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Abstract

Respiratory distress due to preterm birth is a significant cause of death in low-resource set-

tings. The introduction of continuous positive airway pressure (CPAP) systems to treat

respiratory distress significantly reduced mortality in high-resource settings, but CPAP was

only recently introduced in low-resource settings due to cost and infrastructure limitations.

We evaluated pressure stability and imposed work of breathing (iWOB) of five CPAP sys-

tems used in low resource settings: the Fisher and Paykel bubble CPAP, the Diamedica

baby CPAP, the Medijet nCPAP generator, and the first (2015) and second (2017) genera-

tion commercially available Pumani CPAPs. Pressure changes due to fresh gas flow were

evaluated for each system by examining the relationship between flow and pressure at the

patient interface for four pressures generated at the bottle (0, 3, 5, and 7 cm H2O); for the

Medijet nCPAP generator, no bottle was used. The slope of the resulting relationship was

used to calculate system resistance. Poiseuille’s law of resistance was used to investigate

significant contributors to resistance. Resistance ranged from 0.05 to 1.40
cm H2O
L=min ; three

CPAP devices had resistances < 0.4
cm H2O
L=min : the Fisher and Paykel system, the Diamedica

system, and the second generation Pumani bubble CPAP. The other two systems, the Med-

ijet nCPAP generator and the first generation Pumani bCPAP, had resistances >1.0
cm H2O
L=min .

Imposed WOB was measured using an ASL5000 test lung to simulate the breath cycle for

an infant (5.5 kg), a term neonate (4.0 kg), and a preterm neonate (2.5 kg). Imposed WOB

ranged from 1.4 to 39.5 mJ/breath across all systems and simulated infant sizes. Changes

in pressure generated by fresh gas flow, resistance, and iWOB differ between the five sys-

tems evaluated under ideal laboratory conditions. The available literature does not indicate

that these differences affect clinical outcomes.
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Introduction

Nearly two million infants die each year in the first week of life; nearly half of these deaths

arise from complications of preterm birth [1]. Respiratory distress syndrome (RDS) is one of

the most significant short-term complications of preterm birth. Approximately 3–7% of all

neonates suffer from respiratory distress, and it is 30 times more common in preterm than in

term neonates. Additionally, rates of respiratory distress in low-resource neonatal units may

be as high as 45% [2,3], and as many as 45% of deaths in neonatal units can be primarily attrib-

uted to RDS [3].

The World Health Organization and European Guidelines for Management of RDS recom-

mend that respiratory distress in preterm newborns be treated with surfactants and continuous

positive airway pressure (CPAP) [4,5]. In high-resource settings, survival rates for neonates

with respiratory distress improved significantly after the introduction of CPAP [6,7]. Bubble

CPAP (bCPAP), which provides pressure to a breathing circuit by immersing the distal end of

the expiratory tubing in water, is a standard method of providing CPAP to neonates in respira-

tory distress. This is especially true in low-resource settings (LRS) where mechanical ventila-

tion is not possible [8,9].

Low-resource settings present unique challenges for the design of medical devices, includ-

ing lack of financial resources to purchase equipment, weak supply chains for consumables,

inconsistent power, and harsh environmental conditions [10,11]. For this reason, a number of

CPAP systems have been designed for use specifically in LRS, including the Diamedica baby

CPAP and the Pumani CPAP [12–14]. The Diamedica baby CPAP includes a built-in oxygen

concentrator for provision of oxygen to infants requiring CPAP in environments that do not

have reliable oxygen supplies. The commercialized Pumani bCPAP device uses diaphragm

pumps, rather than compressed air or medical gas supplies, to provide fresh gas flow. The first

generation commercially available Pumani bCPAP (2015) included a bleed valve near the

patient interface to prevent rebreathing (a modified Mapleson A circuit) [15]. The Pumani sys-

tem was recently revised by the manufacturer; the second generation circuit of the Pumani

bubble CPAP device (2017) delivers air first to the patient interface, then to the pressure-gen-

erating bottle (standard nCPAP circuit) (Fig 1) [16]. As part of the redesign, the diameter of

the tubing connectors was also increased by 25%. The Medijet nCPAP generator uses a resis-

tive system to eliminate the bubble pressure circuit; though not designed primarily for LRS, it

has been used effectively in these settings [17]. The Fisher and Paykel bubble CPAP system,

though intended for use in high-resource settings, has also been used in LRS [18]. These

devices were selected for comparison as they have features that make them suitable for LRS

and are currently used in these settings.

The purpose of this study was to compare pressures generated by fresh gas flow and

imposed work of breathing (iWOB) of five CPAP devices used in low-resource settings.

Materials and methods

We measured pressure generated by fresh gas flow and imposed work of breathing in a labora-

tory setting for five CPAP systems: Fisher and Paykel bubble CPAP (Fisher and Paykel, USA),

Diamedica baby CPAP (Diamedica, UK), Medijet disposable nCPAP generator (medin Medi-

cal Innovations, DE), first generation commercially available Pumani bCPAP (Hadleigh

Health Technologies, USA), and second generation commercially available Pumani bubble

CPAP (Hadleigh Health Technologies, USA).

Flow rate was fixed using a flow meter for fresh gas. Pressure measurements were recorded

using a Fluke VT650 Gas Flow Analyzer (Fluke Biomedical, USA) which was factory calibrated

to meet manufacturer specifications (±0.5%) prior to data collection. Work of breathing was
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measured using an ASL 5000 Breathing Simulator with 3L cylinder (IngMar Medical, USA).

The ASL system is calibrated annually to ensure pressure and volume accuracy. Pumani

prongs (size 4) were used for all CPAP systems except the Medijet; for the Medijet, the inter-

face was connected directly to both measurement devices. Prongs and the Medijet device were

connected to the airway inlet (capable of measuring flow, pressure, volume and O2 concentra-

tion) of the Fluke VT650 using a silicone Y-connector (Fig 2).

Fig 1. (A) First generation Pumani bCPAP device. In the first generation Pumani bCPAP device, air flows from the

flow driver to the bottle and the patient interface in parallel. There is a bleed valve at the patient interface to prevent

rebreathing of CO2. (B) Second generation Pumani bubble CPAP device. In the second generation Pumani bubble

CPAP device, air flows from the flow driver to the patient interface to the bottle.

https://doi.org/10.1371/journal.pone.0242590.g001

Fig 2. Prongs connected to the airway inlet of the VT650 gas flow analyzer. Prongs were connected to the device

using a silicone Y-connector.

https://doi.org/10.1371/journal.pone.0242590.g002

PLOS ONE Performance of CPAP systems used in low-resource settings

PLOS ONE | https://doi.org/10.1371/journal.pone.0242590 December 3, 2020 3 / 12

https://doi.org/10.1371/journal.pone.0242590.g001
https://doi.org/10.1371/journal.pone.0242590.g002
https://doi.org/10.1371/journal.pone.0242590


Pressure changes in response to fresh gas flow and system resistance

System resistance was evaluated by systematically increasing the fresh gas flow from 5–10 L/

min and measuring the pressure at the patient interface. For all but the Medijet nCPAP system,

the expiratory limb was submerged to 0, 3, 5, and 7 cm H2O as described in the user manuals

of each device, while flow rates were increased from 5–10 liters per minute (L/min) at intervals

of 1 L/min. For the Medijet nCPAP generator, pressure is provided solely through resistance,

and therefore, there is no submersion of the expiratory limb. End expiratory pressures were

recorded for each pressure/flow combination for one minute each. Pressures were recorded at

a sampling rate of 1 Hz.

The first 10 and last 10 seconds of each recording were discarded and the mean and stan-

dard deviation of the remaining pressure measurements are reported. Resistance was calcu-

lated by determining the slope and 95% confidence interval of the best-fit line (least-squares

method) of measured pressure vs. flow at 0 cm H2O of submersion depth. An F-test of signifi-

cance was used to determine whether the slope of each line was significantly different than 0.

Resistances were compared against theoretical values calculated by Poiseulle’s law of resis-

tance R ¼ 8Zl
pr4 where R = resistance; η = the dynamic viscosity of air; l = length of tubing; and

r = radius of the tubing, connectors, and prongs. The dynamic viscosity of air at 22˚C (η) was

defined as 18.22 × 10−6 Pa-s [19]; length (l) and radius (r) were measured.

Imposed work of breathing

A sinusoidal breath profile was used to simulate breathing of an infant (5.5 kg), a term neonate

(4 kg), and a late preterm neonate (2.5 kg). Tidal volumes were estimated at 6 mL/kg body

weight [20]. Infant breathing was simulated using a 32 mL tidal volume at 60 breaths per min-

ute (bpm). Term neonate breathing was simulated using a 24 mL tidal volume at 67 bpm. Pre-

term neonate breathing was simulated using a 15 mL tidal volume at 67 bpm [20]. For all lung

models and CPAP systems, the total resistance of the ASL/CPAP system is the sum of the resis-

tances of both the ASL and CPAP individually. Resistance and compliance at the test lung

were set to zero for the models used here. For all devices except the Medijet nCPAP generator,

the expiratory limb was submerged to 6, 7, and 8 cm H2O, while flows were set at 6, 7, and 8

liters per minute (L/min). Each test lasted one minute. Breath-by-breath measurements

(including imposed work of breathing) were calculated using the ASL 5000 software to deter-

mine the integral of the pressure-volume loop for each breath (1 Hz for infant model; 1.1 Hz

for premature and neonatal infant models).

Imposed work of breathing measurements for the first ten and last ten breaths were dis-

carded, resulting in 40 breaths remaining for the infant model and 47 breaths each for the

term neonate and preterm neonate models. Mean and standard deviations of iWOB values

were calculated. A paired t-test (α<0.05) was used to identify significant differences between

systems. Statistical analysis was performed in MATLAB (Mathworks, Natick, MA) and SPSS

(IBM, Armonk, NY).

Results

Pressure changes in response to fresh gas flow and system resistance

Pressure at the patient interface was plotted against applied flow for 0, 3, 5, and 7 cm of sub-

mersion for all but the Medijet nCPAP system (Fig 3). For the Medijet nCPAP generator, pres-

sure is provided solely through pressure generation in the chamber, and therefore, there is no

submersion of the expiratory limb.
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Resistance of each system is calculated as the slope of each line from 5–10 L/min at 0 cm

H2O and is shown in Table 1. For the Medijet system, resistance was calculated from the line

indicating no externally applied pressure. All slopes were significantly different than zero (F-

test, p< 0.001). Resistances range from 0.055
cm H2O
L=min (Fisher and Paykel bubble CPAP) to 1.40

cm H2O
L=min (Medijet nCPAP generator). The resistances of both the Diamedica baby CPAP and both

Pumani systems fall in between these two values, at 0.20
cm H2O
L=min (Diamedica), 0.34

cm H2O
L=min (second

generation Pumani) and 1.22
cm H2O
L=min (first generation Pumani).

Contributions to resistance in the expiratory limb were examined using Poiseuille’s law of

resistance. Diameters and lengths of tubing, prongs, and connectors for inspiratory and expi-

ratory limbs of each system were measured. For the first generation Pumani bCPAP, where air

flows in parallel to the bottle and patient, only the patient limb of the circuit was included

here. Theoretical resistances are plotted in Fig 4.

Imposed work of breathing

Imposed work of breathing (mJ/breath) for three representative flow/pressure combinations

(6, 7, and 8 L/min; 8 cm H2O) is shown for the infant, term neonate, and preterm neonate for

Fig 3. Pressure at patient interface vs. flow rate for (A) Fisher and Paykel bubble CPAP; (B) Diamedica baby CPAP; (C) second generation

Pumani bubble CPAP; (D) Medijet nCPAP generator; (E) first generation Pumani bCPAP. Relationships are shown at 0 (solid black), 3

(solid gray), 5 (dashed black), and 7 (dotted black) cm of submersion in H2O. For the Medijet, only one value (solid black) is shown. Error bars

represent one standard deviation. Data in S1 Table.

https://doi.org/10.1371/journal.pone.0242590.g003

Table 1. Resistance of CPAP systems at 0 cm H2O submersion depth.

CPAP system Resistance (
cm H2O
L=min Þ at 0 cm H2O (95% ci)

Fisher and Paykel bubble CPAP 0.055 (0.054–0.056)

Diamedica Baby CPAP 0.20 (0.20–0.20)

2nd generation Pumani bubble CPAP 0.34 (0.33–0.34)

Medijet nCPAP generator 1.40 (1.38–1.42)

1st generation Pumani bCPAP 1.22 (1.20–1.24)

https://doi.org/10.1371/journal.pone.0242590.t001
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the Fisher and Paykel, Diamedica and first and second generation Pumani CPAP systems.

iWOB for remaining pressure/flow combinations (6, 7, and 8 L/min; 6, 7 cm H2O) is shown in

S1 Fig. For the Medijet nCPAP generator, pressure cannot be set independently; results are

shown for the flow rates of 6, 7, and 8 L/min. A univariate ANOVA with Tukey post-hoc test

was performed to identify whether differences in iWOB were significant across devices. All

between-device differences in iWOB were statistically significant at the p<0.05 level (p<0.001)

with the exception of Diamedica baby CPAP and Fisher and Paykel bubble CPAP with 6 L/

min fresh gas flow for a preterm neonate (p = 0.078).

Discussion

The CPAP systems evaluated here had resistances ranging from 0.05 to 1.40
cm H2O
L=min as deter-

mined by a linear fit of pressure vs. flow. Three CPAP devices had resistances < 0.4
cm H2O
L=min : the

Fisher and Paykel system, the Diamedica system, and the second generation Pumani bubble

CPAP (2017). For these three devices, calculations of theoretical resistance showed that system

resistance was generated primarily by the patient tubing, with contributions from connectors

and prongs. The other two systems, the Medijet nCPAP generator and the first generation

Pumani bCPAP (2015), had resistances >1.0
cm H2O
L=min ; calculations of theoretical resistance

showed significant contributions to resistance from sources other than the patient circuit. One

limitation of this analysis is that the linear relationship between pressure and flow holds for

laminar flow but breaks down under conditions of turbulent flow, which are likely present

here. Under these conditions, a second-degree polynomial may be a better fit, and thus this

slope may capture additional features of the system (e.g. turbulence). The relationship between

pressure and flow for the Medijet and first generation Pumani bCPAP shows some degree of

non-linear resistance (Fig 3); however, here we used a linear fit for ease of comparison. Addi-

tionally, for the Medijet device in particular, resistance to patient breathing may differ from

the resistance to fresh gas flow from the nCPAP generator inlet.

Poiseuille’s Law of Resistance was used to calculate theoretical resistance in each CPAP sys-

tem. Although there are limitations to this calculation—In particular, that air flow through

Fig 4. Theoretical contributions of tubing, prongs, and connectors to calculated resistance. Height of the bars

indicates measured resistance of the expiratory limb for each CPAP system. Theoretical contribution of system tubing

(solid), prongs (dotted), and connectors (diagonal lines) are shown. Data in S2 Table.

https://doi.org/10.1371/journal.pone.0242590.g004
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CPAP tubing may not be laminar—for one of the five systems evaluated here, theoretical resis-

tance calculations account for > 90% of measured resistance. For the remaining three systems

examined—Diamedica baby CPAP, second generation Pumani bubble CPAP and first genera-

tion Pumani bCPAP, the majority of resistance cannot be accounted for using Poiseuille’s

Law; for these systems, it is likely that turbulence accounts for the remainder of the contribu-

tion. For the first generation Pumani bCPAP, the majority of resistance is provided by the

connectors—In particular, the bleed valve used to prevent buildup of CO2. Turbulence at the

bleed valve likely accounts for the remaining resistance. For the Medijet system, this is because

the system is designed as a resistance system; the resistance is generated in the form of the

modified Benveniste valve. For the Diamedica system, the remaining resistance may be gener-

ated by turbulence in the CPAP straw; air escapes the straw though 16 small orifices.

The imposed work of breathing for the second generation Pumani bubble CPAP system

was reduced by approximately half from that of the first generation Pumani bCPAP system.

This reduction was significant (p< 0.001). The second generation Pumani bubble CPAP also

reduces the iWOB below that of the Medijet nCPAP generator system [21,22]; it remains

higher than that of the Diamedica and Fisher and Paykel bubble CPAP systems [22,23]. As

iWOB is highly correlated with resistance, the significant reduction in resistance predicts this

reduction in iWOB.

We compared our results for imposed WOB to those previously reported for the infant

breath profile the first generation Pumani bCPAP, Diamedica, Neopuff, Fisher and Paykel

and Medijet systems. Values match those reported in Falk et al. [21–23]; the iWOB reported

by Falk for the Diamedica system is approximately 9 mJ/breath (compared to 9 mJ/breath

reported here); the iWOB reported by Falk for the Medijet system is approximately 30 mJ/

breath (compared to the 32 mJ/breath reported here); and the iWOB reported by Falk for the

Pumani (2015) system is approximately 40 (compared to the 39 mJ/breath reported here). One

outlying value is the iWOB of the Fisher and Paykel bubble CPAP system; our measured value

was higher than that reported by Falk et al; the iWOB reported by Falk for the Fisher and Pay-

kel system is approximately 7 mJ/breath (compared to 15 mJ/breath reported here). We note

that our measurements for all three systems were performed using the same size nasal prongs

(4.0 mm inner diameter). Falk et al. used 4.0 mm inner diameter prongs to measure the iWOB

with the Fisher and Paykel system and 3.8 mm inner diameter prongs to measure the iWOB

with the first generation Pumani bCPAP system. The iWOB measured for the Fisher and Pay-

kel system is high even though the resistance of the system is low; the Diamedica baby CPAP

device, which has similar resistance, has lower iWOB for the infant breath profile. The smaller

neonatal and preterm neonate breath profiles are associated with comparable iWOB for the

Fisher and Paykel and Diamedica devices. It is important to note that the outlying value for

the Fisher and Paykel device was registered on the same experimental setup used consistently

across all devices. Additionally, leakage at the prongs, while capable of reducing measured

CPAP, would likely also reduce iWOB; this did not occur for these readings.

Clinical significance

The clinical significance of differences in resistance and iWOB is uncertain [23]. In this study,

resistance for all five systems was measured under ideal conditions with a perfect seal at the

nasal prongs. In practice, small leaks at the nasal prongs are likely to reduce pressure stability

of all systems [24]. Previous laboratory and clinical studies have shown that pressure delivered

to the nasal prongs in bubble CPAP systems exceeds the immersion depth of the expiratory

tubing, with the pressure overshoot increasing with the magnitude of flow [25]; this finding

was replicated here (as shown in Fig 3). Pressures at the patient interface were highest at 10 L/
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Fig 5. Imposed work of breathing for Fisher and Paykel bubble CPAP, Diamedica baby CPAP, 2nd generation

Pumani bubble CPAP, Medijet nCPAP generator, and 1st generation Pumani bCPAP. Imposed work of breathing

for the Fisher and Paykel, Diamedica and first and second generation Pumani CPAP systems at flow rates of 6, 7, and 8

L/min and 8 cm H2O submersion depth are plotted. For the Medijet nCPAP generator, pressure cannot be set

independently; results for the flow rates of 6, 7, and 8 L/min are plotted. (A) Imposed work of breathing for breath

profiles of an infant (5.5 kg) (32 mL lung volume, sinusoidal breath pattern, RR = 60); (B) Imposed work of breathing

for a term neonate (4 kg) (24 mL lung volume, sinusoidal breath pattern, RR = 67); (C) Imposed work of breathing for

a preterm neonate (2.5 kg) (15 mL lung volume, sinusoidal breath pattern, RR = 67). Error bars represent standard

deviation. Data in S3 and S4 Tables.

https://doi.org/10.1371/journal.pone.0242590.g005
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min of flow for the Medijet (9.8±.20 cm H2O) and first generation Pumani bCPAP with a sub-

mersion depth of 7 cm (11.2±.13 cm H2O).

There are no clinical guidelines for imposed work of breathing, and it varies significantly

for commercially available systems, as shown in Fig 5. Due to the clinical efficacy of CPAP,

randomized clinical trials—especially in low-resource settings—are rare and often small.

Moreover, few studies have investigated the correlation between imposed work of breathing

measured in laboratory-based studies and work of breathing observed during patient-device

interaction [26]. However, a recent randomized clinical trial of 161 preterm neonates com-

pared the duration of CPAP need and possible complications of two CPAP systems: the Medi-

jet and Fisher and Paykel bubble CPAP systems [17]. There were no statistically significant

differences in any of the study outcomes (p> 0.05) for any metric measured, despite the fact

that laboratory measurement of the iWOB for the Medijet system is approximately 3-fold

higher than that of the Fisher and Paykel bubble CPAP system [17]. Another study of 32

patients found that continuous-flow nCPAP imposes a greater work of breathing than vari-

able-flow nCPAP. Despite the higher imposed WOB, patients receiving continuous-flow

nCPAP did not exhibit changes in respiratory rate, thoraco-abdominal asynchrony, or require

additional oxygen [27]. When compared to other reports of mortality reduction associated

with CPAP in low-resource settings, a pre-commercial prototype using the same circuit as the

first generation commercially available Pumani bCPAP device developed in 2014 (prior to

2015 commercialization) performs similarly to other available bCPAPs, despite significantly

higher iWOB as measured in the laboratory; a recent study in Tanzania of the first generation

Pumani bCPAP device also showed similar improvements in survival [6,28].

Although there is scant evidence to demonstrate that system resistance and imposed WOB

are clinically significant, laboratory-based performance metrics such as these may help provid-

ers select devices appropriate for their clinical setting. This information may also help manu-

facturers improve device performance by identifying significant contributors to system

resistance: for example, tubing diameter is a major contributor to resistance, and also predicts

connector size. As resistance varies with the fourth power of diameter, small changes in diame-

ter can result in significant improvements in resistance and iWOB. While tubing length is also

an important contributor to overall resistance, small changes in tubing length have only a pro-

portional impact on resistance. In addition, differences in laboratory performance may indi-

cate areas where larger clinical trials are needed.

Another area of interest is CPAP provided during or immediately after resuscitation. For

term infants in high resource settings, there is no current recommendation for CPAP at birth

[29,30] and available evidence suggests that there is increased risk of air leak and pneumotho-

rax [31,32]. Additional clinical trials may be needed to determine if additional device perfor-

mance criteria are necessary for this use case.

Conclusions

Laboratory testing under ideal conditions when no leaks are present at the patient interface

shows that commercially available CPAP systems differ in resistance and iWOB. There are no

available data to suggest that these differences affect clinical outcomes.

Supporting information

S1 Fig. Imposed work of breathing at flow rates of 6, 7, and 8 L/min and 6, 7, and 8 cm H2O

submersion depth. Left: 8 cm H2O (shown in results); middle: 6 cm H2O; right: 7 cm H2O.

(TIF)
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S1 Table. Pressure at patient interface at fixed flow rates.

(XLSX)

S2 Table. Measurements of tubing length and diameter used to calculate theoretical resis-

tance.

(XLSX)

S3 Table. Work of breathing at flow rates of 6, 7, and 8 L/min and 8 cm H2O submersion

depth. For the Medijet nCPAP generator, pressure cannot be set independently; results for the

flow rates of 6, 7, and 8 L/min were measured using ASL 5000 Breathing Simulator.

(XLSX)

S4 Table. Tidal volumes and mean, minimum, and maximum airway pressures at 6, 7, and

8 L/min fresh gas flow and 8 cm H2O submersion depth measured using ASL 5000 Breath-

ing Simulator.

(XLSX)

Acknowledgments

The authors would like to acknowledge productive discussions with Thomas Drevhammar

regarding performance measures of CPAP systems. The authors would also like to thank Kel-

ley Maynard, who helped develop the infant models for the ASL 5000 test lung and for her

contributions to the testing of the Pumani device.

Author Contributions

Conceptualization: Jose D. Rojas, Z. Maria Oden, Rebecca Richards-Kortum.

Formal analysis: Megan Heenan, Z. Maria Oden, Rebecca Richards-Kortum.

Investigation: Megan Heenan, Jose D. Rojas.

Methodology: Megan Heenan, Jose D. Rojas, Z. Maria Oden, Rebecca Richards-Kortum.

Resources: Jose D. Rojas.

Supervision: Z. Maria Oden, Rebecca Richards-Kortum.

Writing – original draft: Megan Heenan.

Writing – review & editing: Megan Heenan, Jose D. Rojas, Z. Maria Oden, Rebecca Richards-

Kortum.

References
1. Oza S, Lawn JE, Hogan DR, Mathers C, Cousens SN. Neonatal cause-of-death estimates for the early

and late neonatal periods for 194 countries: 2000–2013. Bulletin World Health Organization. 2015 Jan;

93(1):19–28. https://doi.org/10.2471/BLT.14.139790 PMID: 25558104

2. Tochie JN, Choukem S-P, Langmia RN, Barla E, Koki-Ndombo P. Neonatal respiratory distress in a ref-

erence neonatal unit in Cameroon: an analysis of prevalence, predictors, etiologies and outcomes. The

Pan African Medical Journal. 2016; 24(152).

3. Muhe LM, McClure EM, Nigussie AK, Mekasha A, Worku B, Worku A, et al. Major causes of death in

preterm infants in selected hospitals in Ethiopia (SIP): a prospective, cross-sectional, observational

study. Lancet Global Health. 2019 Aug; 7(8):1130–8. https://doi.org/10.1016/S2214-109X(19)30220-7

PMID: 31303299

4. WHO recommendations on newborn health: guidelines approved by the WHO Guidelines Review Com-

mittee. World Health Organization; 2017.

PLOS ONE Performance of CPAP systems used in low-resource settings

PLOS ONE | https://doi.org/10.1371/journal.pone.0242590 December 3, 2020 10 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242590.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242590.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242590.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242590.s005
https://doi.org/10.2471/BLT.14.139790
http://www.ncbi.nlm.nih.gov/pubmed/25558104
https://doi.org/10.1016/S2214-109X%2819%2930220-7
http://www.ncbi.nlm.nih.gov/pubmed/31303299
https://doi.org/10.1371/journal.pone.0242590


5. Sweet DJ, Carnielli V, Griesen G, Hallman M, Ozek E, te Pas A, et al. European Consensus Guidelines

on the Management of Respiratory Distress Syndrome—2019 Update. Neonatology. 2019 Jun; 115

(4):432–50. https://doi.org/10.1159/000499361 PMID: 30974433

6. Thukral A., Sankar MJ, Chandrasekaran A, Agarwal R, Paul VK. Efficacy and safety of CPAP in low-

and middle- income countries. Journal of Perinatology. 2016; 36:21–8. https://doi.org/10.1038/jp.2016.

29 PMID: 27109089

7. Rezzonico R, Caccamo LM, Manfredini V, Cartabia M, Sanchez N, Paredes Z, et al. Impact of the sys-

tematic introduction of low-cost bubble nasal CPAP in a NICU of a developing country: a prospective

pre- and post-intervention study. BMC Pediatrics. 2015; 15(26).

8. Kamath BD, Macguire ER, McClure EM, Goldenberg RL, Jobe AH. Neonatal mortality from respiratory

distress syndrome: lessons for low-resource countries. Pediatrics. 2011 Jun; 127(6):1139–46. https://

doi.org/10.1542/peds.2010-3212 PMID: 21536613

9. Dewez Juan Emmanuel, Nynke van den Broek. Continuous positive airway pressure (CPAP) to treat

respiratory distress in newborns in low- and middle-income countries. Tropical Doctor. 2017; 47(1):19–

22. https://doi.org/10.1177/0049475516630210 PMID: 26864235

10. Richards-Kortum R, Oden M. Devices for Low-Resource Health Care. Science. 2013 Nov 29;

342:1055–7. https://doi.org/10.1126/science.1243473 PMID: 24288323

11. Malkin RA. Design of Health Care Technologies for the Developing World. Annual Review of Biomedical

Engineering. 2007; 9:567–87. https://doi.org/10.1146/annurev.bioeng.9.060906.151913 PMID: 17430083

12. Kawaza K, Machen HE, Brown J, Mwanza Z, Iniguez S, Gest A, et al. Efficacy of a low-cost bubble

CPAP system in treatment of respiratory distress in a neonatal ward in Malawi. PLoS One. 2014 Jan; 9

(1).

13. Brown J, Kawaza K, Mwanza Z, Iniguez S, Lang H, Gest A, et al. A high-value, low-cost bubble continu-

ous positive airway pressure system for low-resource settings: technical assessment and initial case

reports. PLoS One. 2013; 8(1). https://doi.org/10.1371/journal.pone.0053622 PMID: 23372661

14. Carns J, Kawaza K, Liaghati-Mobarhan S, Asibon A, Quinn MK, Chalira A, et al. Neonatal CPAP for

respiratory distress across Malawi and mortality. Pediatrics. 2019 Oct; 144(4). https://doi.org/10.1542/

peds.2019-0668 PMID: 31540968

15. Mapleson William W. The elimination of rebreathing in various semi-closed anaesthetic systems. Brit J

Anaesth. 1954; 26(323). https://doi.org/10.1093/bja/26.5.323 PMID: 13199210

16. Wung J-T, Driscoll JM, Epstein R, Hyman AI. A new device for CPAP by nasal route. Critical Care Medi-

cine. 3(2):76–8. https://doi.org/10.1097/00003246-197503000-00006 PMID: 1098852

17. Hosseini Mohammad-Bagher, Heidarzadeh Mohammad, Balila Masumah, Ghojazadeh Morteza,

Janani Raheleh, Safavi-nia Sima, et al. Randomized controlled trial of two methods of nasal continuous

positive airway pressure (N-CPAP) in preterm infants with respiratory distress syndrome: underwater

bubbly CPAP sv. Medijet system device. Turkish Journal of Pediatrics. 2012; 54:632–40. PMID:

23692790

18. Koti J, Murki S, Gaddam P, Reddy A, Reddy MDR. Bubble CPAP for respiratory distress syndrome in

preterm infants. Indian Journal of Pediatrics. 2010 Feb; 47:139–43. https://doi.org/10.1007/s13312-

010-0021-6 PMID: 19578226

19. Air—Dynamic and Kinematic Viscosity [Internet]. www.engineeringtoolbox.com.

20. McCann Ellen M, Goldman Steven L, Brady June P. Pulmonary function in the sick newborn infant.

Pediatric Research. 1987; 21(4). https://doi.org/10.1203/00006450-198704000-00001 PMID: 3574984

21. Falk Markus, Donaldsson Snorri, Jonsson Baldvin, Drevhammar Thomas. Return of neonatal CPAP

resistance—the Medijet device family examined using in vitro flow simulations. Acta Paediatrica. 2017;

106:1760–6. https://doi.org/10.1111/apa.13994 PMID: 28715132

22. Drevhammar Thomas, Nilsson Kjell, Zetterstrom Henrik, Jonsson Baldvin. Comparison of seven infant

continuous positive airway pressure systems using simulated neonatal breathing. Pediatr Crit Care

Med. 2012; 13(2):113–9. https://doi.org/10.1097/PCC.0b013e31822f1b79 PMID: 21946854

23. Falk Markus, Donaldsson Snorri, Drevhammar Thomas. Infant CPAP for low-income countries: An

experimental comparison of standard bubble CPAP and the Pumani system. PLoS One. 2018 May; 13

(5).

24. Kahn Doron J, Courtney Sherry E, Steele Andrew M, Habib Robert H. Unpredictability of delivered bub-

ble nasal continuous positive airway pressure: role of bias flow magnitude and nares-prong air leaks.

Pediatric Research. 2007; 62(3):343–7. https://doi.org/10.1203/PDR.0b013e318123f702 PMID:

17622958

25. Courtney SE, Kahn DJ, Singh R, Habib RH. Bubble and ventilator-derived nasal continuous positive air-

way pressure in premature infants: work of breathing and gas exchange. Journal of Perinatology. 2011;

31:44–50. https://doi.org/10.1038/jp.2010.55 PMID: 20393478

PLOS ONE Performance of CPAP systems used in low-resource settings

PLOS ONE | https://doi.org/10.1371/journal.pone.0242590 December 3, 2020 11 / 12

https://doi.org/10.1159/000499361
http://www.ncbi.nlm.nih.gov/pubmed/30974433
https://doi.org/10.1038/jp.2016.29
https://doi.org/10.1038/jp.2016.29
http://www.ncbi.nlm.nih.gov/pubmed/27109089
https://doi.org/10.1542/peds.2010-3212
https://doi.org/10.1542/peds.2010-3212
http://www.ncbi.nlm.nih.gov/pubmed/21536613
https://doi.org/10.1177/0049475516630210
http://www.ncbi.nlm.nih.gov/pubmed/26864235
https://doi.org/10.1126/science.1243473
http://www.ncbi.nlm.nih.gov/pubmed/24288323
https://doi.org/10.1146/annurev.bioeng.9.060906.151913
http://www.ncbi.nlm.nih.gov/pubmed/17430083
https://doi.org/10.1371/journal.pone.0053622
http://www.ncbi.nlm.nih.gov/pubmed/23372661
https://doi.org/10.1542/peds.2019-0668
https://doi.org/10.1542/peds.2019-0668
http://www.ncbi.nlm.nih.gov/pubmed/31540968
https://doi.org/10.1093/bja/26.5.323
http://www.ncbi.nlm.nih.gov/pubmed/13199210
https://doi.org/10.1097/00003246-197503000-00006
http://www.ncbi.nlm.nih.gov/pubmed/1098852
http://www.ncbi.nlm.nih.gov/pubmed/23692790
https://doi.org/10.1007/s13312-010-0021-6
https://doi.org/10.1007/s13312-010-0021-6
http://www.ncbi.nlm.nih.gov/pubmed/19578226
http://www.engineeringtoolbox.com
https://doi.org/10.1203/00006450-198704000-00001
http://www.ncbi.nlm.nih.gov/pubmed/3574984
https://doi.org/10.1111/apa.13994
http://www.ncbi.nlm.nih.gov/pubmed/28715132
https://doi.org/10.1097/PCC.0b013e31822f1b79
http://www.ncbi.nlm.nih.gov/pubmed/21946854
https://doi.org/10.1203/PDR.0b013e318123f702
http://www.ncbi.nlm.nih.gov/pubmed/17622958
https://doi.org/10.1038/jp.2010.55
http://www.ncbi.nlm.nih.gov/pubmed/20393478
https://doi.org/10.1371/journal.pone.0242590


26. Jane Pillow J. Which continuous positive airway pressure system is best for the preterm infant with

respiratory distress syndrome? Clinical Perinatology. 2012; 39:483–96. https://doi.org/10.1016/j.clp.

2012.06.007 PMID: 22954264

27. Courtney Sherry E., Pyon Kee H., Saslow Judy G., Arnold Gerald K., Pandit Paresh B., Habib Robert H.

Lung recruitment and breathing pattern during variable versus continuous flow nasal continuous posi-

tive airway pressure in premature infants: an evaluation of three devices. Pediatrics. 2001 Feb; 107(2).

https://doi.org/10.1542/peds.107.2.304 PMID: 11158463

28. Mwatha AB, Mahande M, Olomi R, John B, Philemon R. Treatment outcomes of Pumani bubble-CPAP

versus oxygen therapy among preterm babies presenting with respiratory distress at a tertiary hospital

in Tanzania—Randomised trial. PLOS One. 2020 Jun; 15(6).

29. Monsieurs KG, Nolan JP, Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, et al. European Resuscita-

tion Council Guidelines for Resuscitation 2015 Section 1. Executive summary. Rsuscitation. 2015;

95:1–80. https://doi.org/10.1016/j.resuscitation.2015.07.038 PMID: 26477410

30. International Liaison Committee on Resuscitation. 2005 International Consensus on Cardiopulmonary

Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Part 7:

Neonatal resuscitation. Resuscitation. 2005 Dec; 67(2–3):293–303. https://doi.org/10.1016/j.

resuscitation.2005.09.014 PMID: 16324993

31. Hishikawa K, Goishi K, Fujiwara T, Kaneshige M, Ito Y, Sago H. Pulmonary air leak associated with

CPAP at term birth resuscitation. Arch Dis Child Fetal Neonatal Ed. 2015; 100:F382–7. https://doi.org/

10.1136/archdischild-2014-307891 PMID: 25854822

32. Smithhart W, Wyckoff MH, Kapadia V, Jaleel M, Kakkilaya V, Brown LS, et al. Delivery room continuous

positive airway pressure and pneumothorax. Pediatrics. 144(3). https://doi.org/10.1542/peds.2019-

0756 PMID: 31399490

PLOS ONE Performance of CPAP systems used in low-resource settings

PLOS ONE | https://doi.org/10.1371/journal.pone.0242590 December 3, 2020 12 / 12

https://doi.org/10.1016/j.clp.2012.06.007
https://doi.org/10.1016/j.clp.2012.06.007
http://www.ncbi.nlm.nih.gov/pubmed/22954264
https://doi.org/10.1542/peds.107.2.304
http://www.ncbi.nlm.nih.gov/pubmed/11158463
https://doi.org/10.1016/j.resuscitation.2015.07.038
http://www.ncbi.nlm.nih.gov/pubmed/26477410
https://doi.org/10.1016/j.resuscitation.2005.09.014
https://doi.org/10.1016/j.resuscitation.2005.09.014
http://www.ncbi.nlm.nih.gov/pubmed/16324993
https://doi.org/10.1136/archdischild-2014-307891
https://doi.org/10.1136/archdischild-2014-307891
http://www.ncbi.nlm.nih.gov/pubmed/25854822
https://doi.org/10.1542/peds.2019-0756
https://doi.org/10.1542/peds.2019-0756
http://www.ncbi.nlm.nih.gov/pubmed/31399490
https://doi.org/10.1371/journal.pone.0242590

