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Delayed neurocognitive recovery (DNR) is a common subtype of postoperative
neurocognitive disorders. An objective approach for identifying subjects at high risk
of DNR is yet lacking. The present study aimed to predict DNR using the machine
learning method based on multiple cognitive-related brain network features. A total of
74 elderly patients (≥ 60-years-old) undergoing non-cardiac surgery were subjected to
resting-state functional magnetic resonance imaging (rs-fMRI) before the surgery. Seed-
based whole-brain functional connectivity (FC) was analyzed with 18 regions of interest
(ROIs) located in the default mode network (DMN), limbic network, salience network
(SN), and central executive network (CEN). Multiple machine learning models (support
vector machine, decision tree, and random forest) were constructed to recognize
the DNR based on FC network features. The experiment has three parts, including
performance comparison, feature screening, and parameter adjustment. Then, the
model with the best predictive efficacy for DNR was identified. Finally, independent
testing was conducted to validate the established predictive model. Compared to the
non-DNR group, the DNR group exhibited aberrant whole-brain FC in seven ROIs,
including the right posterior cingulate cortex, right medial prefrontal cortex, and left
lateral parietal cortex in the DMN, the right insula in the SN, the left anterior prefrontal
cortex in the CEN, and the left ventral hippocampus and left amygdala in the limbic
network. The machine learning experimental results identified a random forest model
combined with FC features of DMN and CEN as the best prediction model. The area
under the curve was 0.958 (accuracy = 0.935, precision = 0.899, recall = 0.900,
F1 = 0.890) on the test set. Thus, the current study indicated that the random forest

Frontiers in Aging Neuroscience | www.frontiersin.org 1 November 2021 | Volume 13 | Article 715517

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2021.715517
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnagi.2021.715517
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2021.715517&domain=pdf&date_stamp=2021-11-12
https://www.frontiersin.org/articles/10.3389/fnagi.2021.715517/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-715517 November 11, 2021 Time: 12:49 # 2

Jiang et al. Brain Network Study of DNR

machine learning model based on rs-FC features of DMN and CEN predicts the DNR
following non-cardiac surgery, which could be beneficial to the early prevention of DNR.

Clinical Trial Registration: The study was registered at the Chinese Clinical Trial
Registry (Identification number: ChiCTR-DCD-15006096).

Keywords: delayed neurocognitive recovery, default mode network, functional connectivity, machine learning,
resting-state functional MRI

INTRODUCTION

Delayed neurocognitive recovery (DNR) is one of the most
frequent neurological complications in elderly patients after
major non-cardiac surgery (Evered et al., 2018; Zhang et al.,
2018). Delayed neurocognitive recovery is defined as a decline
in cognitive performance within the first month after surgery.
It has been demonstrated that DNR increases the incidence
of postoperative complications and prolongs recovery time
(Chen and Qin, 2020). The International study of postoperative
cognitive dysfunction (ISPOCD1) reported a 25.8% incidence of
cognitive dysfunction at 1 week and 9.9% at 3 months in patients
aged over 60-years-old after non-cardiac surgery (Moller et al.,
1998). Considering the high incidence of and the poor outcomes
associated with DNR, it is essential to identify the potential
predictors of DNR and construct an objective prediction model
to screen patients at a high risk of DNR.

Recently, resting-state functional magnetic resonance imaging
(rs-fMRI) has been employed to explore the potential imaging
biomarkers in various cognitive disorders (Xue C. et al., 2019).
Resting-state functional magnetic resonance imaging detects
regional spontaneous brain activity and the functional integrity
of brain networks without any task or stimulus non-invasively.
The amplitude of low-frequency fluctuation reflected localized
neural activity and was analyzed in our previous study to
identify the neuroimaging risk factors for DNR. The previous
analyses found that elderly patients with altered preoperative
regional neural activity in the bilateral middle cingulate cortex
(MCC) were more susceptible to DNR following non-cardiac
surgery (Jiang et al., 2020). The estimation of the regional
pairwise correlation of blood oxygen level-dependent signals
facilitated rs-fMRI to characterize the intrinsic brain network
architecture (Smith et al., 2013). Functional connectivity (FC)
analysis was performed to explore the underlying associations
between cognitive impairment and connectivity patterns of
specific brain networks, such as the default mode network
(DMN), limbic network, salience network (SN), and central
executive network (CEN). For example, a study using rs-
fMRI reported that the functional integrity of the DMN and
CEN was affected in the Alzheimer’s disease (AD) group
compared to the controls (Ripp et al., 2020). Therefore, the
present study is a reanalysis of previously published data. We
also further investigated whether subjects with postoperative
DNR had abnormal connectivity in the multiple cognitive-
related brain networks before surgery using seed-based whole-
brain FC analysis.

With rapid progress in artificial intelligence, machine learning,
a data-driven pattern of computer-aided recognition techniques,

is increasingly applied for medical diagnosis (Zhu et al., 2020).
Moreover, machine learning could incorporate diversified
neuroimaging features and identify critical factors or interactions
that were previously unknown; this might improve the accuracy
of the model (Solomon et al., 2020). Due to the advantages, such
as universality and accuracy, a large number of studies assessed
the application of machine learning to rs-fMRI data for clinical
diagnosis and prediction of neuropsychological disorders, such as
AD and postoperative delirium (Asgari et al., 2020; Wang et al.,
2020; Zhu et al., 2021). However, no model has been established
for the prediction of DNR using machine learning combined with
neuroimaging data.

The present study aimed to explore the preoperative
differences in seed-based FC in the multiple cognitive-related
brain networks between patients with and without DNR and
develop a machine learning model based on neuroimaging data
to predict the DNR after non-cardiac surgery.

MATERIALS AND METHODS

Ethics Approval and Participants
This study was approved by the Ethics Committee of Huadong
Hospital Affiliated to Fudan University, Shanghai, China
(approval number: 20170020), and written informed consent was
obtained from all subjects participating in the trial registered
on the Chinese Clinical Trial Registry (1 Identification number:
ChiCTR-DCD-15006096, Principal Investigator: Weidong Gu,
Date of registration: March 16, 2015).

The inclusion and exclusion criteria of our study population
have been described previously (Jiang et al., 2020). The
inclusion criteria included patients scheduled to undergo
non-cardiac surgery, age ≥ 60-years-old, American Society
of Anesthesiologists (ASA) classification I-III, and right
handedness. The exclusion criteria included baseline mini-
mental state examination (MMSE) score <24 points, education
duration <6 years, preexisting mental or psychiatric disease,
cardiac or central nervous system vascular disease, Parkinson’s
disease, cardiac or cranial surgery history, major surgery in past
12 months, taking sedatives or antidepressants during the nearest
year, alcohol or drug abuse, vision and audition impairment
or language troubles impeding communication, and situations
unsuitable for MRI examination. This manuscript adheres to the
applicable strengthening the reporting of observational studies
in epidemiology (STROBE) guidelines.

1http://www.chictr.org.cn
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Neurocognitive Assessment
We used the Z score method recommended by the ISPOCD1
to diagnose DNR for each patient (Moller et al., 1998). This
is a standardized method for the identification of postoperative
neurocognitive disorders that have been described in a previous
study (Jiang et al., 2020). All patients underwent comprehensive
neurocognitive tests 1 day before surgery (baseline) and at
7-14 days after the surgery (follow-up). The comprehensive
tests included MMSE, verbal fluency test (VFT), digit symbol
substitution test (DSST), digit span forward and backward test
(DSF/DSB), and trail making test-part A (TMT-A). For each test,
we compared the changes (1x) from baseline scores to follow-up
scores in patients. To correct the learning effect, we recruited 30
volunteers, age- and education duration- matched to the surgical
patients, who completed the same neurocognitive tests as those
performed on the surgical patients. For volunteers, we calculated
the changes from baseline scores to follow-up scores to obtain
the average learning effects (1xc) and the standard deviations
[SD(1xc)] in each test. The Z score was built as follows: (1x-
1xc)/SD(1xc). To create a composite Z score, the Z scores of all
six tests in an individual patient were summarized and divided by
the standard deviations for the sum of Z scores in volunteers. The
composite Z score was built as follows: 6Z/SD(6Zc). A patient
was diagnosed as having DNR when the Z scores of at least two
of the neurocognitive tests or the composite Z score were ≥1.96.

Resting-State Functional Magnetic
Resonance Imaging Data Acquisition
All MRI data were acquired on a Siemens Skyra 3.0 T
MRI scanner before surgery. The complete MRI acquisition
protocol included three-dimensional (3D) anatomical T1-
weighted imaging and fMRI echo-planar imaging. The 3D
anatomical T1-weighted imaging parameters were as follows: 176
sagittal slices, repetition time = 1900 ms, echo time = 3.57 ms,
voxel size = 1 × 1 × 1 mm, and flip angle = 9◦. The echo-
planar imaging sequence parameters were as follows: 33 axial
slices, slices thickness = 4 mm with a 0-mm gap, repetition
time = 3000 ms, echo time = 30 ms, voxel size = 3.4× 3.4× 4 mm,
and flip angle = 90◦. During the fMRI imaging, 120 volumes were
obtained that lasted 8.5 min.

Image Preprocessing and Seed-Based
Functional Connectivity Analysis
All rs-fMRI data were processed using Statistical Parametric
Mapping version 12, RESTplus version 1.22, and BrainNet
viewer, based on MATLAB version R2013b (Ren et al., 2016).
We discarded the first five volumes to avoid the potential
noise related to the participants’ adaptation to the scanner.
The remaining images preprocessing included slice timing,
head motion correction, spatial normalization, smoothing
(6mm full-width half-maximum Gaussian kernel), low-frequency
filtering (0.01-0.08 Hz), linear trend removal, and nuisance
covariates regression (motion artifact, white matter signal, and
cerebrospinal fluid signal) (Jiang et al., 2020).

A seed-based analysis was performed to explore the
preoperative whole-brain voxel-wise FC alteration in the

main nodes from multiple cognitive-related networks in DNR
patients. To identify the regions of interest (ROIs) in the present
study, eighteen spherical ROIs with a 6-mm radius from the
DMN, limbic network, SN, and CEN, were adopted based on
previous studies (Supekar et al., 2009; Fan et al., 2018; Liu et al.,
2020) (see the detailed ROI Montreal Neurological Institute
coordinates in Supplementary Table 1). For the FC analysis, we
extracted the mean time series of each ROI and correlated it with
the time series of each voxel of the whole brain. Then, Fisher’s
r-to-z transformation was used to improve the normality of the
correlation coefficients.

The group comparisons of rs-fMRI data were performed using
two-sample t-tests, with age, sex, and duration of education
as covariates. The data were corrected using cluster-based false
discovery rate (FDR) with uncorrected voxel P < 0.001 and
corrected cluster P < 0.05 (Chumbley and Friston, 2009).

Statistical Analysis and Machine
Learning
Analyses of patient characteristics and neurocognitive data were
performed using SPSS 22.0 and GraphPad Prism. According
to the distribution of the data, two-sample t-test or Mann-
Whitney test was used to assess the differences in continuous
variables between the DNR and non-DNR groups. Categorical
variables were analyzed using the chi-square test. The differences
in neurocognitive test scores at days 7-14 follow-up between the
patients with and without DNR were compared, with baseline
scores as a covariate. A P-value < 0.05 was adopted as the
criterion to indicate statistical significance.

Based on the rs-fMRI variables, predictive models of DNR
were established using the support vector machine algorithm,
decision tree algorithm, and random forest (RF) algorithm. The
dataset was randomly divided into a training set containing 70%
of the samples and a test set containing the remaining 30%.
Next, the effect of each model was assessed by 10-fold cross-
validation on the training set, which could reduce selection
bias or overfitting. The comparison of their classification
performance identified the model with the best predictive
efficacy. Subsequently, due to the high dimensionality of the
rs-fMRI data, we evaluated the corresponding weights of the
indicators in the model to remove irrelevant or unimportant
information from the data, thereby improving the generalization
ability of the DNR prediction model. In addition, because of the
minority of DNR patients in the data set, a separate experiment
was conducted using the Synthetic Minority Oversampling
Technique (SMOTE) to enrich the data. This is an advanced
oversampling method that generates synthetic samples in the
minority class of imbalanced datasets to avoid overfitting (Decaro
et al., 2021; Popoola et al., 2021).

Furthermore, we selected the model with the best classification
performance and the strongest generalization ability and adjusted
the parameters to obtain that with the best predictive efficacy.
Finally, the predictive performance was evaluated in the test
set based on the best model with optimal parameters. The
classification performance of the machine learning algorithms
was evaluated using the statistical metrics of precision, recall,
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F1, accuracy, and area under the receiver operating characteristic
curve (AUC-ROC). F1 is a weighted average of precision and
recall (Wang et al., 2020), which can comprehensively evaluate
the balance of model performance between precision and recall.
A higher F1 value indicates a satisfactory performance of the
model. The statistical analyses of machine learning algorithms
were performed in Python.

RESULTS

Subject Characteristics and
Neurocognitive Results
In this study, 74 patients completed both the rs-fMRI scan
and the neurocognitive assessment follow-up. The flow-chart of
patient selection in this study is provided in Supplementary
Figure 1. A total of 16 patients were diagnosed with DNR, and
the incidence of DNR was 21.6% at 7-14 days post-surgery.
The characteristics and neurocognitive results of the subjects are
summarized in Table 1. We found that the non-DNR subjects
showed a significantly longer education duration than the DNR

subjects (P = 0.002). However, no differences were detected in the
other baseline and intraoperative data between the two groups.

As expected, after adjusting for the baseline neurocognitive
test scores, we observed that the DNR patients exhibited
significantly lower MMSE, VFT, DSST, DSF, and DSB follow-
up scores and higher TMT-A follow-up scores (all P < 0.05)
compared to the non-DNR patients. These results indicated that
the DNR group has a poor performance after non-cardiac surgery
in many cognitive function domains, such as working memory,
attention, executive function, and visual-spatial ability.

Altered Seed-Based Functional
Connectivity Patterns of Multiple
Cognitive-Related Networks
After adjusting for age, sex, and education duration, significant
differences were detected in the preoperative whole-brain
connectivity of seven ROIs from the DMN, SN, CEN, and limbic
network between the two groups (Figure 1 and Table 2). In
the DMN, the DNR group exhibited higher FC À between
the right posterior cingulate cortex (PCC) and right middle
frontal gyrus, Á between the right PCC and left middle

TABLE 1 | Characteristics and neurocognitive results.

All subjects DNR non-DNR P value

Number of subjects 74 16 58 -

Age (years) 64.0 (61.8, 68.0) 63.5 (62.0, 67.0) 64.0 (61.0, 68.3) 0.598b

Sex (male/female) 41/33 12/4 29/29 0.075c

Education (years) 9 (9, 12) 6 (6, 9) 9 (9, 12) 0.002b

Height (m) 1.68 (1.60, 1.72) 1.70 (1.63, 1.73) 1.65 (1.59, 1.71) 0.185a

Weight (kg) 60.0 (53.8, 70.0) 59.0 (50.0, 70.5) 60.0 (54.8, 70.0) 0.324b

BMI ≥ 24 (n,%) 22 (29.7) 3 (18.8) 19 (32.8) 0.437c

Smoking (n,%) 22 (29.7) 7 (43.8) 15 (25.9) 0.281c

Surgical history (n,%) 34 (45.9) 6 (37.5) 28 (48.3) 0.444c

Comorbidities (n,%)

Hypertension 31 (41.9) 7 (43.8) 24 (41.4) 0.865c

Diabetes mellitus 8 (10.8) 1 (6.3) 7 (12.1) 0.835c

Anemia 15 (20.3) 5 (31.3) 10 (17.2) 0.309c

COPD 19 (25.7) 5 (31.3) 14 (24.1) 0.800c

Peptic ulcer disease 9 (12.2) 4 (25.0) 5 (8.6) 0.179c

Intraoperative conditions

Surgical duration (min) 106 (72, 149) 120 (114, 166) 95 (70, 135) 0.055b

Minimally invasive/open surgery 66/8 12/4 54/4 0.107c

Propofol (mg) 324 (60, 700) 300 (53, 844) 324 (68, 678) 0.974b

Sufentanil (µg) 30 (14, 35) 35 (21, 49) 30 (25, 35) 0.148b

Remifentanil (mg) 1.3 (0.8, 2.0) 1.5 (1.3, 2.1) 1.2 (0.7, 1.8) 0.059b

Neurocognitive followup

MMSE 27.5 (26.0, 28.0) 26.0 (23.3, 27.8) 28.0 (26.0, 28.3) 0.032a

VFT 14.5 (13.0, 19.0) 12.5 (10.0, 14.0) 15.0 (13.8, 19.0) 0.002a

DSST 28.0 (21.0, 35.0) 19.5 (15.0, 24.0) 30.0 (24.8, 35.0) <0.001a

DSF 8.0 (7.0, 8.0) 6.5 (5.0, 8.0) 8.0 (7.0, 8.0) 0.008a

DSB 4.0 (3.0, 4.0) 3.0 (3.0, 4.0) 4.0 (3.0, 4.0) <0.001a

TMT-A 44.5 (35.8, 61.0) 76.0 (48.5, 104.5) 42.0 (33.0, 54.0) <0.001a

P-value refers to group comparison of DNR group vs. non-DNR group by a t-test; b Mann-Whitney U test; c chi-square test.
BMI, body mass index; COPD, chronic obstructive pulmonary disease; DNR, delayed neurocognitive recovery; DSB, digit span backward; DSF, digit span forward; DSST,
digit symbol substitution test; MMSE, mini-mental state examination; TMT-A, trail making test-part A; VFT, verbal fluency test.
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FIGURE 1 | Brain regions of between-group differences in FC after adjusting for age, sex, and education duration (cluster P < 0.05, FDR-corrected). (A) Compared
to the non-DNR group, the DNR group exhibited aberrant connectivity to the whole brain in seven ROIs, including the right PCC, right mPFC, and left lateral parietal
cortex located in the DMN; the right insula located in the SN; the left anterior prefrontal cortex in the CEN; the left ventral hippocampus and left amygdala in the
limbic network. The color scale denotes the T values. (B) 3D view of the brain. The yellow nodes represent the ROIs in the DMN, SN, CEN, and limbic network. The
red/blue nodes and edges represent the brain regions with increased/decreased FC to the ROIs in the DNR patients compared to the non-DNR patients. aPFC,
anterior prefrontal cortex; CEN, central executive network; DMN, default mode network; DNR, delayed neurocognitive recovery; FC, functional connectivity; FDR,
false discovery rate; vHIP, ventral hippocampus; IPG, inferior parietal gyrus; LPC, lateral parietal cortex; MCC, middle cingulate cortex; MFG, middle frontal gyrus;
mPFC, medial prefrontal cortex; PCC, posterior cingulate cortex; ROIs, regions of interest; SN, salience network; SOG, superior occipital gyrus; STG, superior
temporal gyrus; A, anterior; P, posterior; L, left; R, right.

frontal gyrus, Â between the right medial prefrontal cortex
(mPFC) and left MCC, and Ã lower FC between the left
lateral parietal cortex and right calcarine compared to the
non-DNR group. Also, the DNR patients had higher FC Ä

between the right insula in the SN and right superior occipital
gyrus, and Å between the left anterior prefrontal cortex in

the CEN and left MCC. Additionally, regarding the altered
patterns of the limbic network, decreased connections were
detected in the DNR group compared to the non-DNR group
Æ between the left ventral hippocampus and right inferior
parietal gyrus, and Ç between the left amygdala and left
superior temporal gyrus. The data were corrected using the
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TABLE 2 | Brain regions showing seed-based FC differences before surgery between the DNR and non-DNR groups.

ROIs Brain regions Direction MNI coordinates(x/y/z mm) Cluster size Peak T

Default mode network (DMN)

À Posterior cingulate cortex.R middle frontal gyrus.R DNR > Non-DNR 36 54 6 48 3.968

Á Posterior cingulate cortex.R middle frontal gyrus.L DNR > Non-DNR –42 48 12 48 4.604

Â Medial prefrontal cortex.R middle cingulate cortex.L DNR > Non-DNR –9 –33 42 88 5.106

Ã lateral parietal cortex.L calcarine.R DNR < non-DNR 12 –69 6 105 −5.252

Salience network (SN)

Ä Insula.R superior occipital gyrus.R DNR > Non-DNR 24 –90 15 37 4.747

Central executive network (CEN)

Å Anterior prefrontal cortex.L middle cingulate cortex.L DNR > Non-DNR –6 –45 36 66 4.659

Limbic network

Æ Ventral hippocampus.L inferior parietal gyrus.R DNR < non-DNR 54 -48 42 111 −4.750

Ç Amygdala.L superior temporal gyrus.L DNR < non-DNR –54 –39 21 37 −4.506

CEN, central executive network; DMN, default mode network; DNR, delayed neurocognitive recovery; FC, functional connectivity; MNI, Montreal Neurological Institute;
ROIs, regions of interest; SN, salience network; R, right; L, left.

FIGURE 2 | Feature importance across rs-fMRI features and demographic data included in the random forest algorithm for the prediction of DNR. À-Ç represents a
number of FC variables: À PCC.R–middle frontal gyrus.R; Á PCC.R–middle frontal gyrus.L; ÂmPFC.R–MCC.L; Ã Lateral parietal cortex.L–calcarine.R; Ä

Insula.R–superior occipital gyrus.R; ÅAnterior prefrontal cortex.L–MCC.L; Æ Ventral hippocampus.L–inferior parietal gyrus.R; Ç Amygdala.L–superior temporal
gyrus.L. DNR, delayed neurocognitive recovery; FC, functional connectivity; MCC, middle cingulate cortex; mPFC, medial prefrontal cortex; PCC, posterior cingulate
cortex; rs-fMRI, resting-state functional MRI; R, right; L, left.

cluster-based FDR (uncorrected voxel P < 0.001 and corrected
cluster P < 0.05).

Machine Learning Prediction Models
Using a randomization method, 70% of the total samples were
divided into the training set and 30% into the test set. The
optimal model was established through 10-fold cross-validation
on the training set, and each predictive model was evaluated
with accuracy, precision, recall, and F1 metrics. To establish
the DNR prediction models, the three machine learning
algorithms included eight rs-fMRI variables (À-Ç; Table 2) and
subject characteristics (age, sex, and education). The following
metrics with default parameters were identified in the training
set: support vector machine algorithm (precision = 0.804,
recall = 0.782, F1 = 0.779, accuracy = 0.905); decision tree
algorithm (precision = 0.698, recall = 0.707, F1 = 0.687,
accuracy = 0.837); RF algorithm (precision = 0.849, recall = 0.811,

F1 = 0.813, accuracy = 0.907). The results indicated that the
RF algorithm using rs-fMRI data combined with age, sex, and
education achieved the best performance for predicting DNR
following non-cardiac surgery.

The RF algorithm also provides the corresponding weight
of each variable, thereby identifying the variable that influences
the predictions (Corradi et al., 2018). Figure 2 shows the
corresponding weights of each variable calculated by the RF
algorithm to reveal the contributions of these variables to the
model. The crucial factors were ÃFC of the left lateral parietal
cortex – right calcarine, ÁFC of the right PCC – left middle
frontal gyrus, ÅFC of the left anterior prefrontal cortex – left
MCC, ÀFC of the right PCC – right middle frontal gyrus, and
ÂFC of the right mPFC – left MCC. The contribution of these five
variables to the DNR model was close to 70%, indicating that the
whole-brain FC of the DMN and CEN were critical influencing
factors for the development of DNR.
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FIGURE 3 | Performance of the simplified RF model. (A) Classification performance with respect to the distinct number of decision trees. (B) ROC curves and the
AUC of the RF model are based on the 90 decision trees. Blue line denotes the average ROC curve, and the shaded area indicates the lower and upper limits of the
AUC in the 10-fold cross-validation. AUC, area under the ROC curve; RF, random forest; ROC, receiver operating characteristic.

Next, the machine learning modeling was continued to predict
the DNR according to the data of feature screening. The rs-fMRI
data related to DMN and CEN were extracted, combined with
the RF algorithm and SMOTE method to construct the DNR
prediction model and compare the prediction performance of
(1) initial model (all variables); (2) initial model + SMOTE; (3)
simplified model (only FC data of DMN and CEN); (4) simplified
model + SMOTE. The following metrics were identified as
follows: (1) initial model (precision = 0.849, recall = 0.811,
F1 = 0.813, accuracy = 0.907); (2) initial model + SMOTE
(precision = 0.874, recall = 0.851, F1 = 0.848, accuracy = 0.921);
(3) simplified model (precision = 0.836, recall = 0.802,
F1 = 0.799, accuracy = 0.882); (4) simplified model + SMOTE
(precision = 0.852, recall = 0.830, F1 = 0.823, accuracy = 0.890).
The results showed that the prediction performance changed
slightly when the feature number decreased significantly
to 5. This phenomenon indicated that the simplified RF
model could achieve good prediction performance for DNR.
In addition, SMOTE oversampling method improved the
prediction efficacy.

Based on DMN and CEN data using SMOTE method, this
study identified the optimal parameters by adjusting the number
of decision trees in the simplified RF model. Figure 3A shows that
the best classification accuracy was obtained when the number
of decision trees was 90. Finally, the RF classifier accuracy was
determined as high as 0.935 (precision = 0.889, recall = 0.900,
F1 = 0.890) in the test set. Based on the 90 decision trees
to build the model, a high forecast performance of the model
was obtained with an average AUC of 0.958 in 10-fold cross-
validation, indicating an adequate average effect of the model.
The lower and upper limits of the AUC in the cross-validation
were 0.956 and 0.960, respectively, which indicates a stable
model (Figure 3B).

In summary, the simplified RF model based on the FC data of
DMN and CEN could effectively predict the DNR following the
non-cardiac surgery.

DISCUSSION

To the best of our knowledge, this is the first study using
machine learning combined with the neuroimaging data to
predict the DNR following non-cardiac surgery. In the present
study, we reported two significant findings. First, the DNR
patients exhibited altered preoperative whole-brain functional
connectivity patterns of the DMN, limbic network, SN, and CEN.
Second, the RF machine learning model showed that multiple
cognitive-related network fMRI data could be used to predict
postoperative DNR with high accuracy.

Due to the low sensitivity and specificity of biological markers,
brain function research based on rs-fMRI is a breakthrough point
in the study of cognitive dysfunction diseases. Several studies
have applied rs-fMRI as one of the main methods to illuminate
the mechanisms underlying cognitive disorders. The most
studied connectivity patterns of some cognitive-related networks
are the DMN, SN, CEN, and limbic network. DMN is related
to cognition processing, and the core hubs are the mPFC and
the PCC. Fan et al. performed a seed-based analysis with seeds
located in the classical DMN regions, including bilateral mPFC
and PCC, and found that the DMN-involved FC alterations were
correlated with sustained attention deficits (Fan et al., 2018). The
lateral parietal cortex is also a key area of DMN. In a seed-
based FC study to explore the association between DMN and
schizophrenia with cognitive impairment, Dauvermann et al.
selected mPFC, PCC, and lateral parietal lobes as the seeds of
the DMN and reported patients with cognitive impairment had
reductions in FC between the left/right parietal lobe and multiple
other regions (Dauvermann et al., 2021). The SN anchored in
the insula and anterior cingulate cortex plays a crucial role in
identifying the cognitively relevant events that guide attention,
detection, emotional information, and orientation (Menon and
Uddin, 2010). The CEN participates in high-level cognitive
functions, including decision-making, information processing,
executive function, and working memory. Its core nodes include
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the anterior prefrontal cortex and superior parietal lobule
(Viard et al., 2019; Xue J. et al., 2019). We also analyzed the
connection pattern between the limbic network (hippocampus
and amygdala) and each voxel of the whole brain in DNR
patients. Therefore, we used seed-based methods to explore
whole-brain voxel-wise FC alterations in DNR by choosing
the main nodes as ROIs in these networks and integrated the
identified abnormal FC changes by machine learning methods to
establish a model to predict DNR in elderly patients.

In recent years, the combination of machine learning and
medical events has become a hot topic. It has achieved
productive results, given that the machine learning algorithms
can accommodate all variables simultaneously and model their
interactions to optimize the between-group classification (Oh
et al., 2018). Also, the application of machine learning has also
been reported for the prediction of postoperative complications
(Barber et al., 2021; Bolourani et al., 2021). A previous study
demonstrated that applying complex or simple machine learning
algorithms improves the prediction of postoperative delirium
after cardiac surgery, which reduces the costs by preventing
postoperative complications and optimizes patient outcomes
(Mufti et al., 2019). In this study, we built an RF model
based on FC features of multiple cognitive-related networks to
predict the postoperative DNR and achieved acceptable accuracy,
precision, recall, and F1.

In the present study, the RF model identified critical factors
for the occurrence of DNR: CEN and DMN. The anterior
prefrontal cortex is the key region of the CEN. The results
showed that DNR patients had higher preoperative connectivity
between the anterior prefrontal cortex and MCC, and the
contribution of the feature to the DNR model was about 15%.
In addition, we also found a high preoperative FC between
mPFC, which is the core region of the DMN, and MCC in the
DNR patients. These results indicated that MCC has abnormal
functional connections with key seed points in CEN and DMN.
The MCC is a crucial part of the limbic network, involved in
various cognitive functions, such as attention, working memory,
and executive function (Shackman et al., 2011; Yuan et al.,
2016; Zheng et al., 2018). Reportedly, MCC was activated
while performing working memory tasks and during divided
attention (Petit et al., 1998; Bush et al., 2005). In addition to
working memory and attention function, MCC is also involved
in executive function. Yuan et al. demonstrated that MCC is
a core region of the executive function network that mediates
episodic memory processing (Yuan et al., 2016). Several clinical
studies have reported that patients with abnormal regional neural
activity and functional connections of the MCC were susceptible
to cognitive impairment. Li et al. demonstrated that patients with
mild cognitive impairment have higher spontaneous synchrony
in the MCC compared to healthy subjects (Li et al., 2020).
In an fMRI study evaluating the FC patterns throughout the
progression of AD, Skouras et al. observed a stronger FC
between the MCC and several brain regions in the preclinical
asymptomatic and mild cognitive impairment group (Skouras
et al., 2019). In a previous analysis, we deduced that altered neural
activity and whole-brain connectivity pattern of MCC were
independent risk factors for DNR following non-cardiac surgery

(Jiang et al., 2020). Taken together, these findings indicated
that the local neural activity of MCC and the FC pattern
between MCC and other brain networks (DMN and CEN) plays
crucial roles in the pathogenesis of various diseases related to
cognitive dysfunction.

The abnormal FC patterns of DMN were associated with
various diseases related to cognitive impairment, such as mild
cognitive impairment, AD, Parkinson’s disease, and attention-
deficit/hyperactivity disorder (Zhang H. et al., 2020; Duffy et al.,
2021; Luo et al., 2021; Tang et al., 2021; Wang et al., 2021).
Zhang et al. investigated the subjects at high risk of AD compared
to the low-risk subjects, presenting significantly altered FC in
the PCC and middle frontal cortex (Zhang X. Y. et al., 2020).
We also found that DNR patients showed a higher preoperative
FC between PCC and bilateral middle frontal cortex compared
to the non-DNR patients. Notably, the critical factor for DNR
occurrence was the FC of the lateral parietal cortex–calcarine.
The calcarine is a part of the primary visual cortex contributing
to visual-spatial processing, attention, episodic memory, and
information maintenance about a stimulus in working memory
(Pratte and Tong, 2014; Bergmann et al., 2016; Cho et al., 2018).
The abnormal alterations in FC of calcarine were related to
cognitive impairment (Moon and Jeong, 2017). In a previous
study, we also found that altered preoperative FC of calcarine
was independently associated with the occurrence of DNR
(Jiang et al., 2020). The DSST and TMT-A neurocognitive tests
were employed to assess the visual-related cognitive function
(Joy et al., 2003; Llinàs-Reglà et al., 2017). Herein, we found
that the DNR patients showed lower DSST and higher TMT-
A scores postoperatively, suggesting that the visual cognitive
ability of DNR patients was significantly deteriorated from
baseline. The above findings indicated that the disorder of
functional connections between the DMN and primary visual
cortex might be related to visual-related cognitive impairments
in patients with DNR.

In the present study, the initial RF model based on a
combination of all imaging data and demographic data could
satisfactorily predict DNR. Based on feature screening, the
simplified RF model based on only DMN and CEN data has
a marked effect on DNR classification. Compared to the initial
RF model, the simplified model has the advantages of cost-
efficiency and easier implementation, which are critical for the
clinical prediction model. In summary, the neuroimaging data-
driven machine learning recognition technique has been used
for the first time in the current study to identify the patients
at high risk for developing DNR, which would be beneficial
for the early prevention of DNR and improving the prognosis
of elderly patients post-surgery. Recently, it has been reported
that the incidence of postoperative cognitive disorders in high-
risk patients may be reduced by comprehensive multidisciplinary
interventions, including cognitive stimulation (Álvarez et al.,
2017; Deemer et al., 2020), repeated re-orientation (Colombo
et al., 2012), early mobilization (Krenk et al., 2014), preoperative
melatonin supplementation (Fan et al., 2017), intraoperative
administration of dexmedetomidine (Cheng et al., 2019; Yang
et al., 2019; Lei et al., 2020), postoperative patient-controlled
epidural analgesia (Kristek et al., 2019), removal of physical
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restraints and catheters as permitted (Migirov et al., 2021), and
family training (Mitchell et al., 2017).

Nevertheless, the present study has several limitations. First,
the majority of the patients refused to undergo another rs-fMRI
scan postoperatively, and hence, we were unable to find any
potential aberrant FC patterns in brain networks after surgery.
Second, cross-validation within the same dataset might lead to
inaccurate estimation of the prediction error (Varoquaux et al.,
2017; Zhu et al., 2020), rendering it uncertain whether the rs-
fMRI biomarkers in this study could be extended to a broad
population. Therefore, in the future study, we would collect new
independent testing data (multi-center) to verify the stability and
reliability of the model. Thirdly, the present study used seed-
based FC analysis to explore the connectivity patterns between
the core seed points of the DMN, SN, CEN or limbic network
and all voxels of the whole brain. The whole-brain voxel-wise FC
of other brain regions was not investigated, and it is possible to
improve the performance of the prediction model by including
more brain regions of other networks. Fourthly, this study is a
reanalysis of our previously published data (Jiang et al., 2020).
A previous study found that the DNR patients exhibited altered
spontaneous neural activity in the bilateral MCC prior to surgery.
rs-fMRI data could be utilized to extract maximal information.
Therefore, the present study further used FC analysis to explore
the preoperative connectivity patterns of cognitive-related brain
networks in patients who developed DNR following non-cardiac
surgery. Thus, a large group of subjects is required to substantiate
the current findings in the future independent study.
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