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Instituto de Biologı́a y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones
Cientı́ficas (CSIC), Valladolid, Spain

Cancer, the second cause of death worldwide, is characterized by several common criteria,
known as the “cancer hallmarks” such as unrestrained cell proliferation, cell death resistance,
angiogenesis, invasion and metastasis. Calcium permeable channels are proteins present in
external and internal biological membranes, diffusing Ca2+ ions down their electrochemical
gradient. Numerous physiological functions are mediated by calcium channels, ranging from
intracellular calcium homeostasis to sensory transduction. Consequently, calcium channels
play important roles in human physiology and it is not a surprise the increasing number of
evidences connecting calcium channels disorders with tumor cells growth, survival and
migration. Multiple studies suggest that calcium signals are augmented in various cancer cell
types, contributing to cancer hallmarks. This review focuses in the role of calcium permeable
channels signaling in cancer with special attention to themechanisms behind the remodeling
of the calcium signals. Transient Receptor Potential (TRP) channels and Store Operated
Channels (SOC) are the main extracellular Ca2+ source in the plasma membrane of non-
excitable cells, while inositol trisphosphate receptors (IP3R) are the main channels releasing
Ca2+ from the endoplasmic reticulum (ER). Alterations in the function and/or expression of
these calcium channels, as wells as, the calcium buffering by mitochondria affect intracellular
calcium homeostasis and signaling, contributing to the transformation of normal cells into
their tumor counterparts. Several compounds reported to counteract several cancer
hallmarks also modulate the activity and/or the expression of these channels including
non-steroidal anti-inflammatory drugs (NSAIDs) like sulindac and aspirin, and inhibitors of
polyamine biosynthesis, like difluoromethylornithine (DFMO). The possible role of the calcium
permeable channels targeted by these compounds in cancer and their action mechanism
will be discussed also in the review.

Keywords: Ca2+ channels, cancer hallmarks, store-operated Ca2+ entry, TRP channels, calcium channel
modulators in cancer
INTRODUCTION

Cancer is the second leading cause of death globally, causing 9.6 million deaths in 2018 with an
increasing estimation of 70% over the next twenty years. There are more than 100 cancer types,
affecting any part of the body in both sexes. However, the most common cancer types in women are:
breast (25.4%), colorectal (9.6%), lung (8.8%), cervix (6.9%) and thyroid (6.3%), meanwhile lung
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(15.5%), prostate (14.5%), colorectal (11.4%), liver (6.8%) and
bladder (4.8%) are the most common among men (https://www.
wcrf.org); (https://www.who.int). Every type of cancer is
characterized by its unique clinical features, molecular markers
and a disease-specific profile of genes. Nevertheless, all cancer
types meet several common criteria, known as the “cancer
hallmarks” described in 2000 by Hanahan and Weinberg
(Hanahan and Weinberg, 2000). Although, new emerging
cancer hallmarks were added in the last decade, the most
accepted hallmarks are: (1) sustained proliferation, (2) cell
death resistance, (3) tissue invasion and metastasis and (4)
persistent angiogenesis.

Since the first hypothesis by the mid-1800s, that “canalis” are
present in biological membranes (Brücke, 1847), numerous
physiological functions have emerged mediated by ion channels,
ranging from control cellular ionic homeostasis to sensory
transduction. Consequently, ion channels perform key roles in
human physiology and it is not a surprise the increasing number
of evidences connecting channels disorders with a broader human
diseases. Nowadays, abundant evidence demonstrate that calcium,
calcium permeable channels and calcium signals, play important
functions in cancer cells proliferation, apoptosis resistance,
invasion and drug resistance, common cancer hallmarks. The
first direct evidences connecting calcium channels and cancer were
published in the 1980s, when independent studies confirmed the
inhibition of cancer growth using particular calcium channels
blockers (Lee et al., 1988; Batra and Alenfall, 1991; Taylor and
Simpson, 1992). The ion channels research not only confirm the
calcium channels correlation with cancer. Other ion channels with
important roles in membrane potential or cell volume regulation,
including Na+, K+ and Cl− channels have been involved in the
development of one or more cancer hallmarks (Pardo, 2004;
Wang, 2004; Kunzelmann, 2005; Wulff et al., 2009; Schwab
et al., 2012; Prevarskaya et al., 2018). At the present day, the
relationship between altered expression and/or function of
particular ion channels and cancer is well stablished, so well that
the term “oncochannels” has been recently introduced
(Huber, 2013).

This review focus in the role of calcium permeable
channels signaling in cancer: from molecular mechanisms to
therapeutics. Even though cancer therapies and drugs improved
significantly in the last years, new and more efficient treatments
are still needed to fight against such indiscriminate disease.
Calcium channels and transporters are widely expressed in the
plasma membrane of carcinoma cells where they may represent a
good therapeutic target. For this reason, the study of ion
channels role in both initial and advanced stages of the disease,
should be useful to explore the possible clinical value of this
membrane proteins as novel targets for therapy.

In this review we will consider the role of calcium permeable
channels signaling in cancer with special attention to the
mechanisms behind the remodeling of the calcium signals. The
calcium channel modulators and their therapeutic use in treating
cancer disease will be also discussed in the review.
Frontiers in Pharmacology | www.frontiersin.org 2
CALCIUM PERMEABLE CHANNELS IN
PLASMA MEMBRANE, ENDOPLASMIC
RETICULUM AND MITOCHONDRIA

Calcium permeable channels are membrane proteins located in the
external and internal cell membranes, including plasma membrane
(PM), and endoplasmic reticulum (ER) or mitochondria,
respectively. These channels diffuse passively Ca2+ ions down its
electromechanical gradient from extracellular space and from
intracellular calcium stores to the cytoplasm. At the PM there is a
wide diversity of calcium channel types, characterized by their
activation mechanism: (1) Voltage-gated calcium channels
(VGCCs), (2) receptor-operated calcium channels (ROCCs),
(3) store-operated calcium channels (SOCCs), (4) transient
receptor potential channels (TRPs), (5) acid-sensing ion
channels (ASICs) and (6) stretch-activated ion channels
(SAICs). VGCCs are the major participants in the Ca2+ entry
mechanism in excitable cells, including neurons, different types
of muscle cells and some endocrine cells. In contrast, the main
pathway for the Ca2+ influx in non-excitable cells such as
epithelial cells from most carcinomas is performed by SOCCs
(Figure 1). These channels generate the store-operated calcium
entry (SOCE), originally called capacitative calcium entry.
SOCCs open when ER Ca2+ stores are decreased from resting
levels around 700 µM to about 200 µM (Alvarez and Montero,
2002; Villalobos et al., 2017). This partial depletion is sensed by
the ER membrane-located Stromal Interaction Molecule 1
(STIM1) (Liou et al., 2005), when Ca2+ ions dissociate from its
low affinity EF-Ca2+ binding domain. The decrease in ER-Ca2+

levels promotes STIM1 oligomerization and the interaction with
the PM-localized calcium channel ORAI1 and/or TRP channels
(Feske et al., 2006; Fahrner et al., 2017; Hernández-Morales et al.,
2017; Secondo et al., 2018). The STIM1–ORAI1 interaction
opens calcium release activated channels (CRAC), thus
facilitating the calcium influx and the ER Ca2+-stores refilling
for subsequent stimuli (Villalobos et al., 2017). In mammals,
ORAI1 channel has two other isoforms, ORAI2 and ORAI3
encoded by homologous genes (Feske et al., 2006) and STIM1
only one STIM2 (Putney, 2018). In addition, there are two
variants of ORAI1, the longer ORAI1a and the shorter
ORAI1b, due to different translation points, with different
membrane diffusion coefficients (Fukushima et al., 2012). The
three ORAI isoforms can be activated by STIM1 with some
variations in the pharmacology and biophysical properties of the
channel (Lis et al., 2007; DeHaven et al., 2008).

Ca2+ release mechanisms in the ER are mediated by two major
Ca2+ permeable channels: (1) ryanodine receptors (RyRs) (Fleischer
et al., 1985) and (2) inositol trisphosphate (IP3) receptors (IP3Rs)
(Berridge, 1983; Streb et al., 1983) (Figure 1). RyRs open mainly
when intracellular Ca2+ rises, thus acting as a ligand in a mechanism
called, Ca2+-induced Ca2+ release (CICR) (Endo et al., 1970). ER-
Ca2+ release by IP3Rs starts at the PM, where agonist-induced G-
protein-coupled receptors (GPCRs) activates the phospholipase C
(PLC) enzyme. The PLC selectively induces the hydrolysis of the
July 2020 | Volume 11 | Article 968
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phosphatidylinositol 4,5-bisphosphate (PIP2), releasing
diacylglycerol (DAG) and the second messenger IP3, which
diffuses to the ER activating its receptor (Berridge, 1987).

In mitochondria, the principal calcium channel is the
mitochondrial calcium uniporter (MCU), a Ca2+-activated,
calcium channel, whose molecular machinery has been recently
reported (Perocchi et al., 2010; Baughman et al., 2011; Sancak
et al., 2013). MCU opens when large [Ca2+] microdomains
develop at the mouth of this Ca2+-operated, calcium channel.
The huge mitochondrial potential (DY), close to −180 mV,
Frontiers in Pharmacology | www.frontiersin.org 3
promotes the Ca2+ removal from cytosol into mitochondria
(Valero et al., 2008; Villalobos et al., 2017), clearing large
cytosolic Ca2+ loads formed during VGCCs opening in
excitable cells (Villalobos et al., 2001) or during Ca2+ release
from the ER (Rizzuto et al., 1998). In various cellular types,
SOCE regulation by mitochondria depends on the Ca2+

buffering capability of these organelles, being able to prevent
the slow, Ca2+-dependent inactivation of Ca2+ release activated
calcium channels (CRAC) (Gilabert, 2000; Hernández-Morales
et al., 2017).
FIGURE 1 | Schematic representation of the main calcium signaling pathways through Ca2+ channels and transporters involved in the regulation of calcium
homeostasis in mammalian cells. The calcium influx pathway from the extracellular space is mediated by the combined action of the voltage gated calcium channels
(VGCCs), the store-operated calcium channels (SOCCs) and associated proteins (STIM) and the transient receptor potential (TRPs) Ca2+ permeable channels. The
calcium release pathway from the endoplasmic reticulum (ER) and mitochondria is mediated by the inositol triphosphate receptors (IP3R) and the mitochondrial Na+/
Ca2+ exchanger (NCLX), respectively. Furthermore, the sarcoplasmic reticulum Ca2+-ATPase (SERCA) and the mitochondrial Ca2+ uniporter (MCU) are the
responsible for the free cytoplasmic Ca2+ sequestration into organelles. Finally, the Ca2+ extrusion pathway from the cytoplasm is regulated by the plasma membrane
Ca2+ATPase (PMCA1) and the Na+/Ca2+ exchanger (NCX).
July 2020 | Volume 11 | Article 968
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CALCIUM PERMEABLE CHANNELS IN
CANCER

Voltage-Gated Calcium Channels
Recent data provide evidence of the importance of the calcium
permeable channels in cancer. Regarding VGCCs, altered gene
expression profiles has been related with different cancer types
(Wang et al., 2015a) and it has been proved that different calcium
channels blockers prevent cancer invasion (Buchanan and
McCloskey, 2016; Jacquemet et al., 2016).

Experimental and bioinformatic analysis showed that
different subunits of VGCCs such as CaV1.2, CaV1.3, CaV2.2,
CaV3.1, Cav3.2 and CaV3.3 are involved in the development and
progression of different types of cancer, showing a significantly
overexpression in breast cancer. CaV1.4 only showed up-
regulation in testis cancer, whereas CaV2.1, CaV1.2 and CaV1.3
were deeply overexpressed in a wide range of cancer types (Wang
et al., 2015a). More specifically, the high voltage-activated CaV1.2
channel, commonly localized in cardiac, skeletal, smooth muscle,
neurons, fibroblasts and pancreatic cells (Lipscombe et al., 2004;
Tajada et al., 2013; Dixon et al., 2015), is overexpressed in most
cancer types, including colorectal, gastric, leukemia, brain,
uterus, breast, pancreatic, sarcoma, skin and prostate (Wang
et al., 2015a). The CaV1.3 is expressed in most of the same cells
that express CaV1.2, as well as, neuroendocrine, amacrine cells,
auditory hair cells, photoreceptors and the sinoatrial node where
it contributes to pacemaking (Platzer et al., 2000; Lipscombe
et al., 2004; Moreno et al., 2016). The CaV1.3 is highly expressed
in most types of cancer, including breast and prostate cancer,
but also in brain, colorectal, gastric, bladder, lung, esophageal
and uterine tumors (Chen et al., 2014; Wang et al., 2015a;
Buchanan and McCloskey, 2016; Jacquemet et al., 2016). See
Table 1 for a summary of calcium permeable channels involved
in different cancer conditions. Furthermore, the carboxy
terminus cleavage of both Cav1.2 and Cav1.3 promotes the
altered expression of different proteins such as TRPV4 and
small conductance potassium channels (SK3 and SK2) through
the CCAT transcription factor or by direct translocation to the
nucleus (Gomez-Ospina et al., 2006; Gomez-Ospina et al., 2013;
Lu et al., 2015). Hence, additionally to the Ca2+ influx cancer-
related signaling, both c-terminus can contribute to cancer
hallmarks by modulation of other channels. It is also
important to highlight the number of protein interaction sites
described in the VGCCs, where different proteins modulate
transcription factors such as CREB, NFAT and calmodulin,
consequently linking ion channels with transcription factors
involved in cancer progression (Mancini and Toker, 2009; Xiao
et al., 2010; Berchtold and Villalobo, 2014).

Moreover, compelling studies point to the emerging role of
VGCCs accessory subunits in cancer (Haworth and
Brackenbury, 2019). The VGCCs are associated with these
non-pore forming subunits that tune the biophysical properties
of the channel, including activation, gating kinetics or trafficking
to the PM (Dolphin, 2016). The increased expression of the
CaV1.x and the CaV2.x accessory subunits, a2d and b, have been
related with different cancer hallmarks in liver, ovary, prostate,
Frontiers in Pharmacology | www.frontiersin.org 4
pancreas, lung, and colon tumors (Mitra et al., 2011; Cromer
et al., 2015; Warnier et al., 2015; Yu et al., 2016; Badr et al., 2018;
Gao et al., 2018). The involvement of these subunits in cancer
adds an extra complexity to the VGCCs- cancer link mechanism.

TRP Calcium Permeable Channels
The Ca2+ permeable members of the TRP channel superfamily,
which have a high diversity of gating mechanism (Nilius and
Owsianik, 2010; Gees et al., 2012), are differently regulated in
some cancer types. The remodeling of Ca2+ entrance and release
pathways favors the phenotypic switch from normal to high
proliferative state. For example, the expression of several TRP
channels is elevated in different common carcinomas, e.g.
TRPC1 in breast cancer (Dhennin-Duthille et al., 2011),
TRPC3 in some breast and ovarian tumors (Aydar et al., 2009;
Yang et al., 2009a; Tao et al., 2013), TRPC6 in breast, liver,
stomach and glia cancers (El Boustany et al., 2008; Aydar et al.,
2009; Cai et al., 2009; Ding et al., 2010; Dhennin-Duthille et al.,
2011; Wen et al., 2016; Diez-Bello et al., 2019), TRPM7 in breast,
pancreas, ovarian and gastric cancers (Hoshino et al., 1988; Kim
et al., 2008; Kim et al., 2012; Middelbeek et al., 2012; Rybarczyk
et al., 2012; Wang et al., 2014; Yee et al., 2015). TRPM8 is highly
expressed at both mRNA and protein levels in tumor cells from
different tissues: breast, pancreas, prostate, colorectal and lung
(Schmidt et al., 2006; Chodon et al., 2010; Yee et al., 2010; Liu
et al., 2014), but the expression is decreased during metastasis in
prostate cancer cells via TCAF1 associated factor (Gkika et al.,
2015). In this regard, a new pore-independent mechanism has
been revealed, where TRPM8 inhibit endothelial cell migration
via Rap1, a small GTPase, protein-protein interaction (Genova
et al., 2017). TRPV6 expression levels are significantly high in
different human carcinomas tissues, such as, breast, prostate,
thyroid, colon and ovary (Wissenbach et al., 2001; Zhuang et al.,
2002; Bolanz et al., 2008; Dhennin-Duthille et al., 2011). In
contrast, the expression of other TRP channels appears to be
decreased in cancer. For instance, TRPC4 channels in renal
carcinoma (Veliceasa et al., 2007), TRPM6 in colorectal tumors
(Xie et al., 2018), TRPV4 in skin and bladder tumor cells (Fusi
et al., 2014; Mizuno et al., 2014; Yu et al., 2019) or the TRPV6 in
lung carcinomas (Fan et al., 2014). In conclusion, the TRP
channels superfamily expression levels have been described to
be either up or down regulated in different tumors (Table 1). The
specific molecular mechanism of these channels in cancer is not
fully understood, but recent evidence suggests a key role for some
of these channels in the cancer hallmarks (Villalobos et al., 2017;
Prevarskaya et al., 2018). In addition, some members of the
TRPC subfamily contribute to SOCE forming channel complexes
with STIM1 and ORAI1 (Molnár et al., 2016; Villalobos et al.,
2016). This set of proteins does not associate to form
heterohexamers ORAI1/TRPC1/STIM1 complexes. Instead,
ORAI1 and TRPC1 subunits form distinctive pore structures
each responsible for its calcium selective permeability (Cheng
et al., 2013). Further, TRPC1 activation is mediated by STIM1
binding, but TRPC1 trafficking to the membrane depends on
ORAI1-based Ca2+ entry. Therefore, ORAI1/STIM1 and
TRPC1/STIM1 assemble into two separate channels providing
July 2020 | Volume 11 | Article 968
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individual calcium signals for regulation of different cell
functions (Ambudkar et al., 2017; Villalobos et al., 2018). In
fact, there is a long-term controversy on the function of TRPC
channels in SOCE. The final consensus is that they may play a
role in some cell types but not in others (Ambudkar et al., 2017).
In anterior pituitary cells from mice lacking either ORAI1 or the
seven TRPC1–7 channels, it was recently shown that SOCE
required only ORAI1 channels but not any of the TRPC
channels (Núñez et al., 2019). In human colonic cells, it seems
that SOCE is mediated only by ORAI1 channels in normal cells.
However, in colon cancer cells, SOCE depends on both ORAI1
and TRPC1 channels (Sobradillo et al., 2014) as reviewed next.
Frontiers in Pharmacology | www.frontiersin.org 5
Other member of the TRP channel superfamily, which is
translocated to the plasma membrane via ORIA1-mediated
mechanism, is the TRPV6 channel controlling the cancer cell
survival (Raphaël et al., 2014).

Store Operated Calcium Channels
The mechanisms through SOCCs members contribute to cancer
progression differ according to the molecular entity of the
protein and the cancer type-specificity. It is important to
remember that SOCCs are not just a single molecular unit, but
rather multiprotein complex which includes PM and ER-
membrane components, ORAI and STIM proteins respectively.
TABLE 1 | Calcium permeable channels involved in different cancer types.

Ca2+

permeable
channels

Cancer types Expression profile Reference

VGCCs CaV1.2 Brain, breast, colorectal, pancreas,
prostate, uterus, skin and esophageal

Gene upregulation (Kale et al., 2015; Wang et al., 2015a; Cui et al., 2017; Anderson
et al., 2019)

CaV1.3 Breast, prostate, colorectal, bladder,
gastric, uterus, lung, brain and
esophageal

Gene and protein upregulation and
gene downregulation

(Chen et al., 2014; Wang et al., 2015a; Phan et al., 2017;
Prevarskaya et al., 2018)

CaV1.4 Testis Gene upregulation (Wang et al., 2015a)
CaV2.1 Leukemia, sarcoma, ovarian, brain,

uterus, lung, cervix, colorectal,
esophageal and gastric

Gene upregulation and downregulation (Hao et al., 2006; Sabates-Bellver et al., 2007; Wang et al.,
2015a; Phan et al., 2017)

CaV2.2 Breast, brain and prostate Gene up and downregulation (Sun et al., 2006; Grasso et al., 2012; Wang et al., 2015a; Phan
et al., 2017)

CaV3.1 Breast, glioma, lung, prostate,
colorectal, pancreas and gastric

Gene upregulation and downregulation (Latour et al., 2004; Wang et al., 2015a; Cui et al., 2017;
Anderson et al., 2019)

CaV3.2 Prostate, renal, gastric, ovarian, brain,
breast, bladder, lung, colon and skin

Gene and protein up and
downregulation

(Gackière et al., 2008; Cui et al., 2017; Phan et al., 2017)

CaV3.3 Breast, sarcoma, esophagus and
gastric

Gene upregulation (Wang et al., 2015a; Anderson et al., 2019)

TRPs TRPC1 Breast, colorectal, esophageal, gastric
and liver

Gene and protein upregulation (Dhennin-Duthille et al., 2011; Villalobos et al., 2016; Cui et al.,
2017; Anderson et al., 2019)

TRPC3 Breast and ovarian Gene and protein upregulation (Aydar et al., 2009; Yang et al., 2009a; Tao et al., 2013)
TRPC4 Renal Gene downregulation (Veliceasa et al., 2007)
TRPC6 Breast, liver, stomach, prostate and glia Gene and protein upregulation (El Boustany et al., 2008; Guilbert et al., 2008; Aydar et al., 2009;

Cai et al., 2009; Ding et al., 2010; Prevarskaya et al., 2018;
Anderson et al., 2019)

TRPM6 Colorectal Gene downregulation (Xie et al., 2018; Anderson et al., 2019)
TRPM7 Breast, pancreas, ovarian, gastric and

colorectal
Gene and protein upregulation (Hoshino et al., 1988; Kim et al., 2008; Middelbeek et al., 2012;

Rybarczyk et al., 2012; Wang et al., 2014; Bose et al., 2015;
Anderson et al., 2019)

TRPM8 Pancreas, prostate, bladder, skin,
breast, colorectal, and lung

Gene and protein upregulation and
gene downregulation

(Schmidt et al., 2006; Prevarskaya et al., 2007; Chodon et al.,
2010; Yee et al., 2010; Liu et al., 2014; Cui et al., 2017;
Anderson et al., 2019)

TRPV4 Skin, renal and bladder Gene and protein downregulation (Fusi et al., 2014; Mizuno et al., 2014; Cui et al., 2017;
Prevarskaya et al., 2018)

TRPV6 Breast, prostate, thyroid, colon, lung
and ovary

Gene and protein upregulation and
gene downregulation

(Wissenbach et al., 2001; Zhuang et al., 2002; Bolanz et al.,
2008; Dhennin-Duthille et al., 2011; Fan et al., 2014; Cui et al.,
2017)

SOCs ORAI1 Glia, breast, skin, colorectal, pancreas,
esophageal, lung and renal

Gene and protein upregulation (McAndrew et al., 2011; Motiani et al., 2013a; Kim et al., 2014;
Zhu et al., 2014b; Cui et al., 2017; Anderson et al., 2019)

ORAI3 Prostate, breast and lung Gene and protein upregulation and
gene downregulation

(Abeele et al., 2002; Ay et al., 2013; Motiani et al., 2013b;
Dubois et al., 2014; Villalobos et al., 2016; Cui et al., 2017)

STIM1 Glia, cervix, breast, lung, skin, liver,
pancreas and colorectal

Gene and protein upregulation (Scrideli et al., 2008; Chen et al., 2011; McAndrew et al., 2011;
Li et al., 2013; Yang et al., 2013; Umemura et al., 2014; Wang
et al., 2015b; Wang et al., 2016; Cui et al., 2017; Anderson
et al., 2019)

STIM2 Colorectal, skin, breast and glia Gene upregulation and protein
downregulation

(Ruano et al., 2006; Aytes et al., 2012; Sobradillo et al., 2014;
Stanisz et al., 2014; Cui et al., 2017; Anderson et al., 2019)
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Although calcium signal remodeling involves changes of
different Ca2+-permeable channels, Ca2+ entry through ORAI
channels is particularly important, as its dysregulation contribute
to cancer features such as sustained proliferation, apoptosis
resistance and invasion.

ORAI1 key component of SOCE, is essential for human
brain tumor glioblastoma invasion. In these cells, the ORAI1
expression is upregulated causing an increased ORAI1-based
calcium influx (Motiani et al., 2013a). In this regard, some
breast cancer cell lines exhibit augmented levels of ORAI1,
SOCE and the remodeling of the calcium influx associated with
invasive stimuli (McAndrew et al., 2011; Zhu et al., 2014b). The
ORAI1 involvement occurs also in melanoma cells, playing a
central role in cell migration and proliferation, most likely via
ERK signaling (Umemura et al., 2014). Furthermore, the ORAI1
interaction with SK3, a small conductance calcium-activated
potassium channel, has been correlated with invasion and
metastasis in colon and breast cancer, respectively, via
SigmaR1 chaperone (Gueguinou et al., 2017). In renal
carcinomas, the ORAI1 expression levels in cancer tissues
were statistically higher than the levels in the adjacent normal
parenchymal tissues, promoting cell proliferation and
migration (Kim et al., 2014). These results suggest that,
regardless the feasible differences in the cancer type-specificity
and mechanism, ORAI1 plays a pivotal role in proliferation and
invasion. However, this assumption is controversial because
other authors propose that proliferation and apoptosis
resistance is due to the ORAI3 remodeling. For instance, in
prostate cancer cells, the overexpression of ORAI3 promotes
two cancer hallmarks at once, enhanced proliferation and
apoptosis resistance (Dubois et al., 2014). The ORAI3
increased expression levels favors the formation of ORAI1-
ORAI3 heterohexamers over the ORAI1 homohexamers. The
shift in the ORAI1/ORAI3 ratio reduces the Ca2+ influx from
the extracellular space, promoting the enhanced apoptosis
resistance shown by these cells (Abeele et al., 2002). These
results highlight the essential role of ORAI1 in death related
process (Flourakis et al., 2010). The downregulation of the
ORAI1-based SOCE is associated with increased store
independent calcium entry (SICE), promoting cancer cells
proliferation via the Ca2+/calcineurin-dependent transcription
factor (Dubois et al., 2014). The ORAI3 expression is also
elevated in breast cancer cells, where enhanced ORAI3-
dependent SOCE result in apoptosis resistance, proliferation,
and invasion in an estrogen receptor-dependent way (Motiani
et al., 2013b). Association between elevated ORAI3 expression,
enhanced ORAI3-based SOCE and high proliferation levels was
also reported for non-small-cell lung adenocarcinoma (Ay et al.,
2013) (Table 1).

The Ca2+ sensor STIM1 is overexpressed in different carcinomas,
e.g., glioblastoma, cervix, breast, lung, liver, melanoma and colon
(Scrideli et al., 2008; Chen et al., 2011; McAndrew et al., 2011; Li
et al., 2013; Yang et al., 2013; Umemura et al., 2014; Wang et al.,
2015b; Wang et al., 2016). In fact, STIM1 expression level is
enhanced in early-stage cervical cancers, and using STIM1
Frontiers in Pharmacology | www.frontiersin.org 6
siRNA, both SOCE and proliferation were inhibited in the
cervical cancer cells. Furthermore, there is a positive
correlation of local migration, tumor size and angiogenesis
with STIM1 levels in cervical cancers cells (Chen et al., 2011).
The abolition of STIM1 also prevents the cell proliferation and
induces G0/G1 phase arrest of human glioblastoma cells (Li et al.,
2013). In alveolar epithelial cells, STIM1 silencing attenuates the
tumor growth, arresting cells in G1 phase in a p21 and cyclin D1-
mediated pathway (Wang et al., 2016). In the same direction,
STIM1 siRNA inhibits the migration and invasion abilities of the
highly invasive tumor hepatic cells (Yang et al., 2013). Increased
levels of STIM1 promotes growth and migration in colorectal
cancer cells (CRC) and STIM1 elevated expression in CRC
patients is associated with tumor size, invasion and metastasis
(Wang et al., 2015b). Moreover, microarray analysis data show
that, the basal-breast cancer, a breast cancer subtype with a very
dismal prognosis, is correlated with an altered relationship
between the ORAI1 act ivators STIM1 and STIM2,
characterized by high STIM1/STIM2 ratios (McAndrew et al.,
2011; Berna-Erro et al., 2017) (Table 1).

STIM1 homolog STIM2 senses smaller changes in ER-Ca2+

concentrations than STIM1, suggesting different cellular
functions for these two Ca2+ sensors (Brandman et al., 2007).
STIM1 detects deeper ER-Ca2+ depletions, due to its higher
affinity for calcium, thus enabling the refilling of the depleted
stores, while STIM2 detects lighter ER-Ca+2 depletions, keeping
ER-Ca2+ concentrations within tight limits (Berna-Erro et al.,
2017). Elevated STIM2 expression levels have been found in
different cancer types, colorectal cancer (Aytes et al., 2012),
human melanoma (Stanisz et al., 2014) and glioblastoma
multiform tumors (Ruano et al., 2006). In colorectal cancer
cells the high STIM2 expression levels has been related with a
reduced invasive phenotype, suggesting a cancer cell growth
suppressor function in contrast to STIM1 (Aytes et al., 2012;
Berna-Erro et al., 2017). In the same vein, STIM2 overexpression
was detected in human melanoma, where STIM2 siRNA
treatment produced enhanced proliferation (Stanisz et al.,
2014). These results correlate with the idea that, low STIM1/
STIM2 ratios may be associated with less aggressive
tumor conditions.

It is noteworthy that, while STIM2 gene expression levels are
increased in CRC cells, STIM2 protein is practically absent in
tumor cells, leading to the partial depletion of calcium stores
(Sobradillo et al., 2014; Villalobos et al., 2016). The STIM2 loss in
tumor cells moves internal Ca2+ store concentration near to the
SOCE activation threshold and promotes apoptosis resistance
and cell survival (Sobradillo et al., 2014). These discrepant results
reveal the complexity role of STIM proteins in cancer and
expand the classical function of controlling intracellular Ca2+

homeostasis. Additionally, the recent discovery of new STIM2
mRNA isoforms with opposite effects, might clarify these
apparently contradictory reports. In these new reports, the
novel variant STIM2.1 inhibits SOCE, whereas the former
isoform STIM2.2 promotes it (Miederer et al., 2015) as detailed
in (Berna-Erro et al., 2017).
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INTRACELULAR CALCIUM
HOMEOSTASIS

Intracellular Ca2+ concentrations control many different
physiological and cellular functions at global and local levels,
such as gene transcription in the nucleus, cell respiration and
ATP synthesis in mitochondria or exocytosis in plasma membrane.
To regulate this wide range of physiological Ca2+-dependent
processes, the cells maintain Ca2+ concentrations tightly
controlled. This regulation is known as calcium homeostasis.

To keep calcium homeostasis and considering that Ca2+ is a
cation and does not cross freely cell membranes, Ca2+ is
transported through PM and internal membranes by particular
transmembrane proteins, including Ca2+ permeable channels,
Ca2+ pumps and ion transporters (Bong and Monteith, 2018;
Villalobos et al., 2018). As we mentioned above, Ca2+ permeable
channels enable Ca2+ entry into cells forced by the
electrochemical gradient, formed by the difference in Ca2+

concentration between the internal (100 nM) and extracellular
(1 mM) space and the membrane potential of about −60 mV.
The calcium entry rises intracellular [Ca2+] triggering different
cell process. Then, it is removed from the cytosol and transported
back to the extracellular medium or uptake into the intracellular
Ca2+ stores by Ca2+ pumps and transporters, restoring the basal
Ca2+ levels (Villalobos et al., 2018) (Figure 1).

This removing-Ca2+ process requires energy provided by the
ATP hydrolysis for Ca2+-pumps or the energy stored in the
electrochemical gradient of other cation for transporters. For
example, the Na+/Ca2+ exchanger transports three Na+ ions
down its gradient in exchange of one Ca2+ cation against its
electrochemical gradient (Reuter and Seitz, 1968). These
dynamic Ca2+ signals differ with regard to their mechanisms of
generation, spatial distributions and temporal properties, but are
coordinated in space and time for a specific purpose. These
calcium signals are characterized in different cell types and
include calcium waves (Berridge et al., 2003; Parkash and
Asotra, 2010), sparks (Cheng et al., 1993), calcium puffs (Yao
et al., 1995), spikes (Meyer and Stryer, 1991), flickers (Wei et al.,
2009), sparklets (Wang et al., 2001; Navedo et al., 2005; Tajada
et al., 2017), etc. Compelling evidence show that variations in
cellular Ca2+ dynamics participate in the normal and
pathological signal transduction that controls cell proliferation
and survival (Prevarskaya et al., 2018). Abnormal remodeling in
Ca2+ homeostasis leads to the disruption of Ca2+ signaling
resulting in a wide range of pathological conditions such as cell
migration, excessive proliferation, invasion and programmed cell
death resistance (Prevarskaya et al., 2011; Monteith et al., 2012;
Prevarskaya et al., 2014).

Intracellular Ca2+-storage organelles like the ER, mitochondria
and the recently emerged as a major intracellular Ca2+ storage,
lysosomes (Lloyd-Evans and Waller-Evans, 2019), also hold their
own Ca2+ transporters. The ER is the largest single organelle and the
most important intracellular Ca2+ store (Lam and Galione, 2013). It
operates as a dynamic Ca2+ store thanks to the combined action of
Ca2+ channels and transporters in the ER-membrane, and the
Frontiers in Pharmacology | www.frontiersin.org 7
Ca2+-binding proteins in the ER-lumen, working as a high-
capacity Ca2+ buffering system (Verkhratsky, 2005). Ca2+ is
continuously leaking from the ER through leak channels still not
identified. Nevertheless, Ca2+ concentration within the ER remains
high due to the continuous activity of the endoplasmic reticulum
Ca2+-ATPases (SERCA) that replenish Ca2+ stores (MacLennan,
1970) (Figure 1). On the other hand, activation of the IP3Rs,
receptor-operated Ca2+ channels, release Ca2+ from intracellular
store sites, contributing to the maintenance of a total amount of Ca2
+ in the lumen similar to the extracellular space, in the mM range
(Alvarez and Montero, 2002; Foskett et al., 2007). Because the
lumen contains high concentrations of Ca+2 binding proteins
(calreticulin, calsequestrin, annexin, calnexin, etc.) the
concentration of free Ca+2 has been estimated to be between 100
and 700 µM (Foskett et al., 2007; Yáñez et al., 2012).

In the mitochondria, the Ca2+ uptake is conducted by the
MCU and the Na+/Ca2+ (NCLX) and Ca2+/H+ (HCX)
exchangers are responsible for the mitochondrial Ca2+ release
in exchange for Na+ and H+, respectively (Bononi et al., 2012;
Srinivasan et al., 2015) (Figure 1). A large increase in Ca2+,
located near enough the MCU, triggers the influx of calcium to
the mitochondrial matrix, rising the mitochondrial [Ca2+] to
very high concentrations near the mM level (Pozzan et al., 2000;
Contreras et al., 2010). Mitochondria are also in dynamic contact
with other organelles including the ER. These transient contacts
between ER and mitochondria are essential to generate the
highly localized and concentrated Ca2+ microdomains,
facilitating the Ca2+ transport into mitochondria (Paupe and
Prudent, 2018). Through this mitochondrial-ER crosstalk, IP3Rs
control the mitochondrial Ca2+ uptake and therefore metabolism
and cell destiny (Cui et al., 2017). Although the mitochondria
play an important role in Ca2+ homeostasis, the “in vivo”
buffering capacity of this intracellular organelle is not
particularly relevant (Pozzan et al., 2000).

Mitochondria not only modulate cytosolic Ca2+ signal.
Mitochondrial calcium is also involved in the control of
metabolism, ATP production and the regulation of cell death.
Mitochondrial calcium regulates three important enzymes of the
Krebs cycle: ketoglutarate, isocitrate, and pyruvate dehydrogenase.
The effect of mitochondrial Ca2+ accumulation in Krebs cycle
is the increase in the respiration rate and ATP synthesis
(Mammucari et al., 2018). On the other hand, an excess of
mitochondrial Ca2+ uptake, known as “mitochondrial calcium
overload” triggers mitochondrial permeability transition pore
(mPTP) opening. This is a high-conductance channel mediating
mitochondrial swelling (Petronilli et al., 1993). This, together
with other factors, triggers mitochondrial permeability transition,
disruption of the mitochondrial potential and a massive release of
cytochrome c, leading to the apoptosome activation and apoptosis
(Giorgi et al., 2012; Mammucari et al., 2018).

The plasmalemma also displays many different calcium
channels, ATP pumps and transporters to maintain the
intracellular Ca2+ homeostasis. We have mentioned above the
channels responsible of the Ca2+ influx. Now we will briefly
describe the players involved in the transport of calcium out of
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the cell to maintain the Ca2+ electrochemical gradient. Two
players in the Ca2+ outflow from cells have been described, the
Na+/Ca2+ exchange transporter (NCX) and the plasma
membrane Ca2+-ATPase (PMCA) (Figure 1). The NCX is in
charge of Ca2+ extrusion from the cytoplasm against its
electrochemical gradient without ATP consumption, in fact,
the electrochemical gradient of sodium stores that energy. In
addition, NCX can operate in reverse mode contributing to Ca2+

entry in different conditions, such as cellular activation
(Blaustein and Lederer, 1999). The PMCA pump with a 1:1
Ca2+/ATP stoichiometry possesses a high-affinity but a low-
capacity for Ca2+ transport, in total opposition to NCX (Noble
and Herchuelz, 2007). This characteristic has conditioned the
roles of these Ca2+ transporters. The PMCA performs a
housekeeping role maintaining cytosolic Ca2+ around its basal
level, whereas the NCX eliminates significant rises in
intracellular Ca2+, but this model has been revised during the
latest years. See (Brini and Carafoli, 2011) for review.
CALCIUM PERMEABLE CHANNEL
MODULATORS AND CANCER

Voltage-Gated Ca2+ Channel Modulators
and Cancer
Several epidemiological investigations report that, calcium
channel blockers used for the medical therapy of other
pathologies are related with a reduced prostate cancer risk
(Debes et al., 2004; Rodriguez et al., 2009), or at least a
significantly tumor aggressiveness reduction (Poch et al., 2013).
There is more discrepancy in studies of other cancer types,
ranging from significant diminution in breast cancer risk
(Fitzpatrick et al., 1997; Taylor et al., 2008) to no association
between VGCCs blockers and cancer in colorectal, lung and
breast tumors (Michels et al., 1998; Boudreau et al., 2008; Devore
et al., 2015; Brasky et al., 2017; Bowles et al., 2019), including
higher lung cancer risk correlated with exposure to calcium
channels blockers (Rotshild et al., 2018).

Although, the potential benefit of the VGCCs blockers needs
further preclinical studies, specific VGCCs antagonists, already
approved by the FDA and EMA and used in clinical treatments,
may be interesting for cancer treatments where individual
VGCCs are overexpressed.

CRAC Channel Modulators and Cancer
The identification of CRAC channels modulators has been an
important challenge for researchers and pharmaceuticals, since
their discovery in 1992 (Hoth and Penner, 1992), because they
have been implicated in numerous human pathologies,
including pancreatitis, immunodeficiency, occlusive vascular
diseases and cancer (Gerasimenko et al., 2013; Tian et al., 2016;
Stauderman, 2018).

Numerous compounds have been described as inhibitors of
SOCE or CRAC channels, which can be classified into four
groups: inorganics, aptamers, antibodies and organic molecules
(Stauderman, 2018). The inorganic lanthanides, specifically the
Frontiers in Pharmacology | www.frontiersin.org 8
trivalent cations, Lanthanum (La+3) and Gadolinium (Gd+3) are
potent but non-selective blockers of the CRAC current (Parekh
and Putney, 2005). Both can block directly the CRAC pore
formed by the loopI-II of ORAI1, but also block other Ca2+

channels and pumps, such as VGCCs, TRPs and PMCA (Trebak
et al., 2002; Yeromin et al., 2006; Cui et al., 2017). However, Gd3+

is normally used in Ca2+ imaging experiments to discriminate
endogenous SOCs from other Ca2+ permeable channels such as
recombinant TRPs, because the concentration that efficiently
blocks the endogenous pathway does not interfere with the TRPs
(Trebak et al., 2002; Parekh and Putney, 2005). In addition, these
chemical elements are not viable for therapeutic treatment due to
toxicological concerns. Aptamer Y1, an artificial single-stranded
oligonucleotide engineered to bind with high affinity the first
extracellular domain of the ORAI1 protein, block SOCE in the
nM range in mast cells (Sun et al., 2016). However, the
oligonucleotides present a disadvantage to be consider a
potential drug candidate, the administration route is restricted
to intravenous, subcutaneous or local delivery, as happened
with the antibodies (Stauderman, 2018). Among antibodies,
10F8 (Cox et al., 2013), Anti-CRACM1-IgG (Liu et al., 2017),
hHG1/LG1 (Komai et al., 2017) and mAb 2C1.1 (Lin et al., 2013)
have been reported to partial block SOCE or CRAC currents due
to the low specificity against all ORAI isoforms. Considering the
organic small agents, the 2-aminoethoxydiphenylborane (2-
APB), a membrane permeable antagonist of the IP3-receptor
activity, is widely used is SOCE experiments (Ma et al., 2000).
Some studies reported that 2-APB inhibit cell proliferation and
death resistance in gastric cancer cells (Sakakura et al., 2003; Cui
et al., 2017) and cell migration in CRC cells (Abeele et al., 2002).
Although, 2-APB is used as a reliable SOCE inhibitor (Bootman
et al., 2002), it presents diverse effects on SOCE or CRAC
currents. 2-APB is able to both, inhibit CRAC current without
interference in the STIM1 and ORAI1 interaction (Yamashita
et al., 2011) and directly activate ORAI3 channel independently
of Ca2+ store depletion or STIM1 protein (Schindl et al., 2008). In
addition, it presents a dose-dependent bimodal effect,
stimulating CRAC currents at low concentration (less than 10
mM) and a transient increase followed by inhibition at higher
(up to 50 mM) concentrations (Prakriya and Lewis, 2001). For
this reason and because 2-APB modulates other proteins
including SERCA (Missiaen et al. , 2001), MagNum
(Hermosura et al., 2002) and K+ channels (Wang et al., 2002),
mitochondrial Ca2+ efflux (Prakriya and Lewis, 2001), gap
junctions (Tao and Harris, 2007) and different TRP channels
(Parekh and Putney, 2005; Derler et al., 2008), it should not
be considered as a SOCE specific inhibitor (Parekh and Putney,
2005; Várnai et al., 2009). However, novel 2-APB derived
compounds such as DBB-162AB and DPB-163AE with higher
efficiency in SOCE inhibition and without unexpected
interactions, are promising chemotherapeutic drugs (Goto
et al., 2010).

Another class of small-molecules such as AnCoA4, ML-9,
SB01990, KM06293 and RH01882 has been recently identified as
SOCE inhibitors via different mechanism. AnCoA4 reduces the
ORAI1 recruitment into puncta (Sadaghiani et al., 2014), ML-9
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prevents STIM1 migration to ER-PM junctions (Smyth et al.,
2008), SB01990, KM06293 and RH01882 modify the ORAI1
pore geometry, altering the Ca2+ selectivity and thereby reducing
SOCE (Sampath and Sankaranarayanan, 2016; Cui et al., 2017).

Another compounds, imidazol, tenidap and SFK-96365 all
classified as receptor-mediated Ca2+ entry blockers, were
reported to inhibit CRAC currents in rat mast cells, but not in
a specific manner (Franzius et al., 1994). For example, similar
SKF96365 concentration used to block the CRAC currents,
inhibits TRPC and TRPM channels with a comparable efficacy.
The SKF-96365 was the first ORAI1 blocker used in cancer
studies, specifically breast cancer. This imidazol derivative
reduced tumor growth and invasion in vivo and inhibited
cellular migration in vitro in breast cancer cells (Yang et al.,
2009b). In other study, SKF-96365 significantly reduced tumor
growth in esophageal cancer cells from immune deficient mouse,
blocking ORAI-mediated SOCE and Ca2+ oscillations (Zhu et al.,
2014a). Other compound targeting SOCE is the biomolecule
Ohmline, a Edelfosine mimetic, that inhibits breast and colon
cancer cells migration through the TRPC1/ORAI1/SK3 complex
dissociation (Guéguinou et al., 2016).

Pyrazoles, heterocyclic organic compounds, specifically
BTP1, BTP2 and BTP3, were identified by Abott and Astellas
as SOCE blockers in Jurcat cells, using transcriptional and Ca2+

imaging assays (Djuric et al., 2000; Ishikawa et al., 2003;
Stauderman, 2018). BTP2 (also known as Pyr2 or YM58483) is
a pyrazole analogue that potently inhibits both TRPC-mediated
and CRAC Ca2+ influx (He et al., 2005; Stauderman, 2018).
However, similar to 2-APB and imidazole these compounds are
not specific because they are involved in many other transport
mechanisms. For instance, BTP2 also produces a PM
depolarization via TRPM4 activation, therefore decreasing the
Ca2+ driving force and consequently the Ca2+ influx inhibition
(Takezawa et al., 2006). In contrast, other pyrazol-based
compounds such as GSK-7975A (Derler et al., 2013), RO2959
(Chen et al., 2013) and the carboxamide GSK1349571A (Di
Sabatino et al., 2009) seem to have reasonable selectivity with no
affinity toward a wide range of receptors and ion channels and
without affect TRPC1/5-mediated SOCE. Recently developed
pyrazole analogues, such as, pyrazole-4-carboxamide (YW2065)
and pyrimidine-2(1H)-thione derivative, have reported good
anticancer activity in colorectal cancer cell lines compared to the
standard drugs like sorafenib or oxaliplatin (Fahmy et al., 2016;
Yang et al., 2019). More detailed information about the
pharmacology of various CRAC channels modulators is revised in
recent reports (Sweeney et al., 2009; Jairaman and Prakriya, 2013;
Pevarello et al., 2014; Tian et al., 2016).

Other line of research is using small molecules compounds
that modify the unbalance Ca2+ homeostasis in cancer cells. For
example, the Nhr-BH4, a BCL-2 mimetic peptide that prevents
the inhibition of the IP3R Ca2+ release and thus unblock the
apoptosis resistance in breast cancer cells (Nougarede et al.,
2018). The TAT-IDPs, other BCL-2 based peptide, potentiates
the pro-apoptotic Ca2+ signaling in chronic lymphocytic
leukemia cells avoiding the IP3R2 inhibition, an IP3R homolog,
(Akl et al., 2013).
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The importance of discovering new and specific inhibitors of
CRAC channels and the development of new nanotechnology
tools (Grolez et al., 2019), could be giant for the treatment of
different human diseases. However, future pharmacology studies,
and clinical trials will solve if these drugs are viable for
therapeutic treatment.
ASPIRIN, NSAIDs AND POLYAMINE
SYNTHESIS BLOCKERS AS CALCIUM
CHANNEL MODULATORS IN CANCER

Overwhelming evidence provided in the last decades strongly
suggest that acetylsalicylic acid (ASA), or aspirin provide
protection against several forms of cancer, particularly those in
the gastrointestinal tract (Chan et al., 2012; Rothwell et al., 2012;
Drew et al., 2016). Same evidence has been also provided for a series
of non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen,
flurbiprofen and sulindac, either alone or, in combination with
other compounds like difluoromethylornithin (DFMO), a suicide
inhibitor of polyamine biosynthesis (Tegeder et al., 2001; Rostom
et al., 2007; Meyskens et al., 2008; Thompson et al., 2010; Chan
et al., 2012; Dolejs et al., 2016). Evidence includes multiple data in
cell lines and model animals, but also tens of epidemiological
studies. Aspirin and NSAIDs inhibit several characteristic cancer
cell hallmarks, including unrestrained cell proliferation, cell
migration and invasion and cell death resistance. Numerous
series of epidemiological evidences suggested that regular use of
aspirin and/or several NSAIDs provide significant reduction in the
risk of developing several forms of cancer and, particularly
colorectal cancer. However, recommendation to use these over
the counter drugs for cancer chemoprevention is hindered by the
well-known secondary effects and/or risks of the regular use of
NSAIDs leading to the conclusion that if, for any other reason or
condition, individuals use NSAIDs regularly, they are probably
protected against several forms of cancer. For any other situation,
recommendation remains at hands of Doctors, that must evaluate
whether the risk of taking NSAIDs is worthy in some cases of high
risk of cancer. In fact, several studies have concluded that
individuals at high risk of developing some forms of hereditary
cancer like Lynch Syndrome may benefit of taking aspirin and/or
NSAIDs to help protecting them from cancer (Burn et al., 2011;
Yurgelun and Hampel, 2018). This may also apply to those patients
that have received surgery for removing of polyps and/or tumors in
the gastrointestinal tract that are also at high risk of recurrence. In
these particular cases, the benefits are supported by several clinical
trials that have addressed specifically the treatment and dose. For
example, a clinical trial based in the combination of sulindac with
DFMO in patients with previous tumors indicate that this
combination may reduce nearly 90% the risk of developing
recurrences (Meyskens et al., 2008; Sporn and Hong, 2008),
revised in (Laukaitis and Gerner, 2011).

The action mechanisms of these drugs involved in preventing
cancer cell hallmarks and cancer itself have been addressed in a
large series of studies but they remain obscure. Most studies have
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addressed the contribution of inflammation to carcinogenesis
(Balkwill and Mantovani, 2001; Coussens and Werb, 2002) and
the benefits of inhibiting inflammatory mechanisms in cancer
cell (Hudes et al., 2013; Wu et al., 2013). However, although
inflammation definitely contributes to cancer risk, several evidences
suggest that additional and/or alternative mechanisms may
contribute as well and some relevant mechanisms include
modulation of the expression and/or activity of calcium
permeable channels in cancer cells (Déliot and Constantin, 2015;
Hoth, 2016; Prevarskaya et al., 2018).

Núñez et al. (2006) reported that salicylic acid, the most
important metabolite of aspirin, inhibited store-operated Ca2+

entry (SOCE) and SOCE-dependent cell proliferation in colon
cancer cells (Núñez et al., 2006; Valero et al., 2008). This effect
cannot be attributed to inhibition of cyclooxygenase (COX) as
salicylic acid lacks the acetyl moiety involved in COX acetylation,
the mechanism involved in COX inhibition by aspirin. Also, it is
achieved at concentrations far lower than the necessary to inhibit
COX expression. Finally, the effects are similar in cells lacking
COX2 expression implying that an alternative target is involved.
On the other hand, same results are obtained by other NSAIDs
including ibuprofen, indomethacin, sulindac and R-flubiprofen,
the enantiomer unable to inhibit COX activity. Accordingly,
salicylate and other NSAIDs inhibit SOCE and cell proliferation
independently of COX activity and/or gene expression. Since
SOCE is critical for cell proliferation, these drugs inhibit cell
proliferation more likely because they inhibit SOCE rather than
inflammatory pathways. This paradoxical view could be
reconciled taken into account that SOCE may also contribute
to inflammatory pathways as it is key in the activation of all cell
types, including inflammatory cells. Importantly, inhibition of
cell proliferation by salicylic acid is counteracted simply by
enhancing extracellular Ca2+ just to restore Ca2+ entry in colon
cancer cells. When taken together, these data indicate that
salicylate (aspirin) and NSAIDs prevent cell proliferation in
tumor and non-tumoral cells by inhibiting SOCE in a COX-
independent manner.

In search for the mechanism of inhibition of SOCE by
salicylate and other NSAIDs, Villalobos and cols. tested the
effects of these drugs directly on Ca2+-release activated
currents (CRAC) responsible for SOCE in rat basophilic
leukemia cells (RBL) and other cell types (Muñoz et al., 2011).
These currents display a strong Ca2+-dependent inactivation
(Hoth et al., 1997; Fierro and Parekh, 2000) that render them
unable to operate in a few seconds unless nearby mitochondria
take up this calcium and sustain the current. In this sense, CRAC
channels are dictated not only by the filling state of intracellular
Ca2+ stores but also by mitochondria (Villalobos et al., 2018).
Inhibition of the MCU, the calcium channel responsible of
mitochondrial Ca2+ uptake, with ruthenium salts derivatives
like RU386 or mitochondrial uncouplers like FCCP, that
collapse the mitochondrial potential, the driving force for
mitochondrial Ca2+ uptake, inhibit mitochondrial ability to
take up Ca2+, thus leading to Ca2+-dependent inactivation of
CRAC channels (Villalobos et al., 2019). Similar results have
been obtained by MCU downregulation (Samanta et al., 2019).
Frontiers in Pharmacology | www.frontiersin.org 10
Salicylate and other NSAIDs are carboxylic acids bound to
aromatic rings, the typical chemical structure of mitochondrial
uncouplers. Accordingly, these drugs are able to decrease the
mitochondrial potential or even collapsing it depending on
concentration (Muñoz et al., 2011; Scatena, 2012; Hernández-
Morales et al., 2017). As a consequence, at low concentrations
they work as mild mitochondrial uncouplers that prevent
mitochondrial Ca2+ uptake, leading to the Ca2+-dependent
inactivation of CRAC channels and SOCE inhibition in RBL
cells. In conditions of high intracellular concentration of the Ca2+

buffer, when the Ca2+-dependent inactivation cannot be achieved
regardless of mitochondria, neither salicylate, NSAIDs nor
MCU removal promote CRAC inactivation or SOCE
inhibition. Therefore, salicylate and selected NSAIDs do not
inhibit CRAC channels directly. Instead, these drugs promote the
Ca2+-dependent inactivation of these channels by preventing the
Ca2+ uptake by mitochondria exactly as if we remove the MCU
(Villalobos et al., 2019). These same results have been obtained
also in other cell types as well, including vascular smooth muscle
cells (VSMCs) (Muñoz et al., 2011; Muñoz et al., 2013) and
colonic cells both normal and tumoral (Hernández-Morales
et al., 2017).

Interestingly, the effects of salicylate and NSAIDs are
achieved at very low concentrations in normal VSMCs leading
to a full arrest of cell proliferation. VSMCs undergo phenotypic
remodeling in different physiopathological situations. For
example, upon damage, VSMCs may transform from
differentiated, contractile cells to a proliferative and migrating
phenotype that restores injury and returns to the differentiated
phenotype. This process helps restoring damaged vessels but it
may not be as beneficial if excessive proliferation occludes vessels
as it happens in restenosis. This transdifferentation process is
mediated by a change in the prevalence of different Ca2+-
permeable channels. In the differentiated phenotype, voltage-
gated channels sensitive to dihydropyridines are prevalent.
However, in the proliferative state, store-operated Ca2+

channels take the lead. These channels show strong Ca2+-
dependent inactivation that is prevented by mitochondria.
Accordingly, low concentrations of salicylate and NSAIDs
inhibit SOCE and cell proliferation in these cells during the
proliferative phenotype but have no effect on Ca2+ entry during
the differentiated phenotype. In fact, they have been proposed for
treatment of restenosis, or excessive VSMC proliferation after
stent implantation in coronary arteries (Weber et al., 2000; Koo
et al., 2007; Dannoura et al., 2014).

As stated above, sensitivity of store-operated channels to
aspirin and NSAIDs depends on mitochondria. As
mitochondria from normal and tumor cells differ because of
the Warburg effect, perhaps mitochondrial control of store-
operated channels may be different as well in normal and
colon cancer cells. Hernández-Morales et al. (2017) reported
recently that this is indeed the case, at least in normal and colon
cancer cells. Mitochondria from normal cells are not powerful
enough to remove completely the Ca2+-dependent inactivation
of store-operated channels. However, in cancer cells, probably
because of the Warburg effect, mitochondria display enhanced
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mitochondrial potential and remove efficiently Ca2+, thus
preventing efficiently the Ca2+-dependent inactivation of store-
operated channels and sustaining Ca2+ entry (Hernández-
Morales et al., 2017). Supporting this idea, the RNA expression
analysis of genes involved in mitochondrial Ca2+ transport
indicate that, MCU positive-modulator genes are overexpressed
while negative-modulators are underexpressed in colon cancer cells
(Pérez-Riesgo et al., 2017).

As stated above in the review, another difference between
normal and colon cancer cells is that SOCE in normal colonic
cells involves only ORAI1-mediated CRAC channels. In contrast, in
colon cancer cells, SOCE is mediated by both ORAI1 and TRPC1
channels. Whereas ORAI1 channels in normal cells are essentially
inactivating, in colon cancer cells, perhaps the involvement of
TRPC1 channels may contribute to sustain currents. A possibility
recently pointed out is that Na+ influx mediated by TRPC1
channels may favor activity of the mitochondrial Na+/Ca2+

exchanger, in turn preventing mitochondrial Ca2+ overload and
the ensuing formation of reactive oxygen species (ROS) and ROS-
dependent inactivation of ORAI1 channels (Quintana et al., 2011;
Villalobos et al., 2018). This form of ROS-dependent regulation of
ORAI1 channels remains controversial (Samanta et al., 2018;
Samanta et al., 2019; Parekh, 2019).

In addition to aspirin and NSAIDs, other drugs have been
reported to provide chemoprotection against several forms of
cancer, particularly colorectal cancer. The most critical
compound is DFMO, also called eflornithine. DFMO is
considered a suicide inhibitor of ornithine decarboxylase 1
(ODC1), the critical enzyme in the biosynthesis pathway of the
main mammalian polyamines: putrescine, spermine and
spermidine. This enzyme is usually overexpressed in cancer
cells, thus explaining the increased levels of polyamines that
may contribute to cancer cell hallmarks, including enhanced cell
proliferation, migration and invasion (Luk and Baylin, 1984;
Pegg, 1988; Giardiello et al., 1997; Weiss et al., 2002). Several
authors have reported ODC1 polymorphisms and robust
correlation between specific polyamines and tissue growth
(Martıńez et al., 2003; Pegg, 2016; Wang et al., 2017; Sánchez-
Jiménez et al., 2019). Finally, different growth stimuli including
tumor promoters are able to enhance ODC activity and tumor
formation (Bachmann and Geerts, 2018; Gerner et al., 2018).
These effects are inhibited by DFMO, including inhibition of
colon carcinogenesis in cancer models, such as the ApcMin/+
mice with high ODC levels and polyamines in the gastrointestinal
tract. Interestingly, combinations of DFMO and NSAIDs have
synergistic effects and inhibit dramatically carcinogenesis in both
the small and large intestines of these mice. Recent clinical trials
indicate that DFMO prevents CRC, especially if combined with
sulindac, a carboxylic NSAID (Meyskens et al., 2008; Thompson
et al., 2010; Burke et al., 2016).

Recent data reported by Gutierrez et al., suggest that DFMO
may inhibit carcinogenesis by partially reversing the remodeling of
store-operated Ca2+ channels in colorectal cancer cells (Gutiérrez
et al., 2019). As stated above, colorectal cancers undergo a
remodeling of intracellular Ca2+ homeostasis consisting in
enhanced store-operated Ca2+ entry and decreased Ca2+ store
Frontiers in Pharmacology | www.frontiersin.org 11
content that contributed to cancer cell hallmarks, including
enhanced cell proliferation, invasion and survival (Sobradillo
et al., 2014; Villalobos et al., 2016; Villalobos et al., 2017).
Villalobos and cols. have proposed that, during carcinogenesis,
colorectal cancer cells may switch from a small, transient SOCE
based on ORAI1-dependent CRAC channels (normal cells) to large
and sustained currents depending on both ORAI1 and TRPC1
channels (tumor cells) (Villalobos et al., 2016; Villalobos et al., 2017;
Villalobos et al., 2019). Interestingly, DFMO treatment inhibits
cancer cell hallmarks in these cells including cell proliferation and
cell death resistance. These effects are associated to SOCE inhibition
and enhancement of Ca2+ store content. Therefore, DFMO may
inhibit cancer cell hallmarks by reversing Ca2+ remodeling in
colorectal cancer cells (Gutiérrez et al., 2019). Further research
revealed that DFMO treatment inhibits TRPC1 expression and
eliminates the TRPC1 component of the store-operated currents in
colon cancer cells. These effects are reversed in the presence of
polyamine putrescine (Gutiérrez et al., 2019). Collectively, these
data suggest that polyamines promote Ca2+ channel remodeling by
inducing expression of TRPC1 channels and this change promotes
cancer cell hallmarks. In fact, this process may simply represent the
exacerbation of the physiological process known as epithelial
restitution that is mediated by transient polyamine synthesis
induce by epithelial damage (Rao et al., 2012). While in
physiological conditions this is a transient process limited by the
repair of the wound epithelium, in cancer cells this process may
became chronic due to ODC overexpression associated to activation
of c-myc oncogene secondary to mutations in APC.

As stated above, combination of DFMO plus sulindac prevents
efficiently colorectal cancer in high risk patients. An ongoing, large
scale, three phase clinical trial is presently testing this treatment for
patients at high risk of CRC (S0820, Adenoma and Second Primary
Prevention Trial—Full Text View—ClinicalTrials.gov). Interestingly,
Gutierrez et al. have reported that the combination of DFMO plus
sulindac removes not only the TRPC1 component of the store-
operated currents but also the ORAI1-dependent, thus fully
abolishing the current. The mechanisms are different. The TRPC1-
dependent current is removed at the expression level. However, the
ORAI1-dependent current is simply inactivated because the
mitochondria-dependent potentiation of the current is prevented.
In summary, these data suggest a critical role for Ca2+ channel
remodeling in cancer and provide a molecular mechanism of cancer
chemoprevention targeting the remodeling of ion channels.
CONCLUDING REMARKS

It is clearly evident in the literature, that Ca2+-permeable
channels, transporters and pumps play important roles in a
wide range of cancer-related process. The remodeling of these
Ca2+-permeable channels contributes to the Ca2+-homeostasis
dysregulation and both regulate several of the well-known cancer
hallmarks. The influence of Ca2+ and other ion channels in
carcinogenesis is so evident, that cancer was recently described as
a channelopathy. This is a relative new field, however important
advances in the identification of mechanism relating ion
July 2020 | Volume 11 | Article 968
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channels and cancer has been done. For this reason, ion channels
represent a novel and possibly important clinical targets for some
cancer types, with only a few channel blockers tested in
clinical trials.

The use of ion channels modulators as chemotherapeutic
agents has their pros and cons. Most of the Ca2+-permeable
channels are ubiquitously expressed in different tissues, playing
an important role in normal cell function. This is why, the
pharmacological modulation of a specific cancer-related channel
in tumor cells may produce significant toxicity in normal cells.
Further research is required to take full advantage of channel
modulators for cancer prevention, diagnosis and treatment.
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