaque 
techmque described in the previous paper (28). 

Immunoglobuhns. BALB/c mice carrying the plasmacytomas TEPC 183 (IgMK), MOPC 104E 
(IgMk), and HOPC1 (IgG-T2a~) were obtained from Litton Bmnetics, Kensington, Md., through the 
courtesy of Dr Michael Potter (Natmnal Institutes of Health). IgM preparations were purified by 
Sephadex G-200 chromatography of the sera and subsequent preparative electrophoresis of the 
void volume peak. Preparative electrophorems was performed with a column electrophoret:c 
apparatus (Uniphor 9300, LKB Instruments, Inc., Rockwlle, Md.) containing a Sephadex G-25 
column bed equilibrated with 0 1 M Tris buffer, pH 8.6. The IgG myeloma protein was purified by 
Sephadex G-200 chromatography of a 35% saturated ammonium sulfate precipitate of the sera and 
subsequent DEAE column chromatography The 7s globulin fractmn of normal mouse sera was 
obtained by Sephadex G-200 chromatography. For absorption of antisera, these preparatmns were 
conjugated to cyanogen bromide-activated Sepharose 4B (33) 

Ant~sera Antisera to purified mouse myeloma proteins were produced in goats. 10 mg of 
protein m complete Freund's adjuvant were given subcutaneously followed by another 10 mg in 
saline 4 wk later The goats were bled 10 days after the second inoculation. Injectmns were 
repeated as necessary. 

Antisera to IgM (TEPC 183 IgMK and MOPC 104E IgMk) were rendered ~-cham specific by 
absorption with Sepharose 4B-conjugated preparations of alpha-2 macroglobulin (obtained during 
the preparative electrophoresis used m the purification of the IgM antigens), IgGk (HOPC1), 7s 
globulins, and finally at 4°C with mouse thymocytes (two thymuses per ml). Goat anti-TEPC 183 
IgMK serum was rendered specific for ~K-determinants by the above procedure except that the 7s 
globulin absorption was omitted 

Antmera to IgG~, (HOPC1) were rendered ~/-chain specific by absorptmn with Sepharose 4B- 
conjugated preparations ofTEPC IgMK, MOPC IgMk, and vo:d volume materml from Sephadex G- 
200 chromatography of normal mouse sera, as well as by absorption with mouse thymocytes. 

A polyvalent anti-mouse lmmunoglobulin serum was prepared by poohng antmera to IgM and 
IgG and absorbing with alpha-2 macroglobuhn and mouse thymocytes The specificity and 
absorptions of the anti-immunoglobulin sera were checked by immunoelectrophorems and double 
diffusion m agar. 

Preparatmns of purified antibody to lmmunoglobulins were obtained by absorptmn of the 
specific antisera to columns containing the appropriate lmmunoglobulin conjugated to Sepharose 
4B Absorption was done at 4°C and followed by washing the columns with 0.2 M borate 0.15 M 
saline buffer pH 8.0. The absorbed antibodies were eluted with 3 M NaSCN (34). The material 
eluted In 3 M NaSCN was dialyzed against borate saline buffer, concentrated, and conjugated to 
cyanogen bromide-activated Sepharose 4B (33). 

Alloantisera were produced against BALB/c (H-2 ~) and CBA/J (H-2 k) mine by reciprocal 
lmmumzation. CBA anti-BALB/c (anti-H-2 ~) and BALB/c anti-CBA (anti-H-2 ~) were produced by 
lmmumzmg the mice mtraperitoneally with six biweekly rejections of 107 pooled thymus and 
spleen cells from 3- to 5-wk-old mice Mice were bled 10-12 days after the last injection Globuhn 

Abbrevlatmns used zn th~s paper" AEF, allogenelc effect factor, ATC S/N, supernatant culture 
media derived from in vitro activated thymus-derived cells; DNP, dlnitrophenyl; F,/G, fowl 
gamma globulin; KLH, keyhole hmpet hemocyanln; PBS, phosphate buffered saline; PFC, plaque- 
forming cell 
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fractions of the two alloantisera were precipitated in 45% saturated ammonmm sulfate, dialyzed 
against borate-saline buffer, and conjugated to cyanogen bromide-activated Sepharose 4B. 

Absorptmn of Supernatant Fluid with Sepharose 4B Conjugates The following Sepharose 4B- 
conjugated proteins, and the volume of Sepharose 4B (7-9 mg of protein conjugated to each ml of 
Sepharose 4B) were used to absorb 8 ml of supernate: KLH, 4 ml; FTG, 4 ml; polyvalent anti-mouse 
immunoglobuhn antibodies, 12 ml; anti-mouse ~K-antlbodies, 14 ml; anti-mouse ~-chain antibod- 
ies, 10 ml; anti-mouse T-chain antibodies, 10 ml; CBA anti-BALB/c globulin, 22 ml; BALB c anti- 
CBA globulin, 21 ml. Prelmmune normal goat globuhn, CBA, and BALB/c mouse globuhn 
fractions conjugated to Sepharose 4B were prepared as controls. 

Sepharoso preparatmns in 0.01 M PO~, 0.15 M NaC1, pH 7.2, (phosphate-buffered saline, PBS), 
were packed into vertical 10- or 25-ml pipettes fitted with tubing and a glass wool plug. Superna- 
tant flmd was absorbed to the varmus Seph_arose 4B columns by slow passage (at least 2 h) at 4°C 
through the column and eluted with PBS. Supernatant fluid was filtered and assayed immedi- 
ately. Efficacy of immunoglobuhn absorption was monitored by adding trace amounts of the 
appropriate ~SI-labeled immunoglobulin to the supernate. After absorption, columns were washed 
with 3 M NaSCN and then washed and stored m PBS containing 0.1% Na azide. Before use they 
were washed extensively with sterile PBS. All absorption experiments were performed three times 
(except the anti-T-chain absorptmn which was performed once). 

Trypsin and Permdate Treatment of Supernatant Fluid. Trypsin (2 x crystalhzed, Type III 
from bovine pancreas) (Sigma Chemical Co., St. Louis, Mo.) msolubllized on Sepharose 4B (33) 
was reacted with two parts by volume of supernate m closed containers, pH 7.4-7.8, at 37°C for 16 h 
on a rocking platform Control supernatant fluid was incubated in parallel with unconjugated 
Sepharose 4B. Under these conditions ~25I-hbeled protein (IgMK) added to the digestion mixture 
was reduced to a 30-52% preclpitable material in 10% trmhloroacetic acid, whereas the control 
incubated preparatmn was unaffected (90-95% precipitable). Trypsm-Sepharose conjugates were 
used once and discarded. 

Periodate treatment of the supernatant flmd was performed by dialyms against 0.01 M sodium 
periodate in PBS, pH 7.2, (8 ml supernato per liter of dialysis fluid) in the dark at 40C for 18 h (35). 
Permdate-treated supernato was then dialyzed against several changes of PBS, filtered, and the 
treated supernate assayed. Control supernate was dmlyzed against PBS m parallel. 

R e s u l t s  

Capacity of Supernatant Culture Fluid Derived from Helper Cell Cultures to 
Enhance the Anti-hapten Responses of Spleen Cell Cultures to Hapten Carrier 
Conjugates. Superna tan t  fluid, harves ted  after  4 days from thymocyte-macro-  
phage cultures pr imed with carr ier  under  conditions optimal for genera t ing  
helper cells, is active in enhanc ing  the ant i -DNP-plaque-forming cell (PFC) 
response of cul tured spleen cells from hapten-pr imed mice. This is shown in Fig. 
1. Several points emerge from this  analysis.  The dose of supernate  used influ- 
ences the ant i -hapten  response obtained. The response to a given hapten-carr ier  
conjugate is greates t  and optimal at  lower doses o f supe rna t an t  fluid from helper 
cell cul tures which had been primed with the homologous carrier. At  h igher  
supe rna tan t  doses, significant enhancement  of DNP-PFC responses is seen in 
the absence of hapten-carr ier  conjugates. This nonspecific enhancemen t  is even 
more pronounced in the presence of hap ten  coupled to a noncross-react ing 
carrier,  tha t  is, a conjugate not used in genera t ing  the supernate.  

The enhancement  of PFC responses seen at  h igher  superna tan t  doses was not 
confined to DNP-specific PFC responses. The number  of PFC's  formed agains t  
TNP-SRBC in the presence of 5 x 10 -4 M DNP-L-lysine, and the number  of 
PFC's  formed agains t  unconjugated SRBC were also increased in cul tures with 
the grea ter  doses of supernate.  Superna tan t  doses above 0.5 ml in a 1.0 ml 
culture resulted in lower and variable cell recovery from the cultures,  and, 
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FIG. 1. Enhancement  of splemc DNP-PFC responses by supernates  derived from thymo- 
cyte-macrophage cultures. Supernatant fluids were added to spleen cell cultures m the 
doses indicated together with hapten-protem conjugates; DNP-KLH, (Q---O); DNP-FyG, 
(A--A); or without additzonal antigen, (O--D). Results indicate the DNP-PFC response - 
SD of triplicate cultures recewmg supernate derwed from thymocyte-macrophage cultures 
primed with e:ther (A) KLH (ATCK~.HS/N), (B) F~/G (ATCFyG S/N), or (C) no priming carrier 
(ATCco~ S/N). 

therefore, only experiments where cell culture recoveries were consistent are 
reported. 

The Effect of Helper Cell Culture Supernates on Macrophage-Depleted and T- 
Depleted Spleen Cell Cultures. The activity of supernates derived from thymo- 
cyte-macrophage cultures is ultimately expressed as an enhanced anti-DNP- 
PFC response by cultured, hapten-primed spleen cells. To determine whether 
the active factor(s) acted directly on B cells or require additional splenic T-cell or 
macrophage interaction, we tested supernates on macrophage-d~pleted or T- 
depleted spleen cell cultures. The results are shown in Figs. 2 and 3. Efficacy of 
T-cell depletion by anti-Thy-l.2 serum and complement t reatment or adherent 
cell depletion by Sephadex G-10 column incubation was assessed by membrane 
marker studies and by the primary in vitro response of the treated cultures to 
SRBC, a response known to require T cells (36) and macrophages (37). 

The response of spleen cell cultures to the supernate is not effected by 
depletion of T cells (Fig. 2). In fact, in several experiments, the response was 
greater than expected from the increased number of potentially responsive B 
cells in these cultures (as determined either by the response to DNP-Ficoll or by 
the calculated enrichment due to depletion of T cells by anti-Thy-l.2 sera and 
complement treatment). 

Macrophage depletion of recipient spleen cell cultures caused them to have a 
different response to supernates than normal spleen cell cultures (Fig. 3). The 
nonspecific enhancement of anti-DNP-PFC responses seen at higher superna- 
tant  doses is maintained in macrophage-depleted spleen cell cultures. The 
enhancement in the carrier-specific response usually seen in normal spleen cell 
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FIa. 2. Supernate stimulation of anti-DNP-PFC responses in T-cell-depleted spleen cell 
cultures. Super"natant culture fluid derived from T-helper cell cultures primed with KLH 
(ATCKL. S/N) was added to (A) normal mouse serum and complement-treated spleen cell 
cultures, or (B) anti-Thy-l.2 serum and complement-treated spleen cell cultures with DNP- 
KLH, (O--Q); DNP-F7G, (/x--A); or without hapten-carr~er conjugate, (n--O).  Results 
indicate the direct DNP-PFC response -+ SD of triplicate cultures. 

cultures at lower supernatant doses cannot be demonstrated in macrophage- 
depleted spleen cell cultures. 

Absorption of Carrier-Specific Supernatant Factor with Insolubilized Car- 
rier. Helper cell cultures generate an apparent carrier-specific supernatant 
activity. When assayed at an appropriate dose, supernatant culture fluid stimu- 
lates optimal enhancement of splenic anti-DNP-PFC responses to DNP conju- 
gated to the same carrier used to prime the helper cell culture (Fig. 1). To test 
whether this activity has binding specificity as well as functional specificity, we 
absorbed supernatant fluid with carrier protein conjugated to Sepharose 4B 
before we assayed the supernate. The results are shown in Fig. 4. Absorption of 
the supernatant fluid with the appropriate carrier abolishes the carrier-specific 
enhancement of anti-DNP-PFC responses usually seen at the optimal superna- 
tant dose. The nonspecific enhancement demonstrable when higher dosages of 
supernatant fluid are assayed is not affected by this absorption. 

Absorption of Supernate with Anti-Immunoglobulin Antibodies and Alloan- 
tisera. Helper cell culture supernates were absorbed with a variety of anti- 
mouse immunoglobulin antibodies or the globulin fraction of alloantisera cou- 
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Fro. 3 Supernate enhancement of anti-DNP-PFC responses in macrophage-depleted 
spleen cell cultures. Supernatant culture fluid derived from T-helper cell cultures premed 
with KLH (ATCKL, S/N) was added to (A) normal spleen cell cultures or (B) cultures 
depleted of macrophages with DNP-KLH, (0--0); DNP-F,/G, (A--A); or without hapten- 
carrier conjugate, (D--El). Results indicate the direct DNP-PFC response _+ SD of trlplicate 
cultures 

pled to Sepharose 4B before they were tested on spleen cell cultures. Absorption 
of supernatant fluid with anti-mouse immunoglobulin does not affect the 
stimulatory activity of such supernates on splenic anti-hapten responses. Fig. 5 
shows the results of absorption of supernates from KLH-primed, thymocyte- 
macrophage cultures with polyvalent anti-mouse immunoglubulin antibodies 
(anti-~,7,K,k-reactivity). Similar results were obtained with anti-/~-chain, anti- 
~K-chain, and anti~-chain-specific antibodies. 

Absorption of helper cell culture supernates with the globulin fraction of 
alloantisera completely removed the capacity of the supernate to stimulate 
carrier-specific and nonspecific enhancement of splenic anti-DNP-PFC re- 
sponses (Fig. 6). In these experiments, supernates derived from KLH-primed, 
thymocyte-macrophage cultures were generated using either the (BALB/c × 
B10D2) F~ hybrid (H-2 d) cells or CBA (H-2 k) cells. Before assay, each supernate 
was divided and absorbed with the globulin fraction of BALB/c anti-CBA sera 
(anti-H-2 k) or CBA anti-BALB/c sera (anti-H-2d). Assay cultures contained 
hapten-primed spleen cells of the same strain from which the supernate was 
derived. Insolubilized alloantisera directed toward the strains from which the 
supernates were derived removed the stimulatory capacity of the supernates, 
whereas the reciprocal antisera (or preimmune sera used as the control in other 
experiments) had no effect on the supernatant activity. 

Treatment of Supernates with Trypsin, Periodate, and Heat. Table I shows 
the effect of various t reatment  regimens on the activity of supernates. In these 
experiments, untreated control supernates were exposed to identical manipula- 
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FIG 4. Absorption of carrier-specific activity with  carrier. Supernates  derived from thy- 
mocyte-macrophage cultures primed with KLH (charts  A and B) or FTG (charts C and D) 
were tested at  the indicated doses for enhancement  of splemc anti-DNP-PFC responses after 
absorption with FTG (charts  A and C) or KLH (charts B and D) conjugated to Sepharose 4B. 
Supernates  were added to spleen cell cultures with DNP-KLH, (@--@), DNP-FTG, (A--A),  
or without  additmnal  ant igen,  ([3--[:]). Results indicate the direct anti-DNP-PFC response 
-+ SD of t r iphcate  cultures. 
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FIG. 5. Absorption of supernate with anti-mouse lmmunoglobulin. Supernatant culture 
fired derived from T-helper cell cultures primed with KLH (ATCKLHS/N) was tested for 
enhancement of splenic anti-DNP-PFC responses after absorption with (A) prmmmune 
normal goat globuhn, or (B) purified goat anb-mouse immunoglobuhn conjugated to 
Sepharose 4B. Supernate was added at the indicated doses with DNP-KLH, (~---O); DNP- 
FTG, (Z~--Z~); or without additional antigen, ([:]--F~). Results indicate the direct anb-DNP- 
PFC response _+ SD of triplicate cultures. 

tion, buffer, dilution, and dialysis conditions as the treated supernates, and both 
were assayed in graded doses on spleen cell cultures similar to the way experi- 
ments depicted in Figs. 4-6 were done. For simplicity, the results are tabulated 
as the percent inhibition of supernatant activity resulting from the treatment. 
This was calculated at the dose of supernate optimal for demonstrating carrier- 
specific stimulation as well as the dose for demonstrating nonspecific stimula- 
tion of splenic anti-DNP-PFC responses. As can be seen in Table I, trypsin 
treatment, periodate oxidation, and heating at 56°(3 for 1 h destroyed the 
stimulatory capacity of supernates. 

To ensure that  the inhibition seen was due to alterations in the active factor(s) 
in the supernate rather than due to the generation of inhibitory substances in 
the supernate by the treatment regimens, we set up a third group of cultures 
and added equal amounts of treated and untreated supernate to the same spleen 
cell cultures. Trypsin-treated and periodate-treated supernates did not interfere 
with the enhancing capacity of untreated supernates when both were present in 
the same culture. However, at low dosages, supernates that were heated at 56°C 
minimally depressed the stimulatory properties of untreated supernates. At 
high dosages (0.5 ml) the heated supernate markedly inhibited the expected 
response of control supernates. In addition, heated supernate markedly sup- 
pressed the response of spleen cell cultures to DNP-Ficoll and the primary anti- 
SRBC response without a significant effect on cell culture recovery or viability. 
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F,G. 6. Absorption of helper cell culture supernates  with  alloantlsera.  Supernates  from 
helper cell cultures primed with KLH (ATC~LM S/N) were generated us ing (BALB/c x 
B10D2) F1 hybrid cells (charts  A and B) or CBA cells (charts C and D). Before assay in 
culture containing spleen cells from the  same strain,  supernates were absorbed with 
Sepharose-conjugated globulin fractions of BALB/c anti-CBA serum (charts A and C) or 
CBA antl-BALB/c serum (charts  B and D). Cultures contained DNP-KLH, (Q--O);  DNP- 
FyG, (A--A);  or no added antigen,  (E3--rn). Results indicate the  direct anti-DNP-PFC 
response ± SD of tr iplicate cultures. 

~ 100[ D absorbed S/N 

T 
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Discuss ion 
With a culture system originally described by Feldmann and coworkers (29- 

32), we have attempted to study T-helper cells derived from in vitro culture. In 
the modification of this system, purified thymocyte populations cultured with 
macrophages (in the absence of B cells) can be primed with soluble carrier 
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TABLE I 
Inhib~twn of T-Helper Cell Culture Supernate Actw~ty by Various 

Treatments 

Percent inhibition of supernate capacity to stimulate:$ 
Treatment* 

Carrier-specific responses Nonspeclfic responses 

Trypsin 99 (96-102) (n = 3)§ 99 (93-104) (n = 3) 
Pemodate 97 (90-105) (n = 3) 84 (67-93) (n = 3) 
56°C for 1 h 94 (84-103) (n = 3) 106 (101-112) (n = 3)11 

* See text 
The increment (hRx S/N) in the anti-DNP-PFC responses in cultures with 
pretreated supernate above the responses in otherwise identical cultures 
without supernate were compared to the increment (hS/N) found with un- 
treated control supernates and expressed as percent inhibition: ([AS/N] - 
[ h Rx S/N])/([ A S/N]) x 100. These inhibitions were calculated for conditions 
(supernate dose, antigens) optimal for demonstrating carrmr-specific and 
nonspecific stimulation 

§ Average inhibition in percent, (range), n =number  of separate experiments 
Jl See text. 

protein under conditions selected to generate helper cells (28). T-helper cells or 
their products are assayed in cultures of spleen cells from mice primed with the 
T-independent antigen DNP-Ficoll. This antigen would be expected to prime the 
spleen cells for an enhanced IgM and IgG anti-DNP-PFC response to DNP- 
protein conjugates under the influence of carrier-specific T-helper cells (28, 38). 

The present results describe the activity of supernatant factors derived from 
in vitro primed T-helper cell cultures. Supernates stimulate both carrier-specific 
and nonspecific enhancement of splenic anti-DNP-PFC responses to DNP-car- 
rier conjugates (Fig. 1). The carrier-specific activity can be absorbed from the 
supernate with insolubilized carrier protein (Fig. 4) and is further distinguished 
from the nonspecific activity by dosage optimum (Fig. 1) and the requirement 
for macrophages for full expression of its activity (Fig. 3). Both activities are 
sensitive to trypsin and periodate treatment (Table I) and are removed by 
alloantisera (Fig. 6) but not by a variety of anti-mouse immunoglobulin sera 
(Fig. 5). The active factors derived from this system appear to be glycoproteins 
antigenically related to alloantigens. In view of the number of T-cell mediators 
reported to play some role in the antibody response, it is of interest to compare 
the activity described here to factors described by others. 

Despite the fact that several reliable in vivo methods exist for generating and 
assaying T-helper cells with a high degree of antigen specificity (1-3, 12-14), no 
integrated concept of the molecular events involved has emerged. This is par- 
tially attributable to the complexity involved in the generation and assay of T- 
helper cells. While there is ample evidence that T cells produce mediators that 
regulate B-cell responses (9), differential responses to mediator dose, timing, 
type of response generated (IgG or IgM, polyclonal or antigen specific), antigen 
requirements, and requirements for accessory cells contribute to the complexity 
and difficulty in interpreting various in vitro and in vivo systems. Both antigen- 
specific and nonspecific factors, which can be stimulatory or inhibitory, have 
been found in different systems by a number of investigators using antigen- 
primed or allogeneically stimulated T cells as a source of mediators (9-27). 
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For example, both Feldmann and Taussig and their respective co-workers 
have examined antigen-specific factors derived from "educated" T cells (spleen 
cells from irradiated mice injected with thymocytes and antigen). Assaying the 
factor in vitro, Feldmann et al. (11) have obtained evidence that a special class of 
antibody (IgT) is produced which specifically concentrates antigen at the surface 
of a third cell, the macrophage, and presents it as a multideterminant array to 
the surface of B cells. Taussig and co-workers, assaying mediators from these 
cells in vivo, have found an antigen-specific T-replacing factor antigenically 
related to products of the major histocompatibility locus, i.e., Ia antigens coded 
for in the K-end of the H-2 locus (13, 14). Our carrier-specific factor, while 
resembling Feldmann's factor in dose response (Fig. 1), antigen-binding proper- 
ties (Fig. 4), and the macrophage requirement for full functional activity (Fig. 
3), is not an immunoglobulin (Fig. 5), but does contain alloantigens (Fig. 6). Our 
factor then is an apparent in vitro assayed correlate to the factor described by 
Taussig and Munro. 

It has been suggested that Taussig and Munros' assay system, a 12- to 14-day 
response in the B mouse, contains residual T cells. Also on the basis of Feld- 
mann's data and that of other groups that have implicated a role for syngeneic 
macrophages or their products in the induction ofT-cell responses, these alloan- 
tigen-related, antigen-specific factors may actually be interpreted as macro- 
phage derived; they act primarily on T cells and secondarily on B cells (31). 

Several lines of evidence suggest that the factors described in this communica- 
tion are derived from T cells and do not require additional T-cell interaction. We 
have shown in the companion paper that T-helper cells are generated in vitro 
only with the appropriate combination of antigen, thymocytes, and macro- 
phages, and that T-cell proliferation in vitro is required for the activation of 
functional T-helper cells (28). Parallel studies with supernates reveal that active 
supernates are generated only in cultures containing proliferating T cells. (This 
data alone does not rule out the generation of a macrophage factor dependent on 
T cells). Furthermore, supernates are proportionately more active on spleen cell 
cultures which have been depleted of T cells by anti-Thy-l.2 serum and comple- 
ment treatment (Fig. 2). This treatment is sufficient to abrogate T-cell involve- 
ment in the primary in vitro response to SRBC and, unless the thresholds of 
depletion required are different, would be expected to abrogate an antigen- 
alloantigen induction of T cells in vitro (31). Finally, the 4-day culture period is 
optimal for demonstrating supernatant activity in spleen cell cultures; however, 
according to our data and that of Feldmann (28, 32), this 4-day period would be 
too short for both macrophage induction of T-helper cells and the stimulation of 
an optimal B-cell response to soluble antigen in vitro. While we cannot rule out 
a minor role for the alloantigen-related factors described here acting in the 
induction of T cells (helper or suppressor), a major mechanism of alloantigen- 
related T-cell products in this system is in the stimulation of B cells directly 
(nonspecific enhancement) or through adherent cells (carrier-specific enhance- 
ment) (Figs. 2 and 3). 

The presence of B cells in educated T-cell preparations has particular rele- 
vance in the interpretation of data implicating immunoglobulin as the coopera- 
tive T-cell factor. It has been shown that T cells under a variety of conditions can 
bind cytophilic immunoglobulin (39-42), and that T-cells with cytophilic anti- 
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body can function to stimulate specific B-cell responses (10, 43). While there is 
no doubt that  immunoglobulin perhaps derived from T cells can have a regula- 
tory role (9-12, 25), Feldmann and Tada, who have described T-cell-derived 
regulatory factors related to the immunoglobulins, have pointed out that  there 
is no evidence that  such factors are actually synthesized by T cells (12, 25). For 
these reasons we have attempted to study factors derived from T cells cultured 
in the absence of B cells (28). The reasoning is that  if an immunoglobulin factor 
is detected this system would readily lend itself to appropriate synthetic studies. 
The activity derived from this system is not, however, an immunoglobulin- 
related antigen. 

It should be noted that  our anti-immunoglobulin reagents were produced with 
myeloma proteins and were absorbed with thymocytes before use. Thus, al- 
though the antisera retained anti-immunoglobulin specificity, any small portion 
of cross-reacting determinants present in the T-cell factor would probably not be 
detected. Furthermore, in view of recent evidence suggesting that  T-cell recep- 
tors may share idiotypic determinants with B-cell immunoglobulin (44, 45), 
idiotypes other than those present on the myeloma immunogen would not be 
detected. 

Also detected in this system is a nonspecific stimulatory activity related to 
alloantigens. We interpret the nonspecific enhancement of PFC responses seen 
with higher supernatant dosages as a polyclonal activation of B cells because the 
stimulation is not confined to DNP-specific PFC's (46). We measured DNP- 
specific plaques with TNP-coated SRBC using a hapten-inhibition technique 
(28). Anti-TNP-SRBC PFC's inhibition by 5 × 10 -4 M DNP-L-lysine are consid- 
ered to be of sufficient avidity to be DNP specific (47). Using this technique, we 
obtain somewhat lower numbers for DNP-specific plaques in vitro than with the 
more conventional technique of subtracting background PFC's directed toward 
unconjugated SRBC. Regardless of which technique is used the number of anti- 
TNP-SRBC PFC's detected in the presence of hapten and the number reacting 
with unconjugated SRBC is increased in cultures containing greater amounts of 
supernate. Furthermore, at this dose of supernate, the response to an unrelated 
antigen such as SRBC or DNP conjugated to a carrier not used in the generation 
of the supernate is enhanced (Fig. 1) provided macrophages are present (Fig. 3). 
In this respect the factor closely resembles a factor derived from allogeneic 
stimulation of T cells (3, 17-22). This factor, designated allogeneic effect factor 
(AEF) and related to antigens coded for in the Ia region of the H-2 locus, has 
been extensively studied by Katz and co-workers. Although it does not display 
any known antigenic specificity, AEF stimulates both background PFC re- 
sponses and specific responses to soluble antigen provided antigen is present 
with macrophages (19, 20). 

Whether the alloantigens described here are related to the Ia sublocus or 
whether or not the specific and nonspecific factors are the same alloantigen 
cannot be determined as yet. The alloantisera used in this study were produced 
against the entire H-2 locus and probably contain other specificities as well (i.e., 
Ly difference). This will require alloantisera produced in congenic mouse strains 
with more precise specificities. If it turns out that  both activities contain the 
same alloantigenic determinants, one could postulate a factor possessing non- 
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specific B-cell-activating properties which, when also possessing antigen-bind- 
ing properties, preferentially concentrates this activity at the surface of antigen- 
specific B cells by virtue of a common receptor avidity for antigen. Such a 
mechanism along with the additional caveat that  too much localization of the 
polyclonal activator at the B-cell surface results in paralysis would explain the 
dose responses found in this system. A similar mechanism has been proposed for 
the antigen-specific and nonspecific polyclonal response to DNP-lipopolysaccha- 
ride (46). 

Analysis of tissue culture supernates is complicated in that  the activity 
observed may reflect a balance between stimulatory and inhibitory activities. 
Moreover, helper factors with stimulatory or inhibitory properties may exhibit 
dosage and timing optimums depending on assay conditions (3, 4, 9, 10, 21-25). 
The culture conditions used here were selected to maximize the generation of a 
stimulatory helper T cell, and the supernatant factors derived presumably reflect 
a balance of activities favoring the demonstration of stimulation. Ishizaka and 
Adachi (8) described a culture system which is essentially similar to ours except 
that T-cell-enriched spleen cells and higher antigen doses are used. In their 
system, specific helper or suppressor cells can be generated depending on the 
presence or absence of macrophages. Alloantigen-related factors have been 
implicated in nonspecific and antigen-specific suppression as well as in stimula- 
tion (3, 13, 14, 17-21, 23, 26, 27). It is unclear as yet whether these alloantigens 
are distinctly different molecules or whether the opposing activities observed 
reflect the activity of identical antigens with potentially different pathways of 
cellular interaction, quantitatively regulated target cell sensitivity, qualitative 
conformational differences determining the activity observed, or associated 
molecular structures with different activities. It is of interest, in this respect, 
that heat t reatment of helper cell culture supernates in our system not only 
destroyed its stimulatory capacity, but resulted in a markedly suppressive 
activity. This activity is nonspecific with respect to antigen response and not 
explained by inhibition of cell culture recovery or viability. Preliminary experi- 
ments indicate that the suppressive activity is also removed by alloantisera. 
Whether this represents the same alloantigen conformationally altered or ag- 
gregated by heat to result in suppressor activity must be determined by more 
definitive identification of the alloantigens involved. 

S u m m a r y  
Supernates derived from in vitro generated T-helper cells have been analyzed 

for their capacity to substitute for T-cell carrier reactivity. T-helper cell super- 
nates stimulate both a carrier-specific and nonspecific anti-DNP-PFC response 
to DNP-carrier conjugates in cultures of hapten-primed spleen cells. The carrier- 
specific and nonspecific activity can be distinguished by dosage optimum, anti- 
gen requirements, binding specificity for carrier, and in the requirement for 
additional splenic adherent accessory cell involvement. The active factors pro- 
duced in this system are heat labile and sensitive to trypsin and periodate. They 
are removed by absorption with alloantisera directed toward the strain from 
which the supernate was derived but not by a variety of anti-immunoglobulin 
sera. 
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