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Abstract
One way to understand ductal adenocarcinoma of the pancreas (pancreatic cancer) is to view it as unimaginably large numbers of
evolving living organisms interacting with their environment. This “evolutionary view” creates both expected and surprising
perspectives in all stages of neoplastic progression. Advances in the field will require greater attention to this critical evolutionary
prospective.
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1 Introduction

Theodosius Dobzhansky famously wrote that “nothing in the
biological aspects of medicine makes sense except in the light
of evolution,” and yet, with the exception of elegant mathe-
matical modeling based on evolutionary principles, much of
today’s discourse on pancreatic cancer fails to include an evo-
lutionary perspective [1–4]. Here we ask if any insights can be
gained by viewing the pathology and genetics of pancreatic
cancer in the light of evolution, and we find several instances
in which doing so reveals new understandings of the disease.

To set the stage for looking at pancreatic cancer in the light
of evolution, we thought it would be helpful to first consider

some of Darwin’s own words. In the Origins of Species By
Means of Natural Selection, Darwin wrote:

As many more individuals of each species are born than
can possibly survive; and as, consequently, there is a
frequently recurring struggle for existence, it follows
that any being, if it vary however slightly in any manner
profitable to itself, under the complex and sometimes
varying conditions of life, will have a better chance of
surviving, and thus be naturally selected. From the
strong principle of inheritance, any selected variety will
tend to propagate its new and modified form [5].

This first passage succinctly encompasses the fundamental
drivers through which we will examine pathology and genet-
ics of infiltrating ductal adenocarcinoma (referred to in this
review simply as “pancreatic cancer”). These evolutionary
drivers include the following: (1) that more organisms are
born than can survive; (2) that they compete for limited re-
sources; (3) that the environment in which organisms live
changes; and (4) that those that are best suited for their chang-
ing environment are more likely to survive. We are referring
to these principles when we use the term “evolution” in this
review.

These evolutionary drivers influence the development of
pancreatic cancer on two levels: within the human population
and within populations of the neoplastic cells themselves.
Although the neoplastic cells themselves are not independent
organisms, populations of cells do evolve in the face of envi-
ronmental pressures, and including them in a discussion of
evolution leads to new understandings of the growth and
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dissemination of pancreatic cancer. In this perspective, we
start with several straightforward examples to demonstrate
how the principles of evolution can be applied to human pop-
ulations and to the cancers themselves, and we then end with
what we hope are provocative insights generated when the
pathology and genetics of pancreatic cancer are viewed “in
the light of evolution.” The ideas presented are intentionally
simple, as our goal is to incite reflection, and for readers to
apply the principles of evolution to their own work.

The second passage we include from theOrigins of Species
By Means of Natural Selection is more inspirational; one that
we hope will motivate the reader to read on.

There is grandeur in this view of life, with its several
powers, having been originally breathed into a few
forms or into one; and that, whilst this planet has gone
cycling on according to the fixed law of gravity, from so
simple a beginning endless forms most beautiful and
most wonderful have been, and are being, evolved [5].

2 Inherited genetic variants

2.1 Highly deleterious germline variants vs. variants
with small effect

The first example we will give is a very simple one, but it
nicely illustrates the power of an evolutionary approach.
Pancreatic cancer runs in some families, and a number of the
genetic loci associated with an increased risk of pancreatic
cancer have been identified [6]. Some of these loci have been
discovered using candidate gene or unbiased sequencing ap-
proaches such as whole genome and whole exome sequenc-
ing, while others have been found through genome-wide as-
sociation studies (GWAS) (Table 1) [6–14].

Of the established pancreatic cancer susceptibility genes,
the penetrance of pancreatic cancer is highest in patients with
pathogenic germline variants in STK11, the gene that causes
the Peutz-Jeghers syndrome (Table 1) [6, 15]. The increased
risk of pancreatic cancer in individuals with the Peutz-Jeghers
syndrome is up to 135-fold greater than the risk of the general
population [16–18]. This translates to a remarkable lifetime
risk of developing pancreatic cancer of close to 60%.
Fortunately, Peutz-Jeghers syndrome is extremely rare, with
an incidence of between 1 in 25,000 and 1 in 300,000 births in
the USA [19].

By contrast to the rare highly penetrant germline variants in
the genes shown in Table 1, common variants of small effect
have also been described (Fig. 1). GWAS of large numbers of
patients with pancreatic cancer have uncovered a number of
loci that increase the risk of pancreatic cancer, but only slight-
ly [10, 12, 20–22]. For example, Amundadottir et al.

genotyped 558,542 single nucleotide polymorphisms (SNPs)
in 1896 individuals with pancreatic cancer and 1939 controls
drawn from 12 prospective cohorts and one hospital-based
case-control study [8]. They found that SNP rs505922 on
9q34 was associated with pancreatic cancer (combined P =
5.37 × 10−8; odds ratio 1.20). This SNPmaps to the first intron
of the ABO blood group gene. Individuals with blood group O
were found to have a lower risk of pancreatic cancer than
those with groups A or B. In contrast to the rarity of the
Peutz-Jeghers syndrome, 55% of the population is blood
group A or B! Fortunately, the odds ratio for developing pan-
creatic cancer in individuals who have blood group A or B is
only 1.2–1.3 [23]. As seen in Fig. 1, when the prevalence of a
genetic variant is plotted against the risk it confers of devel-
oping pancreatic cancer (penetrance of the variant), a general
pattern emerges, in which highly deleterious variants are sig-
nificantly rarer than less deleterious variants.

Figure 1 makes perfect sense when looked at in the light of
evolution. As Darwin noted, “from the strong principle of
inheritance, any selected variety will tend to propagate its
new and modified form [5].” The converse of this, of course,
is that deleterious “varieties” will tend to be eliminated from
the population. Individuals with pathogenic germline variants
are less likely to survive and, as populations reach equilibri-
um, these variants become rare. We see this with variants in
the STK11 gene and ABO blood type. Highly deleterious
germline changes, which in the case of pancreatic cancer sus-
ceptibility genes often increase risk of other lethal diseases
with an early age of onset, are eliminated over time (they are
rare). While “varieties” of small effect, such as those in the
ABO blood group, have more limited impact on survival and
are therefore eliminated more gradually (Fig. 1), one would
expect that all deleterious alleles (“varieties”), unless they af-
fect only adults long after reproduction, would eventually be
eliminated over time. Some alleles that are deleterious in one
way may remain in a population if they have some other,
matching, benefit, such as the heterozygote advantage of sick-
le cell anemia in areas where malaria is endemic [24].

2.2 Founder effects increase risk in specific
populations

We have seen that high-penetrant pathogenic germline vari-
ants are typically eliminated from the population; however, in
defined populations, certain pathogenic germline variants can
be frequent. For example, approximately 1% of individuals of
Ashkenazi Jewish decent have a pathogenic germline BRCA2
variant (c.6174delT) that is associated with a 10-fold in-
creased risk of pancreatic cancer, as well as an increased risk
of other cancers including cancers of the breast, ovary, and
prostate [25–30]. This is in comparison to the 0.04% of the
general European population that are carriers of the same var-
iant [25–30]. Similarly, the prevalence of certain CDKN2A
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variants is higher in specific populations of some countries
and regions, indicating founder effects. For example, the path-
ogenic germline variants p.M53I, p.G101W, p.V126D, and
c.225_243del are present in up to 22%, 60%, 90%, and 14%
of British, Southern European, Dutch, and North American
families with a pathogenic germline CDKN2A variant respec-
tively [31].

Why, paradoxically, do some highly penetrant pathogenic
germline variants become frequent in a population, even
though they are deleterious? Again, the light of evolution pro-
vides insight into this conundrum. Consider, for instance, the
BRCA2 variant c.6174delT that is prevalent in individuals of
Ashkenazi Jewish decent. Most modern-day Ashkenazi Jews
are descended from as few as 350 people who left the Middle
East less than 2000 years ago [32–39]. The main population
expansion likely occurred after 1000A.C.E., and this was then
followed by additional population bottlenecks in the Middle

Ages [32–36, 39]. Ashkenazi Jews who survived these bottle-
necks contributed a large percentage of the gene pool present
in present-day Ashkenazi Jews. The BRCA2 c.6174delT
germline variant likely arose in an Ashkenazi Jew 29 genera-
tions (~ 750 years) ago [37–39]. It is likely that this initially
rare germline genetic variant passed through one of the bot-
tlenecks and, in so doing, remained in a significant percentage
of the Ashkenazi Jewish population (Fig. 2) [32–36].

3 Somatic mutations in primary cancers

Our cells accumulate large numbers of mutations every day.
There are ~ 37.2 trillion human cells in the human body, and
most of these cells divide on a regular basis [40–44]. For
e x amp l e , e a c h h uman p r o d u c e s a r o u nd 10 1 1

(100,000,000,000) new blood cells and billions of other types

Table 1 Germline variants and
the risk of pancreatic cancer Gene % of patients with

pancreatic cancer
Increased Risk Age 50+ Age 70

SEER USA population – 1 0.05% 0.5%

Hereditary non-polyposis colorectal
cancer (Lynch syndrome) genes

< 1 7–8 0.4% 4%

ATM 1–4 6 0.3% 3%

BRCA2 2–7 2–6 Up to 0.3% Up to 3%

BRCA1 Up to 1 1–2.5 Up to 0.15%

PALB2 < 1 2.4 0.12% 1.2%

p16/CDKN2A 1–3 12–46 Up to 2.3% Up to 23%

PRSS1 < 1 50–60 3% 30%

STK11 < 1 75–135 6.75% Up to 67.5%

TP53 < 1 6–7 0.35% Up to 3.5%

+Using the high end of the range of increased risk

Frequency in pancreatic 
cancer patients
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Pathogenic variants in ATM, 
BRCA2, CDKN2A, MLH1, 

PALB2, PRSS1, STK11, TP53

rs9502893, rs13303010, 
rs2736098, rs505922, rs7190458, 

rs2941471, rs9854771

Fig. 1 Graphical representation
of variants associated with risk of
pancreatic cancer. Graph shows
pancreatic cancer risk and
prevalence of germline variant in
patients with pancreatic cancer.
Not all variants associated with
risk of pancreatic cancer are
shown. Size of each circle
represents the prevalence of
variant in general population.
Rare high-risk variants in red.
Common low-risk variants in
green
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of cells each day [45]. As cells divide, they need to copy their
DNA, and when they do, two to ten mutations are estimated to
occur per diploid genome per cell division [46–48]. Multiply
this by the billions of cells undergoing division in our bodies
each day, and the result is the accumulation of billions of
somatic mutations each day!

It should therefore not be surprising that cancers harbor
large numbers of somatic mutations [49–51]. Recent whole
genome sequencing of large series of pancreatic cancers iden-
tified an average mutational burden of one somatic mutation
per 2.64 Mb (range 0.65–28.2 per Mb), where the vast major-
ity of the mutations are passenger mutations [52]. This raises
several thought-provoking questions that, again, are best an-
swered in the light of evolution.

3.1 Why do our cells accumulate these somatic
mutations?

Why, with billions of years of evolution to perfect DNA rep-
lication, do our cells still make so many errors? Why don’t
cells correct somatic mutations as they occur? The answer is
simple when viewed in the light of evolution. Imperfect DNA
replication allows for evolution to occur. If we copied our
germline DNA perfectly, we would never be able to evolve;
we would still be slime on a primordial pond! In addition,
proof-reading DNA replication is costly to cells in terms of
energy and time (Fig. 3) [53, 54]. Gradual improvement in the
fidelity of polymerases would also work against the goal of
evolving a perfect polymerase: selecting for higher fidelity
polymerases decreases the mutation rate, thereby preventing
new mutations that would be required in order to increase the
fidelity of the polymerases even further [55]. Simply put, mu-
tation rates reflect an evolutionary balance between the costs
and benefits of allowing mutations to accumulate [53].

3.2 Why doesn’t our immune system eliminate all
neoplasms?

Our immune system can be effective in eliminating early
neoplasms, so why doesn’t it eliminate all neoplasms [56]?
The answer is, in part, because our immune system is also a
product of evolution. As our immune system has evolved,
it has faced the evolutionary balance between immune sur-
veillance and autoimmunity [57–59]. Our immune system
has evolved to recognize certain antigens and not others.
Diversity of antibodies and T cell receptors has evolved to
neutralize an ever-changing variety of pathogens, and neg-
ative selection has evolved to prevent the recognition of
self-antigens. The recognition of too many epitopes can
lead to autoimmunity, and failure to recognize antigens
can lead to infections and to the emergence of a cancer
[60]. Individuals who are born with a stronger immune
system will be better able to fight infections (and cancer),
while those who are born with a weaker immune system
will be less likely to develop autoimmune diseases. Those
individuals with an immune system, as Darwin wrote, “in
any manner profitable to itself,” will have a better chance
of surviving. When viewed in the light of evolution, the
immune surveillance of cancer is therefore imperfect, be-
cause natural selection balances the benefits of immune
surveillance with the costs of autoimmunity [57, 61].
Conversely, as cancers develop, the neoplastic cells that
successfully evade the immune system will be selected

Fig. 2 The prevalence of a rare genetic variant (yellow balls) will increase
significantly if it happens to pass through a population bottleneck

Fig. 3 Proof-reading DNA replication is costly to cells in terms of energy
and time
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for and we would predict that advanced cancers would be
relatively resistant to immunotherapies [56].

4 The emergence of resistant clones
after targeted therapy

The emergence of resistance has been recognized as a major
clinical problem in the treatment of infectious diseases since
antibiotics were first developed. The treatment of tuberculosis
in the 1950s and of human immunodeficiency virus (HIV) in
the 1990s are great examples [62]. The same holds true for the
treatment of cancer [3, 63–66]. Resistance often emerges
quickly under the selective pressures of targeted therapies, as
cells with genetic variants that provide resistance against the
therapy will have an increased fitness and will be selected for
(Fig. 4). For example, some melanomas are driven by somatic
BRAF genemutations, and the introduction of effective BRAF
inhibitors offered great hope for the treatment of melanoma.
Unfortunately, although great initial responses were seen in
human trials, melanomas treated with only a targeted BRAF
inhibitor almost always recurred [67]. Remarkably, in some
patients with multiple metastases, essentially, every single one
of the many metastatic nodules recurred [67].

We can anticipate the same problemwith targeted therapies
for pancreatic cancer. Some pancreatic cancers with biallelic
inactivation of the BRCA2 gene respond dramatically to
poly (ADP-ribose) polymerase (PARP) inhibitors [68–70].
But experience has shown that when cancers with biallelic
inactivation of BRCA2 are treated with an agent that exploits
this genetic vulnerability (such as a PARP inhibitor), clones
will emerge that harbor additional intragenic BRCA2 muta-
tions that restore the reading frame and in so doing restore
BRCA2 function [69, 71]. These cells with secondary muta-
tions in BRCA2will be resistant to therapy and they will grow,
leading to the emergence of clinical resistance to that targeted
therapy.

The mutations that arise in patients with recurrent and met-
astatic PDAC after other therapies are only beginning to be
characterized [72]. Some of these mutations arise in genes
rarely if ever mutated in primary untreated pancreatic cancers.
Not surprisingly, these mutations are typically were present in
pre-existing clones and provide additional oncogenic advan-
tage or help to overcome environmental pressures such as
targeted therapies. Examples of such mutated genes include
genes coding for members of the MEK-ERK pathway and for
the PI3K-MTOR pathway [72]. Finally, heterogeneity of mu-
tated driver genes can exist within different metastatic clones,
indicating that different tumor microenvironments can drive
the selection of distinct subclones which may result in differ-
ent adaptations to targeted therapies in different metastatic
sites [72].

This emergence of resistance can be understood when
viewed with the light of evolution. Advanced cancers are the
products of hundreds to thousands of cell generations and
contain a billion to a trillion (1012) cells. By chance, one of
these billions of cells is likely to acquire a somatic genetic
alteration that makes that cell and its descendants resistant to
a targeted therapy [73]. These resistant cells will remain a
small subpopulation in the cancer until the patient is treated
with the targeted therapy (Fig. 4). Targeted therapies effec-
tively kill vulnerable cells, creating powerful pressures that
select for clones that have acquired resistance to the therapy.
Again, quoting Darwin, “it is not the strongest of the species
that survives, nor the most intelligent that survives. It is the
one that is most adapted to its present environment [5].”
Targeted cancer therapy provides a powerful selective envi-
ronment for cancer cells which happen to have a mutation that
confers resistance to the therapy.

The lesson that evolution teaches us here is the same
taught when single agents were first used to treat tuber-
culosis or HIV [62]. Single agents for these diseases will
not succeed, as only a single mutation can quickly lead to
the emergence of resistant clones. Single-agent targeted
therapies to treat pancreatic cancer will similarly fail.
Combination therapies that incorporate agents that target
distinct pathways are more likely to succeed as it is un-
likely that pre-existing clones exist in a cancer that have
mutations that simultaneously confer resistance to multi-
ple different therapies. Taking it one step further, Walther
and colleagues have suggested that lessons from the ex-
tinction of species can be used to guide novel approaches
to drive tumors “to extinction [74].”

5 Provocative thoughts

In addition to the more obvious examples given above, the
light of evolution can provide provocative insights into the
biology of pancreatic cancer.

Fig. 4 Although therapies may successfully kill most of the neoplastic
cells, small populations of pre-existing neoplastic cells with genetic alter-
ations that allow them to survive the selective pressure of the therapy will
emerge to form drug-resistant clones
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5.1 Traits should not be considered in isolation

Darwin emphasized that a trait that provides a selective ad-
vantage in one environment may not provide a selective ad-
vantage in another (Fig. 5):

…when a plant or animal is placed in a new country
among new competitors…the conditions of its life will
greatly be changed in an essential manner. If we wished
to increase its average numbers in its new home, we
shall have to modify it in a different way to what we
should have had to do in its native country [5].

If we apply this reasoning to the progression of pancreatic
neoplasia, we can see that genetic alterations that are impor-
tant in the development of precursor lesions, such as pancre-
atic intraepithelial neoplasia (PanIN) lesions and intraductal
papillary mucinous neoplasms (IPMNs), may no longer be
important when that same cell, or its descendants, have me-
tastasized and are present in a completely different environ-
ment, such as in the liver [3, 65, 75]. Traits that give a cell a
survival advantage in the confines of a duct in the pancreas are
unlikely to provide the same survival advantage in the dramat-
ically different environment of the liver. For example, an ac-
tivating point mutation in KRAS may provide a survival ad-
vantage to a cell in the pancreatic duct [76–80]. This cell may
then grow into a PanIN lesion and subsequently into an inva-
sive carcinoma which then metastasizes to other organs [81].
All of the cells in the metastases will harbor an identicalKRAS
mutation, but, as observed in experimental models, this
doesn’t mean that the neoplastic cells in their new environ-
ments are still necessarily dependent onmutantKRAS for their

growth advantage [82, 83]. This possibility has significant
implications for targeted therapy, as, for example, the impact
of targetingKRAS in distant organsmay be very different from
that of targeting KRAS in PanIN lesions [84, 85].

Another striking example of this phenomenon is the dis-
tinct prevalence of mutations in specific driver genes at differ-
ent stages of tumorigenesis. Some driver genes, such as TP53
and SMAD4, are mutated at much higher prevalence in ad-
vanced precursor lesions and invasive carcinomas, suggesting
that selection for these mutations is limited to late in pancre-
atic tumorigenesis [86]. In contrast, recent studies have dem-
onstrated mutations in other driver genes at a higher preva-
lence in early neoplasia. For example, mutations in RNF43
occur at higher prevalence in noninvasive IPMNs than in in-
vasive carcinomas associated with an IPMN, suggesting that
the mutations are selected during precancerous neoplasia but
selected against in the subclone that eventually invades [87].
Similarly, hotspot mutations in KLF4 occur at higher preva-
lence in low-grade IPMNs than in high-grade IPMNs and are
frequently limited to low-grade regions in IPMNs with both
grades [88]. These observations suggest that KLF4 mutations
are selected for in low-grade IPMNs but selected against dur-
ing progression to high-grade dysplasia. However, the mech-
anisms and evolutionary drivers underpinning this differential
selection have yet to be identified.

5.2 Phenotypic and genetic drift can be confused for
growth advantage

Not all of the phenotypes and genotypes observed in a popu-
lation provide a selective advantage [89–92]. Genetic drift
describes the random fluctuations in gene variants in a popu-
lation, due to the random sampling when a variant is passed on

Fig. 5 A trait that provides a
selective advantage in one
environment (white fur in the
snow) may not provide a selective
advantage in another (white fur on
green grass)
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from one generation to the next. As shown in Fig. 6, genetic
drift is most easily detected when individuals are isolated from
the main group.

Extending this to pancreatic neoplasia, we can sur-
mise that not all of the genotypes and phenotypes we
observe in a tumor have clinical or biological signifi-
cance [90]. For example, if we are therapeutically
targeting a genetic change that is present in one area
of a cancer, we need to realize that this genetic change
may well be a passenger mutation that occurred late in
the development of the invasive cancer [48, 90, 93, 94].

This problem is illustrated in the hunt for genetic
alterations that “drive” metastases. A number of inves-
tigators have looked for drivers of metastases by com-
paring the genetic changes in metastases to paired pri-
mary lesions from the same patients [95]. This approach
assumes that any genetic changes in the metastases and
not in the primary lesion must be promoting the metas-
tases. While it is human nature to assume that any dif-
ferences are causal, Darwinian principles tell us that we
must also consider chance spread with genetic drift (Fig.
6). Indeed, although there are differences between me-
tastases and primary lesions, no “metastasis gene” has
yet been discovered [80, 95]. This perhaps should not
be surprising as D. Shibata and colleagues have shown,
using multiregional sequencing of invasive colon cancer,
that barriers to invasion are minimal, suggesting that
there aren’t “late bottlenecks” in cancer evolution [96].

The same is also true for phenotypes. When pathol-
ogists look at histologic sections, many of the morpho-
logic changes observed will not have biological or clin-
ical significance. For example, some pancreatic cancers
have a “clear cell” and others a “foamy gland” appear-
ance [97, 98]. While these distinctive appearing cancer
types have caught the eye of pathologists, they have no
known biological or clinical importance.

Even though many features do not have an adaptive advan-
tage, it is human nature to ascribe significance to each feature
we observe.

5.3 We do not completely understand gene-
environment interactions

The selective pressures placed on a species by its
changing environment are difficult to comprehend fully
[99]. As Darwin wrote, “we are much too ignorant in
regard to the whole economy of any one organic being,
to say what slight modifications would be of importance
or not… we may sometimes attribute importance to
characters which are really of very little importance,
and which have originated from quite secondary causes,
independently of natural selection [5].”

The complexity of interactions with the environment are
highlighted in pancreatic cancer. It was assumed for years that
the intense desmoplastic stroma elicited by invasive pancreat-
ic cancers is bad for the patient, that it prevents therapies from
reaching the cancer cells, and that if we could only eliminate
the stromal environment, we would be able to cure the cancers
[100]. Unfortunately, the role of the stroma, the “environ-
ment” of pancreatic cancer, has proven enormously complex
in pancreatic cancer [100, 101]. Some attempts to reduce the
stroma have actually promoted tumor growth and metastases
[102]. Moreover, recent work suggests that pancreatic cancer
cells that have invaded back into the ductal system are less
responsive to chemotherapy than cancer cells in the stroma
[103]. We clearly do not fully understand the gene-
environment interactions that drive pancreatic cancer.

5.4 Most “varieties” never emerge through all of the
bottlenecks

We can learn from evolution that many new variants are ini-
tiated but the promotion of a variant to a separate species is
rare (Fig. 7). By analogy, humans develop a large number of
precancerous neoplasms, and yet most of these neoplasms
never progress through all the bottlenecks to invasive carcino-
ma. Simply put, as we age, neoplasms are commonly or even
ubiquitously initiated but promotion to full malignancy is rare
[104–106].

Fig. 6 The chance survival of one
member of a population can lead
to genetic drift. Sampling that
population at a later date may give
the erroneous impression that the
population was selected for
because it had a survival
advantage
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This has profound implications for the early detection of
early pancreatic neoplasia as most of the precancers detected
will never progress to invasive cancer, and we face a real risk
of over treating these clinically harmless precursor lesions
[107]. For example, 54% of “normal” adult pancreata have
at least one PanIN lesion [108], and 2.6% of patients without
pancreatic symptoms have a pancreatic IPMN detectable on
computerized tomography scanning [109]. Clearly, the vast
majority of individuals with one of these precancerous lesions
will never develop invasive pancreatic cancer [110]. Yet,
when we detect these lesions, there is a natural desire to re-
move them, and, as a result, some patients are over treated
[111–113].

This variation in the behavior of precancerous lesions is
reflected in the significant genetic heterogeneity within and
among precursor lesions. Wood and colleagues carefully mi-
crodissected invasive cancers that arose in pancreata with a
well-defined intraductal papillary mucinous neoplasm
(IPMN) and found that IPMNs are genetically heterogeneous
and that the invasive cancers sometimes were genetically un-
related to the IPMNs [76, 87, 114, 115]. Thus, it is clear that
some pancreata harbor many heterogeneous noninvasive neo-
plastic clones and that only a small fraction of these clones
progress to invasion [116–118]. Within these precancerous
neoplasms, some patterns in the genetic heterogeneity can be
discerned. For example, heterogeneity with respect to muta-
tions in the initiating driver gene KRAS and GNAS occurs in
IPMNs with low-grade dysplasia, indicating polyclonal origin
[114]. In contrast, high-grade IPMNs often contain monoclo-
nal populations of neoplastic cells, but subclones within these
populations contain different mutations in the same tumor
suppressor gene. In particular, this pattern has been described
in mutations in the tumor suppressor gene RNF43. A single
IPMN can acquire multiple RNF43mutations, each limited to
a distinct subclone. This pattern suggests parallel evolution
with respect to these mutations, i.e., the independent evolution

of similar features due to common function, in this case in
distinct neoplastic subclones [87, 114, 119]. Taken together,
these findings suggest complex selective pressures that vary
throughout the different stages of preinvasive pancreatic neo-
plasia. This genetic heterogeneity is counterintuitive to a sim-
pler model of a series of sequential mutations in oncogenes
and tumor suppressor genes that invariably progresses to an
invasive cancer. Still, emerging data suggest that premalignant
tumorigenesis occurs via waves of clonal diversity, followed
by bottlenecking, as strongly selected driver mutations arise
during the carcinogenic process [87, 114, 119]. Finally, inva-
sion can also be considered as a founder effect: a cell escapes
the highly competitive and heterogeneous environment of the
precursor lesion, to find new resources and space to grow. The
lack of clonal heterogeneity in invasive cancer and metastases
might indicate that this is the last bottleneck.

Although most invasive pancreatic cancers are extremely
aggressive, we also cannot completely rule out the unlikely
possibility that some minimally invasive pancreatic cancers
will not metastasize during the life of the patient. This is nicely
illustrated with thyroid cancer, where increased screening has
led to the detection and removal of many invasive cancers, but
has not reduced the mortality from the disease [120, 121]. It
appears that many of the thyroid cancers detected on screening
would never have harmed the patient. In the case of the pan-
creas, the jury is still out as to whether the detection of early,
stage I, cancers arising in association with an IPMN saves
lives [122].

6 Conclusions

It has been more than 185 years since Charles Darwin first set
sail on the Beagle, and over 160 years since his masterpiece
theOrigins of Species By Means of Natural Selectionwas first
published in 1859. Darwin’s theory of evolution by means of
natural selection is arguably one of the most important ideas
ever put forth in the life sciences. The principles laid out by
Darwin continue to provide insight into all aspects of biology.
Here, in some small way, we hope we have convinced you
that “thinking evolutionarily” can provide insight into modern
pancreatic genetics and pancreatic pathology.

Since we began with passages fromDarwin, we thought we
should end with Darwin’s words.

“The distribution of tenants of this archipelago would
not be nearly so wonderful, if for instance, one island
has a mocking-thrush and a second island some other
quite distinct species... But it is the circumstance that
several of the islands possess their own species of tor-
toise, mocking-thrush, finches, and numerous plants,
these species having the same general habits, occupying

Fig. 7 Most “varieties” never emerge through all of the bottlenecks.
Pictured are Titanis known as the “terror” bird, a shoebill stork, and the
dodo. All are extinct except for the shoebill
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analogous situations, and obviously filling the same
place in the natural economy of this archipelago, that
strikes me with wonder” (journal written on the Beagle
1831-1835 [5]).

These words prompt us, as pathologists and pancreatic can-
cer researchers, to more carefully study the complex varieties
of pancreatic neoplasms. It is in doing so that we may gain
unique insight into this terrible disease.
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